Spaces:
Runtime error
Runtime error
File size: 80,741 Bytes
8918ac7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 |
import os
import json
import gradio as gr
import time
from datasets import load_dataset
import pandas as pd
from typing import Any, Dict, Union, Optional, Generator, List
from dataclasses import dataclass
from .utils.command import preview_command, save_arguments, build_command_list
from .utils.monitor import TrainingMonitor
import traceback
import base64
import tempfile
import numpy as np
import queue
import subprocess
import sys
import threading
@dataclass
class TrainingArgs:
def __init__(self, args: list, plm_models: dict, dataset_configs: dict):
# Basic parameters
self.plm_model = plm_models[args[0]]
# 处理自定义数据集或预定义数据集
self.dataset_selection = args[1] # "Use Custom Dataset" 或 "Use Pre-defined Dataset"
if self.dataset_selection == "Use Pre-defined Dataset":
self.dataset_config = dataset_configs[args[2]]
self.dataset_custom = None
# 从配置加载问题类型等
with open(self.dataset_config, 'r') as f:
config = json.load(f)
self.problem_type = config.get("problem_type", "single_label_classification")
self.num_labels = config.get("num_labels", 2)
self.metrics = config.get("metrics", "accuracy,mcc,f1,precision,recall,auroc")
else:
self.dataset_config = None
self.dataset_custom = args[3] # Custom dataset path
self.problem_type = args[4]
self.num_labels = args[5]
self.metrics = args[6]
# 如果metrics是列表,转换为逗号分隔的字符串
if isinstance(self.metrics, list):
self.metrics = ",".join(self.metrics)
# Training method parameters
self.training_method = args[7]
self.pooling_method = args[8]
# Batch processing parameters
self.batch_mode = args[9]
if self.batch_mode == "Batch Size Mode":
self.batch_size = args[10]
else:
self.batch_token = args[11]
# Training parameters
self.learning_rate = args[12]
self.num_epochs = args[13]
self.max_seq_len = args[14]
self.gradient_accumulation_steps = args[15]
self.warmup_steps = args[16]
self.scheduler = args[17]
# Output parameters
self.output_model_name = args[18]
self.output_dir = args[19]
# Wandb parameters
self.wandb_enabled = args[20]
if self.wandb_enabled:
self.wandb_project = args[21]
self.wandb_entity = args[22]
# Other parameters
self.patience = args[23]
self.num_workers = args[24]
self.max_grad_norm = args[25]
self.structure_seq = args[26]
# LoRA parameters
self.lora_r = args[27]
self.lora_alpha = args[28]
self.lora_dropout = args[29]
self.lora_target_modules = [m.strip() for m in args[30].split(",")] if args[30] else []
def to_dict(self) -> Dict[str, Any]:
args_dict = {
"plm_model": self.plm_model,
"training_method": self.training_method,
"pooling_method": self.pooling_method,
"learning_rate": self.learning_rate,
"num_epochs": self.num_epochs,
"max_seq_len": self.max_seq_len,
"gradient_accumulation_steps": self.gradient_accumulation_steps,
"warmup_steps": self.warmup_steps,
"scheduler": self.scheduler,
"output_model_name": self.output_model_name,
"output_dir": self.output_dir,
"patience": self.patience,
"num_workers": self.num_workers,
"max_grad_norm": self.max_grad_norm,
}
if self.training_method == "ses-adapter" and self.structure_seq:
args_dict["structure_seq"] = ",".join(self.structure_seq)
# 添加数据集相关参数
if self.dataset_selection == "Use Pre-defined Dataset":
args_dict["dataset_config"] = self.dataset_config
else:
args_dict["dataset"] = self.dataset_custom
args_dict["problem_type"] = self.problem_type
args_dict["num_labels"] = self.num_labels
args_dict["metrics"] = self.metrics
# Add LoRA parameters
if self.training_method in ["plm-lora", "plm-qlora", "plm_adalora", "plm_dora", "plm_ia3"]:
args_dict.update({
"lora_r": self.lora_r,
"lora_alpha": self.lora_alpha,
"lora_dropout": self.lora_dropout,
"lora_target_modules": self.lora_target_modules
})
# Add batch processing parameters
if self.batch_mode == "Batch Size Mode":
args_dict["batch_size"] = self.batch_size
else:
args_dict["batch_token"] = self.batch_token
# Add wandb parameters
if self.wandb_enabled:
args_dict["wandb"] = True
if self.wandb_project:
args_dict["wandb_project"] = self.wandb_project
if self.wandb_entity:
args_dict["wandb_entity"] = self.wandb_entity
return args_dict
def create_train_tab(constant: Dict[str, Any]) -> Dict[str, Any]:
# Create training monitor
monitor = TrainingMonitor()
# Add missing variable declarations
is_training = False
current_process = None
stop_thread = False
process_aborted = False
plm_models = constant["plm_models"]
dataset_configs = constant["dataset_configs"]
with gr.Tab("Training"):
# Model and Dataset Selection
gr.Markdown("### Model and Dataset Configuration")
# Original training interface components
with gr.Group():
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
plm_model = gr.Dropdown(
choices=list(plm_models.keys()),
label="Protein Language Model",
value=list(plm_models.keys())[0],
scale=2
)
# 新增数据集选择方式
is_custom_dataset = gr.Radio(
choices=["Use Custom Dataset", "Use Pre-defined Dataset"],
label="Dataset Selection",
value="Use Pre-defined Dataset",
scale=3
)
dataset_config = gr.Dropdown(
choices=list(dataset_configs.keys()),
label="Dataset Configuration",
value=list(dataset_configs.keys())[0],
visible=True,
scale=2
)
dataset_custom = gr.Textbox(
label="Custom Dataset Path",
placeholder="Huggingface Dataset eg: user/dataset",
visible=False,
scale=2
)
# 将预览按钮放在单独的列中,并添加样式
with gr.Column(scale=1, min_width=120, elem_classes="preview-button-container"):
dataset_preview_button = gr.Button(
"Preview Dataset",
variant="primary",
size="lg",
elem_classes="preview-button"
)
# 自定义数据集的额外配置选项(单独一行)
with gr.Row(visible=True) as custom_dataset_settings:
problem_type = gr.Dropdown(
choices=["single_label_classification", "multi_label_classification", "regression"],
label="Problem Type",
value="single_label_classification",
scale=23,
interactive=False
)
num_labels = gr.Number(
value=2,
label="Number of Labels",
scale=11,
interactive=False
)
metrics = gr.Dropdown(
choices=["accuracy", "recall", "precision", "f1", "mcc", "auroc", "f1max", "spearman_corr", "mse"],
label="Metrics",
value=["accuracy", "mcc", "f1", "precision", "recall", "auroc"],
scale=101,
multiselect=True,
interactive=False
)
with gr.Row():
structure_seq = gr.Dropdown(
label="Structure Sequence",
choices=["foldseek_seq", "ss8_seq"],
value=["foldseek_seq", "ss8_seq"],
multiselect=True,
visible=False
