Spaces:
Runtime error
Runtime error
File size: 49,010 Bytes
8918ac7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 |
import gradio as gr
import json
import os
import subprocess
import sys
import signal
import threading
import queue
import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import re
from datasets import load_dataset
from web.utils.command import preview_eval_command
def create_eval_tab(constant):
plm_models = constant["plm_models"]
dataset_configs = constant["dataset_configs"]
is_evaluating = False
current_process = None
output_queue = queue.Queue()
stop_thread = False
process_aborted = False # 新增标志,表示进程是否被手动终止
plm_models = constant["plm_models"]
def format_metrics(metrics_file):
"""Convert metrics to HTML table format for display"""
try:
df = pd.read_csv(metrics_file)
metrics_dict = df.iloc[0].to_dict()
# 定义指标优先级顺序
priority_metrics = ['loss', 'accuracy', 'f1', 'precision', 'recall', 'auroc', 'mcc']
# 构建优先级排序键
def get_priority(item):
name = item[0]
if name in priority_metrics:
return priority_metrics.index(name)
return len(priority_metrics)
# 按优先级排序
sorted_metrics = sorted(metrics_dict.items(), key=get_priority)
# 计算指标数量
metrics_count = len(sorted_metrics)
html = f"""
<div style="max-width: 800px; margin: 0 auto; font-family: Arial, sans-serif;">
<p style="text-align: center; margin-bottom: 15px; color: #666;">{metrics_count} metrics found</p>
<table style="width: 100%; border-collapse: collapse; font-size: 14px; border: 1px solid #ddd; box-shadow: 0 2px 3px rgba(0,0,0,0.1);">
<thead>
<tr style="background-color: #f0f0f0;">
<th style="padding: 12px; text-align: center; border: 1px solid #ddd; font-weight: bold; width: 50%;">Metric</th>
<th style="padding: 12px; text-align: center; border: 1px solid #ddd; font-weight: bold; width: 50%;">Value</th>
</tr>
</thead>
<tbody>
"""
# 添加每个指标行,使用交替行颜色
for i, (metric_name, metric_value) in enumerate(sorted_metrics):
row_style = 'background-color: #f9f9f9;' if i % 2 == 0 else ''
# 对优先级指标使用粗体
is_priority = metric_name in priority_metrics
name_style = 'font-weight: bold;' if is_priority else ''
# 转换指标名称:缩写用大写,非缩写首字母大写
display_name = metric_name
if metric_name.lower() in ['f1', 'mcc', 'auroc']:
display_name = metric_name.upper()
else:
display_name = metric_name.capitalize()
html += f"""
<tr style="{row_style}">
<td style="padding: 10px; text-align: center; border: 1px solid #ddd; {name_style}">{display_name}</td>
<td style="padding: 10px; text-align: center; border: 1px solid #ddd;">{metric_value:.4f}</td>
</tr>
"""
html += """
</tbody>
</table>
<p style="text-align: center; margin-top: 10px; color: #888; font-size: 12px;">Test completed at: """ + time.strftime("%Y-%m-%d %H:%M:%S") + """</p>
</div>
"""
return html
except Exception as e:
return f"Error formatting metrics: {str(e)}"
def process_output(process, queue):
nonlocal stop_thread
while True:
if stop_thread:
break
output = process.stdout.readline()
if output == '' and process.poll() is not None:
break
if output:
queue.put(output.strip())
process.stdout.close()
def evaluate_model(plm_model, model_path, eval_method, is_custom_dataset, dataset_defined, dateset_custom, problem_type, num_labels, metrics, batch_mode, batch_size, batch_token, eval_structure_seq, pooling_method):
nonlocal is_evaluating, current_process, stop_thread, process_aborted
if is_evaluating:
return "Evaluation is already in progress. Please wait...", gr.update(visible=False)
# First reset all state variables to ensure clean start
is_evaluating = True
stop_thread = False
process_aborted = False # Reset abort flag
# Clear the output queue
while not output_queue.empty():
try:
output_queue.get_nowait()
except queue.Empty:
break
# Initialize progress info and start time
start_time = time.time()
progress_info = {
"stage": "Preparing",
"progress": 0,
"total_samples": 0,
"current": 0,
"total": 0,
"elapsed_time": "00:00:00",
"lines": []
}
# Create initial progress bar with completely empty state
initial_progress_html = generate_progress_bar(progress_info)
yield initial_progress_html, gr.update(visible=False)
try:
# Validate inputs
if not model_path or not os.path.exists(os.path.dirname(model_path)):
is_evaluating = False
yield """
<div style="padding: 10px; background-color: #ffebee; border-radius: 5px; margin-bottom: 10px;">
<p style="margin: 0; color: #c62828; font-weight: bold;">Error: Invalid model path</p>
</div>
""", gr.update(visible=False)
return
if is_custom_dataset == "Use Custom Dataset":
dataset = dateset_custom
test_file = dateset_custom
else:
dataset = dataset_defined
if dataset not in dataset_configs:
is_evaluating = False
yield """
<div style="padding: 10px; background-color: #ffebee; border-radius: 5px; margin-bottom: 10px;">
<p style="margin: 0; color: #c62828; font-weight: bold;">Error: Invalid dataset selection</p>
</div>
""", gr.update(visible=False)
return
config_path = dataset_configs[dataset]
with open(config_path, 'r') as f:
dataset_config = json.load(f)
test_file = dataset_config["dataset"]
# Get dataset name
dataset_display_name = dataset.split('/')[-1]
test_result_name = f"test_results_{os.path.basename(model_path)}_{dataset_display_name}"
test_result_dir = os.path.join(os.path.dirname(model_path), test_result_name)
# Prepare command
cmd = [sys.executable, "src/eval.py"]
args_dict = {
"eval_method": eval_method,
"model_path": model_path,
"test_file": test_file,
"problem_type": problem_type,
"num_labels": num_labels,
"metrics": ",".join(metrics),
"plm_model": plm_models[plm_model],
"test_result_dir": test_result_dir,
"dataset": dataset_display_name,
"pooling_method": pooling_method,
}
if batch_mode == "Batch Size Mode":
args_dict["batch_size"] = batch_size
else:
args_dict["batch_token"] = batch_token
if eval_method == "ses-adapter":
args_dict["structure_seq"] = ",".join(eval_structure_seq) if eval_structure_seq else None
# Add flags for using foldseek and ss8
if "foldseek_seq" in eval_structure_seq:
args_dict["use_foldseek"] = True
if "ss8_seq" in eval_structure_seq:
args_dict["use_ss8"] = True
else:
args_dict["structure_seq"] = ""
for k, v in args_dict.items():
if v is True:
cmd.append(f"--{k}")
elif v is not False and v is not None:
cmd.append(f"--{k}")
cmd.append(str(v))
# Start evaluation process
current_process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1,
universal_newlines=True,
preexec_fn=os.setsid
)
output_thread = threading.Thread(target=process_output, args=(current_process, output_queue))
output_thread.daemon = True
output_thread.start()
sample_pattern = r"Total samples: (\d+)"
progress_pattern = r"(\d+)/(\d+)"
last_update_time = time.time()
while True:
# Check if the process still exists and hasn't been aborted
if process_aborted or current_process is None or current_process.poll() is not None:
break
try:
new_lines = []
lines_processed = 0
while lines_processed < 10:
try:
line = output_queue.get_nowait()
new_lines.append(line)
progress_info["lines"].append(line)
# print(line)
# Parse total samples
if "Total samples" in line:
match = re.search(sample_pattern, line)
if match:
progress_info["total_samples"] = int(match.group(1))
progress_info["stage"] = "Evaluating"
# Parse progress
if "it/s" in line and "/" in line:
match = re.search(progress_pattern, line)
if match:
progress_info["current"] = int(match.group(1))
progress_info["total"] = int(match.group(2))
progress_info["progress"] = (progress_info["current"] / progress_info["total"]) * 100
if "Evaluation completed" in line:
progress_info["stage"] = "Completed"
progress_info["progress"] = 100
lines_processed += 1
except queue.Empty:
break
# 无论是否有新行,都更新时间信息
elapsed = time.time() - start_time
hours, remainder = divmod(int(elapsed), 3600)
minutes, seconds = divmod(remainder, 60)
progress_info["elapsed_time"] = f"{hours:02}:{minutes:02}:{seconds:02}"
# 即使没有新行,也定期更新进度条(每0.5秒)
current_time = time.time()