)
# ! add for plm-lora, plm-qlora, plm_adalora, plm_dora, plm_ia3
with gr.Row(visible=False) as lora_params_row:
# gr.Markdown("#### LoRA Parameters")
with gr.Column():
lora_r = gr.Number(
value=8,
label="LoRA Rank",
precision=0,
minimum=1,
maximum=128,
)
with gr.Column():
lora_alpha = gr.Number(
value=32,
label="LoRA Alpha",
precision=0,
minimum=1,
maximum=128
)
with gr.Column():
lora_dropout = gr.Number(
value=0.1,
label="LoRA Dropout",
minimum=0.0,
maximum=1.0
)
with gr.Column():
lora_target_modules = gr.Textbox(
value="query,key,value",
label="LoRA Target Modules",
placeholder="Comma-separated list of target modules",
# info="LoRA will be applied to these modules"
)
# 将数据统计和表格都放入折叠面板
with gr.Row():
with gr.Accordion("Dataset Preview", open=False) as preview_accordion:
# 数据统计区域
with gr.Row():
dataset_stats_md = gr.HTML("", elem_classes=["dataset-stats"])
# 表格区域
with gr.Row():
preview_table = gr.Dataframe(
headers=["Name", "Sequence", "Label"],
value=[["No dataset selected", "-", "-"]],
wrap=True,
interactive=False,
row_count=3,
elem_classes=["preview-table"]
)
# Add CSS styles
gr.HTML("""
<style>
/* 数据统计样式 */
.dataset-stats {
margin: 0 0 15px 0;
padding: 0;
}
.dataset-stats table {
width: 100%;
border-collapse: collapse;
font-size: 0.9em;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
border-radius: 8px;
overflow: hidden;
table-layout: fixed;
}
.dataset-stats th {
background-color: #e0e0e0;
font-weight: bold;
padding: 6px 10px;
text-align: center;
border: 1px solid #ddd;
font-size: 0.95em;
white-space: nowrap;
overflow: hidden;
min-width: 120px;
}
.dataset-stats td {
padding: 6px 10px;
text-align: center;
border: 1px solid #ddd;
}
.dataset-stats h2 {
font-size: 1.1em;
margin: 0 0 10px 0;
text-align: center;
}
/* 表格样式 */
.preview-table table {
background-color: white !important;
font-size: 0.9em !important;
width: 100%;
table-layout: fixed !important;
}
.preview-table .gr-block.gr-box {
background-color: transparent !important;
}
.preview-table .gr-input-label {
background-color: transparent !important;
}
/* 表格外观增强 */
.preview-table table {
margin-top: 0;
border-radius: 8px;
overflow: hidden;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
/* 表头样式 */
.preview-table th {
background-color: #e0e0e0 !important;
font-weight: bold !important;
padding: 6px !important;
border-bottom: 1px solid #ccc !important;
font-size: 0.95em !important;
text-align: center !important;
white-space: nowrap !important;
min-width: 120px !important;
}
/* 单元格样式 */
.preview-table td {
padding: 4px 6px !important;
max-width: 300px !important;
overflow: hidden;
text-overflow: ellipsis;
white-space: nowrap;
text-align: left !important;
}
/* 悬停效果 */
.preview-table tr:hover {
background-color: #f0f0f0 !important;
}
/* 折叠面板样式 */
.gr-accordion {
border: 1px solid #e0e0e0;
border-radius: 8px;
overflow: hidden;
margin-bottom: 15px;
}
/* 折叠面板标题样式 */
.gr-accordion .label-wrap {
background-color: #f5f5f5;
padding: 8px 15px;
font-weight: bold;
}
.preview-button {
height: 86px !important;
}
/* Center Model Statistics Table */
.center-table-content td, .center-table-content th {
text-align: center !important;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important;
padding: 10px !important;
}
.center-table-content table {
width: 100% !important;
border-collapse: collapse !important;
margin-bottom: 20px !important;
box-shadow: 0 2px 8px rgba(0,0,0,0.1) !important;
border-radius: 8px !important;
overflow: hidden !important;
}
.center-table-content th {
background-color: #f0f4f8 !important;
color: #2c3e50 !important;
font-weight: 600 !important;
border-bottom: 2px solid #ddd !important;
}
.center-table-content tr:nth-child(even) {
background-color: #f9f9f9 !important;
}
.center-table-content tr:hover {
background-color: #f0f7ff !important;
}
/* Improve readability of progress bars */
.progress-container {
margin-bottom: 20px !important;
}
.progress-bar {
transition: width 0.5s ease-in-out !important;
}
.status-message {
margin-bottom: 8px !important;
font-weight: 500 !important;
}
</style>
""", visible=True)
# Batch Processing Configuration
gr.Markdown("### Batch Processing Configuration")
with gr.Group():
with gr.Row(equal_height=True):
with gr.Column(scale=1):
batch_mode = gr.Radio(
choices=["Batch Size Mode", "Batch Token Mode"],
label="Batch Processing Mode",
value="Batch Size Mode"
)
with gr.Column(scale=2):
batch_size = gr.Slider(
minimum=1,
maximum=128,
value=16,
step=1,
label="Batch Size",
visible=True
)
batch_token = gr.Slider(
minimum=1000,
maximum=50000,
value=10000,
step=1000,
label="Tokens per Batch",
visible=False
)
def update_batch_inputs(mode):
return {
batch_size: gr.update(visible=mode == "Batch Size Mode"),
batch_token: gr.update(visible=mode == "Batch Token Mode")
}
# Update visibility when mode changes
batch_mode.change(
fn=update_batch_inputs,
inputs=[batch_mode],
outputs=[batch_size, batch_token]
)
# Training Parameters
gr.Markdown("### Training Parameters")
with gr.Group():
# First row: Basic training parameters
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=150):
training_method = gr.Dropdown(
choices=["full", "freeze", "ses-adapter", "plm-lora", "plm-qlora", "plm_adalora", "plm_dora", "plm_ia3"],
label="Training Method",
value="freeze"
)
with gr.Column(scale=1, min_width=150):
learning_rate = gr.Slider(
minimum=1e-8, maximum=1e-2, value=5e-4, step=1e-6,
label="Learning Rate"
)
with gr.Column(scale=1, min_width=150):
num_epochs = gr.Slider(
minimum=1, maximum=200, value=20, step=1,
label="Number of Epochs"
)
with gr.Column(scale=1, min_width=150):
patience = gr.Slider(
minimum=1, maximum=50, value=10, step=1,
label="Early Stopping Patience"
)
with gr.Column(scale=1, min_width=150):
max_seq_len = gr.Slider(
minimum=-1, maximum=2048, value=None, step=32,
label="Max Sequence Length (-1 for unlimited)"
)
def update_training_method(method):
return {
structure_seq: gr.update(visible=method == "ses-adapter"),
lora_params_row: gr.update(visible=method in ["plm-lora", "plm-qlora", "plm_adalora", "plm_dora", "plm_ia3"])
}
# Add training_method change event
training_method.change(
fn=update_training_method,
inputs=[training_method],
outputs=[structure_seq, lora_params_row]
)
# Second row: Advanced training parameters
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=150):
pooling_method = gr.Dropdown(
choices=["mean", "attention1d", "light_attention"],
label="Pooling Method",
value="mean"
)
with gr.Column(scale=1, min_width=150):
scheduler_type = gr.Dropdown(
choices=["linear", "cosine", "step", None],
label="Scheduler Type",
value=None
)
with gr.Column(scale=1, min_width=150):
warmup_steps = gr.Slider(
minimum=0, maximum=1000, value=0, step=10,
label="Warmup Steps"
)
with gr.Column(scale=1, min_width=150):
gradient_accumulation_steps = gr.Slider(
minimum=1, maximum=32, value=1, step=1,
label="Gradient Accumulation Steps"
)
with gr.Column(scale=1, min_width=150):
max_grad_norm = gr.Slider(
minimum=0.1, maximum=10.0, value=-1, step=0.1,
label="Max Gradient Norm (-1 for no clipping)"
)
with gr.Column(scale=1, min_width=150):
num_workers = gr.Slider(
minimum=0, maximum=16, value=4, step=1,
label="Number of Workers"
)
# Output and Logging Settings
gr.Markdown("### Output and Logging Settings")
with gr.Row():
with gr.Column():
output_dir = gr.Textbox(
label="Save Directory",
value="demo",
placeholder="Path to save training results"
)
output_model_name = gr.Textbox(
label="Output Model Name",
value="demo.pt",
placeholder="Name of the output model file"
)
with gr.Column():
wandb_logging = gr.Checkbox(
label="Enable W&B Logging",
value=False
)
wandb_project = gr.Textbox(
label="W&B Project Name",
value=None,
visible=False
)
wandb_entity = gr.Textbox(
label="W&B Entity",
value=None,
visible=False
)
# Training Control and Output
gr.Markdown("### Training Control")
with gr.Row():
preview_button = gr.Button("Preview Command")
abort_button = gr.Button("Abort", variant="stop")
train_button = gr.Button("Start", variant="primary")
with gr.Row():
command_preview = gr.Code(
label="Command Preview",
language="shell",
interactive=False,
visible=False
)
# Model Statistics Section
gr.Markdown("### Model Statistics")
with gr.Row():
model_stats = gr.Dataframe(
headers=["Model Type", "Total Parameters", "Trainable Parameters", "Percentage"],
value=[
["Training Model", "-", "-", "-"],
["Pre-trained Model", "-", "-", "-"],
["Combined Model", "-", "-", "-"]
],
interactive=False,
elem_classes=["center-table-content"]
)
def update_model_stats(stats: Dict[str, str]) -> List[List[str]]:
"""Update model statistics in table format."""
if not stats:
return [
["Training Model", "-", "-", "-"],
["Pre-trained Model", "-", "-", "-"],
["Combined Model", "-", "-", "-"]
]
adapter_total = stats.get('adapter_total', '-')
adapter_trainable = stats.get('adapter_trainable', '-')
pretrain_total = stats.get('pretrain_total', '-')
pretrain_trainable = stats.get('pretrain_trainable', '-')
combined_total = stats.get('combined_total', '-')
combined_trainable = stats.get('combined_trainable', '-')
trainable_percentage = stats.get('trainable_percentage', '-')
return [
["Training Model", str(adapter_total), str(adapter_trainable), "-"],
["Pre-trained Model", str(pretrain_total), str(pretrain_trainable), "-"],
["Combined Model", str(combined_total), str(combined_trainable), str(trainable_percentage)]
]
# Training Progress
gr.Markdown("### Training Progress")
with gr.Row():
progress_status = gr.HTML(
value="""
<div style="background-color: #f8f9fa; border-radius: 10px; padding: 20px; margin-bottom: 15px; box-shadow: 0 2px 5px rgba(0,0,0,0.05);">
<div style="display: flex; justify-content: space-between; margin-bottom: 12px;">
<div>
<span style="font-weight: 600; font-size: 16px;">Training Status: </span>
<span style="color: #1976d2; font-weight: 500; font-size: 16px;">Click Start to train your model</span>
</div>
</div>
</div>
""",
label="Status"
)
with gr.Row():
best_model_info = gr.Textbox(
value="Best Model: None",
label="Best Performance",
interactive=False
)
# Add test results HTML display
with gr.Row():
test_results_html = gr.HTML(
value="",
label="Test Results",
visible=True
)
with gr.Row():
with gr.Column(scale=4):
pass
with gr.Column(scale=1): # 限制列的最大宽度
download_csv_btn = gr.DownloadButton(
"Download CSV",
visible=False,
size="lg"
)
# 添加一个空列来占据剩余空间
with gr.Column(scale=4):
pass
# Training plot in a separate row for full width
with gr.Row():
with gr.Column():
loss_plot = gr.Plot(
label="Training and Validation Loss",
elem_id="loss_plot"
)
with gr.Column():
metrics_plot = gr.Plot(
label="Validation Metrics",
elem_id="metrics_plot"
)
def update_progress(progress_info):
# If progress_info is empty or None, use completely fresh empty state
if not progress_info or not any(progress_info.values()):
fresh_status_html = """
<div style="background-color: #f8f9fa; border-radius: 10px; padding: 20px; margin-bottom: 15px; box-shadow: 0 2px 5px rgba(0,0,0,0.05);">
<div style="display: flex; justify-content: space-between; margin-bottom: 12px;">
<div>
<span style="font-weight: 600; font-size: 16px;">Training Status: </span>
<span style="color: #1976d2; font-weight: 500; font-size: 16px;">Click Start to train your model</span>
</div>
</div>
</div>
"""
return (
fresh_status_html,
"Best Model: None",
gr.update(value="", visible=False),
None,
None,
gr.update(visible=False)
)
# Reset values if stage is "Waiting" or "Error"
if progress_info.get('stage', '') == 'Waiting' or progress_info.get('stage', '') == 'Error':
# If this is an error stage, show error styling
if progress_info.get('stage', '') == 'Error':
error_status_html = """
<div style="background-color: #ffebee; border-radius: 10px; padding: 20px; margin-bottom: 15px; box-shadow: 0 2px 5px rgba(0,0,0,0.05);">
<div style="display: flex; justify-content: space-between; margin-bottom: 12px;">
<div>
<span style="font-weight: 600; font-size: 16px;">Training Status: </span>
<span style="color: #c62828; font-weight: 500; font-size: 16px;">Failed</span>
</div>
</div>
</div>
"""
return (
error_status_html,
"Training failed",
gr.update(value="", visible=False),
None,
None,
gr.update(visible=False)
)
else:
return (
"""
<div style="background-color: #f8f9fa; border-radius: 10px; padding: 20px; margin-bottom: 15px; box-shadow: 0 2px 5px rgba(0,0,0,0.05);">
<div style="display: flex; justify-content: space-between; margin-bottom: 12px;">
<div>
<span style="font-weight: 600; font-size: 16px;">Training Status: </span>
<span style="color: #1976d2; font-weight: 500; font-size: 16px;">Waiting to start...</span>
</div>
</div>
</div>
""",
"Best Model: None",
gr.update(value="", visible=False),