if lines_processed > 0 or (current_time - last_update_time) >= 0.5:
# Generate progress bar HTML
progress_html = generate_progress_bar(progress_info)
# Only yield updates if there's actual new information
yield progress_html, gr.update(visible=False)
last_update_time = current_time
time.sleep(0.1) # 减少循环间隔,使更新更频繁
except Exception as e:
yield f"""
<div style="padding: 10px; background-color: #ffebee; border-radius: 5px; margin-bottom: 10px;">
<p style="margin: 0; color: #c62828;">Error reading output: {str(e)}</p>
</div>
""", gr.update(visible=False)
if current_process.returncode == 0:
# Load and format results
result_file = os.path.join(test_result_dir, "evaluation_metrics.csv")
if os.path.exists(result_file):
metrics_html = format_metrics(result_file)
# Calculate total evaluation time
total_time = time.time() - start_time
hours, remainder = divmod(int(total_time), 3600)
minutes, seconds = divmod(remainder, 60)
time_str = f"{hours:02}:{minutes:02}:{seconds:02}"
summary_html = f"""
<div style="padding: 15px; background-color: #e8f5e9; border-radius: 5px; margin-bottom: 15px;">
<h3 style="margin-top: 0; color: #2e7d32;">Evaluation completed successfully!</h3>
<p><b>Total evaluation time:</b> {time_str}</p>
<p><b>Evaluation dataset:</b> {dataset_display_name}</p>
<p><b>Total samples:</b> {progress_info.get('total_samples', 0)}</p>
</div>
<div style="margin-top: 20px; font-weight: bold; font-size: 18px; text-align: center;">Evaluation Results</div>
{metrics_html}
"""
# 设置下载按钮可见并指向结果文件
yield summary_html, gr.update(value=result_file, visible=True)
else:
error_output = "\n".join(progress_info.get("lines", []))
yield f"""
<div style="padding: 10px; background-color: #fff8e1; border-radius: 5px; margin-bottom: 10px;">
<p style="margin: 0; color: #f57f17; font-weight: bold;">Evaluation completed, but metrics file not found at: {result_file}</p>
</div>
""", gr.update(visible=False)
else:
error_output = "\n".join(progress_info.get("lines", []))
if not error_output:
error_output = "No output captured from the evaluation process"
yield f"""
<div style="padding: 10px; background-color: #ffebee; border-radius: 5px; margin-bottom: 10px;">
<p style="margin: 0; color: #c62828; font-weight: bold;">Evaluation failed:</p>
<pre style="margin: 5px 0 0; white-space: pre-wrap; max-height: 300px; overflow-y: auto;">{error_output}</pre>
</div>
""", gr.update(visible=False)
except Exception as e:
yield f"""
<div style="padding: 10px; background-color: #ffebee; border-radius: 5px; margin-bottom: 10px;">
<p style="margin: 0; color: #c62828; font-weight: bold;">Error during evaluation process:</p>
<pre style="margin: 5px 0 0; white-space: pre-wrap;">{str(e)}</pre>
</div>
""", gr.update(visible=False)
finally:
if current_process:
stop_thread = True
is_evaluating = False
current_process = None
def generate_progress_bar(progress_info):
"""Generate HTML for evaluation progress bar"""
stage = progress_info.get("stage", "Preparing")
progress = progress_info.get("progress", 0)
current = progress_info.get("current", 0)
total = progress_info.get("total", 0)
total_samples = progress_info.get("total_samples", 0)
# 确保进度在0-100之间
progress = max(0, min(100, progress))
# 准备详细信息
details = []
if total_samples > 0:
details.append(f"Total samples: {total_samples}")
if current > 0 and total > 0:
details.append(f"Current progress: {current}/{total}")
# 计算评估时间(如果有)
elapsed_time = progress_info.get("elapsed_time", "")
if elapsed_time:
details.append(f"Elapsed time: {elapsed_time}")
details_text = ", ".join(details)
# 创建更现代化的进度条
html = f"""
<div style="background-color: #f8f9fa; border-radius: 10px; padding: 20px; margin-bottom: 15px; box-shadow: 0 2px 5px rgba(0,0,0,0.05);">
<div style="display: flex; justify-content: space-between; margin-bottom: 12px;">
<div>
<span style="font-weight: 600; font-size: 16px;">Evaluation Status: </span>
<span style="color: #1976d2; font-weight: 500; font-size: 16px;">{stage}</span>
</div>