None,
None,
gr.update(visible=False)
)
current = progress_info.get('current', 0)
total = progress_info.get('total', 100)
epoch = progress_info.get('epoch', 0)
stage = progress_info.get('stage', 'Waiting')
progress_detail = progress_info.get('progress_detail', '')
best_epoch = progress_info.get('best_epoch', 0)
best_metric_name = progress_info.get('best_metric_name', 'accuracy')
best_metric_value = progress_info.get('best_metric_value', 0.0)
elapsed_time = progress_info.get('elapsed_time', '')
remaining_time = progress_info.get('remaining_time', '')
it_per_sec = progress_info.get('it_per_sec', 0.0)
grad_step = progress_info.get('grad_step', 0)
loss = progress_info.get('loss', 0.0)
total_epochs = progress_info.get('total_epochs', 0) # 获取总epoch数
test_results_html = progress_info.get('test_results_html', '') # 获取测试结果HTML
test_metrics = progress_info.get('test_metrics', {}) # 获取测试指标
is_completed = progress_info.get('is_completed', False) # 检查训练是否完成
# Test results HTML visibility is always True, but show message when content is empty
if not test_results_html and stage == 'Testing':
test_results_html = """
<div style="text-align: center; padding: 20px; color: #666;">
<p>Testing in progress, please wait for results...</p>
</div>
"""
elif not test_results_html:
test_results_html = """
<div style="text-align: center; padding: 20px; color: #666;">
<p>Test results will be displayed after testing phase completes</p>
</div>
"""
test_html_update = gr.update(value=test_results_html, visible=True)
# 处理CSV下载按钮
if test_metrics and len(test_metrics) > 0:
# 创建临时文件保存CSV内容
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv', prefix='metrics_results_') as temp_file:
# 写入CSV头部
temp_file.write("Metric,Value\n")
# 按照优先级排序指标
priority_metrics = ['loss', 'accuracy', 'f1', 'precision', 'recall', 'auroc', 'mcc']
def get_priority(item):
name = item[0]
if name in priority_metrics:
return priority_metrics.index(name)
return len(priority_metrics)
# 排序并添加到CSV
sorted_metrics = sorted(test_metrics.items(), key=get_priority)
for metric_name, metric_value in sorted_metrics:
# Convert metric name: uppercase for abbreviations, capitalize for others
display_name = metric_name
if metric_name.lower() in ['f1', 'mcc', 'auroc']:
display_name = metric_name.upper()
else:
display_name = metric_name.capitalize()
temp_file.write(f"{display_name},{metric_value:.6f}\n")
file_path = temp_file.name
download_btn_update = gr.update(value=file_path, visible=True)
else:
download_btn_update = gr.update(visible=False)
# 计算进度百分比
progress_percentage = (current / total) * 100 if total > 0 else 0
# 创建现代化的进度条HTML
if is_completed:
# 训练完成状态
status_html = """
<div style="background-color: #f8f9fa; border-radius: 10px; padding: 20px; margin-bottom: 15px; box-shadow: 0 2px 5px rgba(0,0,0,0.05);">
<div style="display: flex; justify-content: space-between; margin-bottom: 12px;">
<div>
<span style="font-weight: 600; font-size: 16px;">Training Status: </span>
<span style="color: #4caf50; font-weight: 500; font-size: 16px;">Training complete!</span>
</div>
<div>
<span style="font-weight: 600; color: #333;">100%</span>
</div>
</div>
<div style="margin-bottom: 15px; background-color: #e9ecef; height: 10px; border-radius: 5px; overflow: hidden;">
<div style="background-color: #4caf50; width: 100%; height: 100%; border-radius: 5px;"></div>
</div>
</div>
"""
else:
# 训练或验证阶段
epoch_total = total_epochs if total_epochs > 0 else 100
status_html = f"""
<div style="background-color: #f8f9fa; border-radius: 10px; padding: 20px; margin-bottom: 15px; box-shadow: 0 2px 5px rgba(0,0,0,0.05);">
<div style="display: flex; justify-content: space-between; margin-bottom: 12px;">
<div>
<span style="font-weight: 600; font-size: 16px;">Training Status: </span>
<span style="color: #1976d2; font-weight: 500; font-size: 16px;">{stage} (Epoch {epoch}/{epoch_total})</span>
</div>
<div>
<span style="font-weight: 600; color: #333;">{progress_percentage:.1f}%</span>
</div>
</div>
<div style="margin-bottom: 15px; background-color: #e9ecef; height: 10px; border-radius: 5px; overflow: hidden;">
<div style="background-color: #4285f4; width: {progress_percentage}%; height: 100%; border-radius: 5px; transition: width 0.3s ease;"></div>
</div>
<div style="display: flex; flex-wrap: wrap; gap: 10px; font-size: 14px; color: #555;">
<div style="background-color: #e8f5e9; padding: 5px 10px; border-radius: 4px;"><span style="font-weight: 500;">Progress:</span> {current}/{total}</div>
{f'<div style="background-color: #fff8e1; padding: 5px 10px; border-radius: 4px;"><span style="font-weight: 500;">Time:</span> {elapsed_time}<{remaining_time}, {it_per_sec:.2f}it/s></div>' if elapsed_time and remaining_time else ''}
{f'<div style="background-color: #e3f2fd; padding: 5px 10px; border-radius: 4px;"><span style="font-weight: 500;">Loss:</span> {loss:.4f}</div>' if stage == 'Training' and loss > 0 else ''}
{f'<div style="background-color: #f3e5f5; padding: 5px 10px; border-radius: 4px;"><span style="font-weight: 500;">Grad steps:</span> {grad_step}</div>' if stage == 'Training' and grad_step > 0 else ''}
</div>
</div>
"""
# 构建最佳模型信息
if best_epoch >= 0 and best_metric_value > 0:
best_info = f"Best model: Epoch {best_epoch} ({best_metric_name}: {best_metric_value:.4f})"
else:
best_info = "No best model found yet"
# 获取并更新图表
loss_fig = monitor.get_loss_plot()
metrics_fig = monitor.get_metrics_plot()
# 返回更新的组件
return status_html, best_info, test_html_update, loss_fig, metrics_fig, download_btn_update
def handle_train(*args) -> Generator:
nonlocal is_training, current_process, stop_thread, process_aborted, monitor
# If already training, return
if is_training:
yield None, None, None, None, None, None, None
return
# Force explicit state reset first thing
monitor._reset_tracking()
monitor._reset_stats()
# Explicitly ensure stats are reset
if hasattr(monitor, "stats"):
monitor.stats = {}
# Force override any cached state in monitor
monitor.current_progress = {
"current": 0,
"total": 0,
"epoch": 0,
"stage": "Waiting",
"progress_detail": "",
"best_epoch": -1,
"best_metric_name": "",
"best_metric_value": 0.0,
"elapsed_time": "",
"remaining_time": "",
"it_per_sec": 0.0,
"grad_step": 0,
"loss": 0.0,
"test_results_html": "",
"test_metrics": {},
"is_completed": False,
"lines": []
}
# Reset all monitoring data structures
monitor.train_losses = []
monitor.val_losses = []
monitor.metrics = {}
monitor.epochs = []
if hasattr(monitor, "stats"):
monitor.stats = {}
# Reset flags for new training session
process_aborted = False
stop_thread = False
# Initialize table state
initial_stats = [
["Training Model", "-", "-", "-"],
["Pre-trained Model", "-", "-", "-"],
["Combined Model", "-", "-", "-"]
]
# Initial UI state with "Initializing" message
initial_status_html = """
<div style="background-color: #f8f9fa; border-radius: 10px; padding: 20px; margin-bottom: 15px; box-shadow: 0 2px 5px rgba(0,0,0,0.05);">
<div style="display: flex; justify-content: space-between; margin-bottom: 12px;">
<div>
<span style="font-weight: 600; font-size: 16px;">Training Status: </span>
<span style="color: #1976d2; font-weight: 500; font-size: 16px;">Initializing training environment...</span>
</div>
</div>
<div style="font-size: 14px; color: #555; margin-top: 10px;">
<p>• Parsing configuration parameters</p>
<p>• Preparing training environment</p>
<p>• This may take a few moments...</p>
</div>
</div>
"""
# First yield to update UI with "initializing" state
yield initial_stats, initial_status_html, "Best Model: None", gr.update(value="", visible=False), None, None, gr.update(visible=False)
try:
# Parse training arguments
training_args = TrainingArgs(args, plm_models, dataset_configs)
if training_args.training_method != "ses-adapter":
training_args.structure_seq = None
args_dict = training_args.to_dict()
# Save total epochs to monitor for use in progress_info
total_epochs = args_dict.get('num_epochs', 100)
monitor.current_progress['total_epochs'] = total_epochs
# Update status to "Preparing dataset"
preparing_status_html = """
<div style="background-color: #f8f9fa; border-radius: 10px; padding: 20px; margin-bottom: 15px; box-shadow: 0 2px 5px rgba(0,0,0,0.05);">
<div style="display: flex; justify-content: space-between; margin-bottom: 12px;">
<div>
<span style="font-weight: 600; font-size: 16px;">Training Status: </span>
<span style="color: #1976d2; font-weight: 500; font-size: 16px;">Preparing dataset and model...</span>
</div>
</div>
<div style="font-size: 14px; color: #555; margin-top: 10px;">
<p>• Loading dataset</p>
<p>• Initializing model architecture</p>
<p>• Setting up training environment</p>
</div>
</div>
"""
yield initial_stats, preparing_status_html, "Best Model: None", gr.update(value="", visible=False), None, None, gr.update(visible=False)
# Save arguments to file
save_arguments(args_dict, args_dict.get('output_dir', 'ckpt'))
# Start training
is_training = True
process_aborted = False # Reset abort flag
monitor.start_training(args_dict)
current_process = monitor.process # Store the process reference
starting_status_html = """
<div style="background-color: #f8f9fa; border-radius: 10px; padding: 20px; margin-bottom: 15px; box-shadow: 0 2px 5px rgba(0,0,0,0.05);">
<div style="display: flex; justify-content: space-between; margin-bottom: 12px;">
<div>
<span style="font-weight: 600; font-size: 16px;">Training Status: </span>
<span style="color: #1976d2; font-weight: 500; font-size: 16px;">Starting training process...</span>
</div>
</div>
<div style="font-size: 14px; color: #555; margin-top: 10px;">
<p>• Training process launched</p>
<p>• Waiting for first statistics to appear</p>
<p>• This may take a moment for large models</p>
</div>
</div>
"""
yield initial_stats, starting_status_html, "Best Model: None", gr.update(value="", visible=False), None, None, gr.update(visible=False)
# Add delay to ensure enough time for parsing initial statistics
for i in range(3):
time.sleep(1)
# Check if statistics are already available
stats = monitor.get_stats()
if stats and len(stats) > 0:
break
update_count = 0
while True:
# Check if the process still exists and hasn't been aborted
if process_aborted or not monitor.is_training or current_process is None or (current_process and current_process.poll() is not None):
break
try:
update_count += 1
time.sleep(0.5)
# Check process status
monitor.check_process_status()
# Get latest progress info
progress_info = monitor.get_progress()
# If process has ended, check if it's normal end or error
if not monitor.is_training:
# Check both monitor.process and current_process since they might be different objects
if (monitor.process and monitor.process.returncode != 0) or (current_process and current_process.poll() is not None and current_process.returncode != 0):
# Get the return code from whichever process object is available
return_code = monitor.process.returncode if monitor.process else current_process.returncode
# Get complete output log
error_output = "\n".join(progress_info.get("lines", []))
if not error_output:
error_output = "No output captured from the training process"
# Ensure we set the is_completed flag to False for errors
progress_info['is_completed'] = False
monitor.current_progress['is_completed'] = False
# Also set the stage to Error
progress_info['stage'] = 'Error'
monitor.current_progress['stage'] = 'Error'
error_status_html = f"""
<div style="padding: 10px; background-color: #ffebee; border-radius: 5px; margin-bottom: 10px;">
<p style="margin: 0; color: #c62828; font-weight: bold;">Training failed with error code {return_code}:</p>
<pre style="margin: 5px 0 0; white-space: pre-wrap; max-height: 300px; overflow-y: auto; background-color: #f5f5f5; padding: 10px; border-radius: 4px; font-family: monospace;">{error_output}</pre>
</div>
"""
yield (
initial_stats,
error_status_html,
"Training failed",
gr.update(value="", visible=False),
None,
None,
gr.update(visible=False)
)
return
else:
# Only set is_completed to True if there was a successful exit code
progress_info['is_completed'] = True
monitor.current_progress['is_completed'] = True
# Update UI
stats = monitor.get_stats()
if stats:
model_stats = update_model_stats(stats)
else:
model_stats = initial_stats
status_html, best_info, test_html_update, loss_fig, metrics_fig, download_btn_update = update_progress(progress_info)
yield model_stats, status_html, best_info, test_html_update, loss_fig, metrics_fig, download_btn_update
except Exception as e:
# Get complete output log
error_output = "\n".join(progress_info.get("lines", []))
if not error_output:
error_output = "No output captured from the training process"
error_status_html = f"""
<div style="padding: 10px; background-color: #ffebee; border-radius: 5px; margin-bottom: 10px;">
<p style="margin: 0; color: #c62828; font-weight: bold;">Error during training:</p>
<p style="margin: 5px 0; color: #c62828;">{str(e)}</p>
<pre style="margin: 5px 0 0; white-space: pre-wrap; max-height: 300px; overflow-y: auto; background-color: #f5f5f5; padding: 10px; border-radius: 4px; font-family: monospace;">{error_output}</pre>
</div>
"""
print(f"Error updating UI: {str(e)}")
traceback.print_exc()
yield initial_stats, error_status_html, "Training error", gr.update(value="", visible=False), None, None, gr.update(visible=False)
return
# Check if aborted
if process_aborted:
is_training = False
current_process = None
aborted_status_html = """
<div style="padding: 10px; background-color: #e8f5e9; border-radius: 5px;">
<p style="margin: 0; color: #2e7d32; font-weight: bold;">Training was manually terminated.</p>
</div>
"""
yield initial_stats, aborted_status_html, "Training aborted", gr.update(value="", visible=False), None, None, gr.update(visible=False)
return
# Final update after training ends (only for normal completion)
if monitor.process and monitor.process.returncode == 0:
try:
progress_info = monitor.get_progress()
progress_info['is_completed'] = True
monitor.current_progress['is_completed'] = True
stats = monitor.get_stats()
if stats:
model_stats = update_model_stats(stats)
else:
model_stats = initial_stats
status_html, best_info, test_html_update, loss_fig, metrics_fig, download_btn_update = update_progress(progress_info)
yield model_stats, status_html, best_info, test_html_update, loss_fig, metrics_fig, download_btn_update
except Exception as e:
error_output = "\n".join(progress_info.get("lines", []))
if not error_output:
error_output = "No output captured from the training process"
error_status_html = f"""
<div style="padding: 10px; background-color: #ffebee; border-radius: 5px; margin-bottom: 10px;">
<p style="margin: 0; color: #c62828; font-weight: bold;">Error in final update:</p>
<p style="margin: 5px 0; color: #c62828;">{str(e)}</p>
<pre style="margin: 5px 0 0; white-space: pre-wrap; max-height: 300px; overflow-y: auto; background-color: #f5f5f5; padding: 10px; border-radius: 4px; font-family: monospace;">{error_output}</pre>
</div>
"""
yield initial_stats, error_status_html, "Error in final update", gr.update(value="", visible=False), None, None, gr.update(visible=False)
except Exception as e:
# Initialization error, may not have output log
error_status_html = f"""
<div style="padding: 10px; background-color: #ffebee; border-radius: 5px; margin-bottom: 10px;">
<p style="margin: 0; color: #c62828; font-weight: bold;">Training initialization failed:</p>
<p style="margin: 5px 0; color: #c62828;">{str(e)}</p>
</div>
"""
yield initial_stats, error_status_html, "Training failed", gr.update(value="", visible=False), None, None, gr.update(visible=False)
finally:
is_training = False
current_process = None
def handle_abort():
"""Handle abortion of the training process"""
nonlocal is_training, current_process, stop_thread, process_aborted
if not is_training or current_process is None:
return (gr.HTML("""
<div style="padding: 10px; background-color: #f5f5f5; border-radius: 5px;">
<p style="margin: 0;">No training process is currently running.</p>
</div>
"""),
[["Training Model", "-", "-", "-"],
["Pre-trained Model", "-", "-", "-"],
["Combined Model", "-", "-", "-"]],
"Best Model: None",
gr.update(value="", visible=False),
None,
None,
gr.update(visible=False))
try:
# Set the abort flag before terminating the process
process_aborted = True
stop_thread = True
# Use process.terminate() instead of os.killpg for safer termination
# This avoids accidentally killing the parent WebUI process
current_process.terminate()
# Wait for process to terminate (with timeout)
try:
current_process.wait(timeout=5)
except subprocess.TimeoutExpired:
# Only if terminate didn't work, use a stronger method
# But do NOT use killpg which might kill the parent WebUI
current_process.kill()
# Create a completely fresh state - not just resetting
monitor.is_training = False
# Explicitly create a new dictionary instead of modifying the existing one
monitor.current_progress = {
"current": 0,
"total": 0,
"epoch": 0,
"stage": "Waiting",
"progress_detail": "",
"best_epoch": -1,
"best_metric_name": "",
"best_metric_value": 0.0,
"elapsed_time": "",
"remaining_time": "",
"it_per_sec": 0.0,
"grad_step": 0,
"loss": 0.0,
"test_results_html": "",
"test_metrics": {},
"is_completed": False,
"lines": []
}
# Explicitly clear stats by creating a new dictionary
monitor.stats = {}
if hasattr(monitor, "process") and monitor.process:
monitor.process = None
# Reset state variables
is_training = False
current_process = None
# Explicitly reset tracking to clear all state
monitor._reset_tracking()
monitor._reset_stats()
# Reset all plots and statistics with new empty lists
monitor.train_losses = []
monitor.val_losses = []
monitor.metrics = {}
monitor.epochs = []
# Create entirely fresh UI components
empty_model_stats = [["Training Model", "-", "-", "-"],
["Pre-trained Model", "-", "-", "-"],
["Combined Model", "-", "-", "-"]]
success_html = """
<div style="padding: 10px; background-color: #e8f5e9; border-radius: 5px;">
<p style="margin: 0; color: #2e7d32; font-weight: bold;">Training successfully terminated!</p>
<p style="margin: 5px 0 0; color: #388e3c;">All training state has been reset. You can start a new training session.</p>
</div>
"""
# Return updates for all relevant components
return (gr.HTML(success_html),
empty_model_stats,
"Best Model: None",
gr.update(value="", visible=False),
None,
None,
gr.update(visible=False))
except Exception as e:
# Still need to reset states even if there's an error
is_training = False
current_process = None
process_aborted = False
# Reset monitor state regardless of error
monitor.is_training = False
monitor.stats = {}
if hasattr(monitor, "process") and monitor.process:
monitor.process = None
monitor._reset_tracking()
monitor._reset_stats()
# Fresh empty components
empty_model_stats = [["Training Model", "-", "-", "-"],
["Pre-trained Model", "-", "-", "-"],
["Combined Model", "-", "-", "-"]]
error_html = f"""
<div style="padding: 10px; background-color: #ffebee; border-radius: 5px;">
<p style="margin: 0; color: #c62828; font-weight: bold;">Failed to terminate training: {str(e)}</p>
<p style="margin: 5px 0 0; color: #c62828;">Training state has been reset.</p>
</div>
"""
# Return updates for all relevant components including empty model stats
return (gr.HTML(error_html),
empty_model_stats,
"Best Model: None",
gr.update(value="", visible=False),
None,
None,
gr.update(visible=False))
def update_wandb_visibility(checkbox):
return {
wandb_project: gr.update(visible=checkbox),
wandb_entity: gr.update(visible=checkbox)
}
# define all input components
input_components = [
plm_model, #0
is_custom_dataset, #1
dataset_config, #2
dataset_custom, #3
problem_type, #4
num_labels, #5
metrics, #6
training_method, #7
pooling_method, #8
batch_mode, #9
batch_size, #10
batch_token, #11
learning_rate, #12
num_epochs, #13
max_seq_len, #14
gradient_accumulation_steps, #15
warmup_steps, #16
scheduler_type, #17
output_model_name, #18
output_dir, #19
wandb_logging, #20
wandb_project, #21
wandb_entity, #22
patience, #23
num_workers, #24
max_grad_norm, #25
structure_seq, #26
lora_r, #27
lora_alpha, #28
lora_dropout, #29
lora_target_modules, #30
]
# bind preview and train buttons
def handle_preview(*args):
if command_preview.visible:
return gr.update(visible=False)
training_args = TrainingArgs(args, plm_models, dataset_configs)
preview_text = preview_command(training_args.to_dict())
return gr.update(value=preview_text, visible=True)
def reset_train_ui():
"""Reset the UI state before training starts"""
# Reset monitor state
monitor._reset_tracking()
monitor._reset_stats()
# Explicitly ensure stats are reset
if hasattr(monitor, "stats"):
monitor.stats = {}
# Create a completely fresh progress state
monitor.current_progress = {
"current": 0,
"total": 0,
"epoch": 0,
"stage": "Waiting",
"progress_detail": "",
"best_epoch": -1,
"best_metric_name": "",
"best_metric_value": 0.0,
"elapsed_time": "",
"remaining_time": "",
"it_per_sec": 0.0,
"grad_step": 0,
"loss": 0.0,
"test_results_html": "",
"test_metrics": {},
"is_completed": False,
"lines": []
}
# Reset all statistical data
monitor.train_losses = []
monitor.val_losses = []
monitor.metrics = {}
monitor.epochs = []
# Force UI to reset by creating completely fresh components
empty_model_stats = [["Training Model", "-", "-", "-"],
["Pre-trained Model", "-", "-", "-"],
["Combined Model", "-", "-", "-"]]
empty_progress_status = """
<div style="background-color: #f8f9fa; border-radius: 10px; padding: 20px; margin-bottom: 15px; box-shadow: 0 2px 5px rgba(0,0,0,0.05);">
<div style="display: flex; justify-content: space-between; margin-bottom: 12px;">
<div>
<span style="font-weight: 600; font-size: 16px;">Training Status: </span>
<span style="color: #1976d2; font-weight: 500; font-size: 16px;">Preparing to start training...</span>
</div>
</div>
</div>
"""
# Return exactly 7 values matching the 7 output components
return (
empty_model_stats,
empty_progress_status,
"Best Model: None",
gr.update(value="", visible=False),
None, # loss_plot must be None, not a string
None, # metrics_plot must be None, not a string
gr.update(visible=False)
)
preview_button.click(
fn=handle_preview,
inputs=input_components,
outputs=[command_preview]
)
train_button.click(
fn=reset_train_ui,
outputs=[model_stats, progress_status, best_model_info, test_results_html, loss_plot, metrics_plot, download_csv_btn]
).then(
fn=handle_train,
inputs=input_components,
outputs=[model_stats, progress_status, best_model_info, test_results_html, loss_plot, metrics_plot, download_csv_btn]
)
# bind abort button
abort_button.click(
fn=handle_abort,
outputs=[progress_status, model_stats, best_model_info, test_results_html, loss_plot, metrics_plot, download_csv_btn]
)
wandb_logging.change(
fn=update_wandb_visibility,
inputs=[wandb_logging],
outputs=[wandb_project, wandb_entity]
)
def update_dataset_preview(dataset_type=None, dataset_name=None, custom_dataset=None):
"""Update dataset preview content"""
# Determine which dataset to use based on selection
if dataset_type == "Use Custom Dataset" and custom_dataset:
try:
# Try to load custom dataset
dataset = load_dataset(custom_dataset)
stats_html = f"""
<div style="text-align: center; margin: 20px 0;">
<table style="width: 100%; border-collapse: collapse; margin: 0 auto;">
<tr>
<th style="padding: 8px; font-size: 14px; border: 1px solid #ddd; background-color: #e0e0e0; font-weight: bold; border-bottom: 1px solid #ccc; text-align: center;">Dataset</th>
<th style="padding: 8px; font-size: 14px; border: 1px solid #ddd; background-color: #e0e0e0; font-weight: bold; border-bottom: 1px solid #ccc; text-align: center;">Train Samples</th>
<th style="padding: 8px; font-size: 14px; border: 1px solid #ddd; background-color: #e0e0e0; font-weight: bold; border-bottom: 1px solid #ccc; text-align: center;">Val Samples</th>
<th style="padding: 8px; font-size: 14px; border: 1px solid #ddd; background-color: #e0e0e0; font-weight: bold; border-bottom: 1px solid #ccc; text-align: center;">Test Samples</th>
</tr>
<tr>
<td style="padding: 15px; font-size: 14px; border: 1px solid #ddd; text-align: center;">{custom_dataset}</td>
<td style="padding: 15px; font-size: 14px; border: 1px solid #ddd; text-align: center;">{len(dataset["train"]) if "train" in dataset else 0}</td>
<td style="padding: 15px; font-size: 14px; border: 1px solid #ddd; text-align: center;">{len(dataset["validation"]) if "validation" in dataset else 0}</td>
<td style="padding: 15px; font-size: 14px; border: 1px solid #ddd; text-align: center;">{len(dataset["test"]) if "test" in dataset else 0}</td>
</tr>
</table>
</div>
"""
# Get sample data points
split = "train" if "train" in dataset else list(dataset.keys())[0]
samples = dataset[split].select(range(min(3, len(dataset[split]))))
if len(samples) == 0:
return gr.update(value=stats_html), gr.update(value=[["No data available", "-", "-"]], headers=["Name", "Sequence", "Label"]), gr.update(open=True)
# Get fields actually present in the dataset
available_fields = list(samples[0].keys())
# Build sample data
sample_data = []
for sample in samples:
sample_dict = {}
for field in available_fields:
# Keep full sequence
sample_dict[field] = str(sample[field])
sample_data.append(sample_dict)
df = pd.DataFrame(sample_data)
return gr.update(value=stats_html), gr.update(value=df.values.tolist(), headers=df.columns.tolist()), gr.update(open=True)
except Exception as e:
error_html = f"""
<div>
<h2>Error loading dataset</h2>
<p style="color: #c62828;">{str(e)}</p>
</div>
"""
return gr.update(value=error_html), gr.update(value=[["Error", str(e), "-"]], headers=["Name", "Sequence", "Label"]), gr.update(open=True)
# Use predefined dataset
elif dataset_type == "Use Pre-defined Dataset" and dataset_name:
try:
config_path = dataset_configs[dataset_name]
with open(config_path, 'r') as f:
config = json.load(f)
# Load dataset statistics
dataset = load_dataset(config["dataset"])
stats_html = f"""
<div style="text-align: center; margin: 20px 0;">
<table style="width: 100%; border-collapse: collapse; margin: 0 auto;">
<tr>
<th style="padding: 8px; font-size: 14px; border: 1px solid #ddd; background-color: #e0e0e0; font-weight: bold; border-bottom: 1px solid #ccc; text-align: center;">Dataset</th>
<th style="padding: 8px; font-size: 14px; border: 1px solid #ddd; background-color: #e0e0e0; font-weight: bold; border-bottom: 1px solid #ccc; text-align: center;">Train Samples</th>
<th style="padding: 8px; font-size: 14px; border: 1px solid #ddd; background-color: #e0e0e0; font-weight: bold; border-bottom: 1px solid #ccc; text-align: center;">Val Samples</th>
<th style="padding: 8px; font-size: 14px; border: 1px solid #ddd; background-color: #e0e0e0; font-weight: bold; border-bottom: 1px solid #ccc; text-align: center;">Test Samples</th>
</tr>
<tr>
<td style="padding: 15px; font-size: 14px; border: 1px solid #ddd; text-align: center;">{config["dataset"]}</td>
<td style="padding: 15px; font-size: 14px; border: 1px solid #ddd; text-align: center;">{len(dataset["train"]) if "train" in dataset else 0}</td>
<td style="padding: 15px; font-size: 14px; border: 1px solid #ddd; text-align: center;">{len(dataset["validation"]) if "validation" in dataset else 0}</td>
<td style="padding: 15px; font-size: 14px; border: 1px solid #ddd; text-align: center;">{len(dataset["test"]) if "test" in dataset else 0}</td>
</tr>
</table>
</div>
"""
# Get sample data points and available fields
samples = dataset["train"].select(range(min(3, len(dataset["train"]))))
if len(samples) == 0:
return gr.update(value=stats_html), gr.update(value=[["No data available", "-", "-"]], headers=["Name", "Sequence", "Label"]), gr.update(open=True)
# Get fields actually present in the dataset
available_fields = list(samples[0].keys())
# Build sample data
sample_data = []
for sample in samples:
sample_dict = {}
for field in available_fields:
# Keep full sequence
sample_dict[field] = str(sample[field])
sample_data.append(sample_dict)
df = pd.DataFrame(sample_data)
return gr.update(value=stats_html), gr.update(value=df.values.tolist(), headers=df.columns.tolist()), gr.update(open=True)
except Exception as e:
error_html = f"""
<div>
<h2>Error loading dataset</h2>
<p style="color: #c62828;">{str(e)}</p>
</div>
"""
return gr.update(value=error_html), gr.update(value=[["Error", str(e), "-"]], headers=["Name", "Sequence", "Label"]), gr.update(open=True)
# If no valid dataset information provided
return gr.update(value=""), gr.update(value=[["No dataset selected", "-", "-"]], headers=["Name", "Sequence", "Label"]), gr.update(open=True)
# Preview button click event
dataset_preview_button.click(
fn=update_dataset_preview,
inputs=[is_custom_dataset, dataset_config, dataset_custom],
outputs=[dataset_stats_md, preview_table, preview_accordion]
)
# 添加自定义数据集设置的函数
def update_dataset_settings(choice, dataset_name=None):
if choice == "Use Pre-defined Dataset":
# 从dataset_config加载配置
result = {
dataset_config: gr.update(visible=True),
dataset_custom: gr.update(visible=False),
custom_dataset_settings: gr.update(visible=True)
}
# 如果有选择特定数据集,自动加载配置
if dataset_name and dataset_name in dataset_configs:
with open(dataset_configs[dataset_name], 'r') as f:
config = json.load(f)
# 处理metrics,将字符串转换为列表以适应多选组件
metrics_value = config.get("metrics", "accuracy,mcc,f1,precision,recall,auroc")
if isinstance(metrics_value, str):
metrics_value = metrics_value.split(",")
result.update({
problem_type: gr.update(value=config.get("problem_type", "single_label_classification"), interactive=False),
num_labels: gr.update(value=config.get("num_labels", 2), interactive=False),
metrics: gr.update(value=metrics_value, interactive=False),
})
return result
else:
# 自定义数据集设置,清零/设为默认值并可编辑
# 为多选组件提供默认值列表
default_metrics = ["accuracy", "mcc", "f1", "precision", "recall", "auroc"]
return {
dataset_config: gr.update(visible=False),
dataset_custom: gr.update(visible=True),
custom_dataset_settings: gr.update(visible=True),
problem_type: gr.update(value="single_label_classification", interactive=True),
num_labels: gr.update(value=2, interactive=True),
metrics: gr.update(value=default_metrics, interactive=True)
}
# 绑定数据集设置更新事件
is_custom_dataset.change(
fn=update_dataset_settings,
inputs=[is_custom_dataset, dataset_config],
outputs=[dataset_config, dataset_custom, custom_dataset_settings, problem_type, num_labels, metrics]
)
dataset_config.change(
fn=lambda x: update_dataset_settings("Use Pre-defined Dataset", x),
inputs=[dataset_config],
outputs=[dataset_config, dataset_custom, custom_dataset_settings, problem_type, num_labels, metrics]
)
# Return components that need to be accessed from outside
return {
"output_text": progress_status,
"loss_plot": loss_plot,
"metrics_plot": metrics_plot,
"train_button": train_button,
"monitor": monitor,
"test_results_html": test_results_html, # 添加测试结果HTML组件
"components": {
"plm_model": plm_model,
"dataset_config": dataset_config,
"training_method": training_method,
"pooling_method": pooling_method,
"batch_mode": batch_mode,
"batch_size": batch_size,
"batch_token": batch_token,
"learning_rate": learning_rate,
"num_epochs": num_epochs,
"max_seq_len": max_seq_len,
"gradient_accumulation_steps": gradient_accumulation_steps,
"warmup_steps": warmup_steps,
"scheduler_type": scheduler_type,
"output_model_name": output_model_name,
"output_dir": output_dir,
"wandb_logging": wandb_logging,
"wandb_project": wandb_project,
"wandb_entity": wandb_entity,
"patience": patience,
"num_workers": num_workers,
"max_grad_norm": max_grad_norm,
"structure_seq": structure_seq,
"lora_r": lora_r,
"lora_alpha": lora_alpha,
"lora_dropout": lora_dropout,
"lora_target_modules": lora_target_modules,
}
} |