<div>
<span style="font-weight: 600; color: #333;">{progress:.1f}%</span>
</div>
</div>
<div style="margin-bottom: 15px; background-color: #e9ecef; height: 10px; border-radius: 5px; overflow: hidden;">
<div style="background-color: #4285f4; width: {progress}%; height: 100%; border-radius: 5px; transition: width 0.3s ease;"></div>
</div>
<div style="display: flex; flex-wrap: wrap; gap: 10px; font-size: 14px; color: #555;">
{f'<div style="background-color: #e3f2fd; padding: 5px 10px; border-radius: 4px;"><span style="font-weight: 500;">Total samples:</span> {total_samples}</div>' if total_samples > 0 else ''}
{f'<div style="background-color: #e8f5e9; padding: 5px 10px; border-radius: 4px;"><span style="font-weight: 500;">Progress:</span> {current}/{total}</div>' if current > 0 and total > 0 else ''}
{f'<div style="background-color: #fff8e1; padding: 5px 10px; border-radius: 4px;"><span style="font-weight: 500;">Time:</span> {elapsed_time}</div>' if elapsed_time else ''}
</div>
</div>
"""
return html
def handle_abort():
"""Handle abortion of the evaluation process"""
nonlocal is_evaluating, current_process, stop_thread, process_aborted
if current_process is None:
return """
<div style="padding: 10px; background-color: #f5f5f5; border-radius: 5px;">
<p style="margin: 0;">No evaluation in progress to terminate.</p>
</div>
""", gr.update(visible=False)
try:
# Set the abort flag before terminating the process
process_aborted = True
stop_thread = True
# Using terminate instead of killpg for safety
current_process.terminate()
# Wait for process to terminate (with timeout)
try:
current_process.wait(timeout=5)
except subprocess.TimeoutExpired:
current_process.kill()
# Reset state completely
current_process = None
is_evaluating = False
# Reset output queue to clear any pending messages
while not output_queue.empty():
try:
output_queue.get_nowait()
except queue.Empty:
break
return """
<div style="padding: 10px; background-color: #e8f5e9; border-radius: 5px;">
<p style="margin: 0; color: #2e7d32; font-weight: bold;">Evaluation successfully terminated!</p>
<p style="margin: 5px 0 0; color: #388e3c;">All evaluation state has been reset.</p>
</div>
""", gr.update(visible=False)
except Exception as e:
# Still need to reset states even if there's an error
current_process = None
is_evaluating = False
process_aborted = False
# Reset output queue
while not output_queue.empty():
try:
output_queue.get_nowait()
except queue.Empty:
break
return f"""
<div style="padding: 10px; background-color: #ffebee; border-radius: 5px;">
<p style="margin: 0; color: #c62828; font-weight: bold;">Failed to terminate evaluation: {str(e)}</p>
<p style="margin: 5px 0 0; color: #c62828;">Evaluation state has been reset.</p>
</div>
""", gr.update(visible=False)
with gr.Tab("Evaluation"):
gr.Markdown("### Model and Dataset Configuration")
# Original evaluation interface components
with gr.Group():
with gr.Row():
eval_model_path = gr.Textbox(
label="Model Path",
value="ckpt/demo/demo_provided.pt",
placeholder="Path to the trained model"
)
eval_plm_model = gr.Dropdown(
choices=list(plm_models.keys()),
label="Protein Language Model"
)
with gr.Row():
eval_method = gr.Dropdown(
choices=["full", "freeze", "ses-adapter", "plm-lora", "plm-qlora", "plm_adalora", "plm_dora", "plm_ia3"],
label="Evaluation Method",
value="freeze"
)
eval_pooling_method = gr.Dropdown(
choices=["mean", "attention1d", "light_attention"],
label="Pooling Method",
value="mean"
)
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
is_custom_dataset = gr.Radio(
choices=["Use Custom Dataset", "Use Pre-defined Dataset"],
label="Dataset Selection",
value="Use Pre-defined Dataset"
)
eval_dataset_defined = gr.Dropdown(
choices=list(dataset_configs.keys()),
label="Evaluation Dataset",
visible=True
)
eval_dataset_custom = gr.Textbox(
label="Custom Dataset Path",
placeholder="Huggingface Dataset eg: user/dataset",
visible=False
)
with gr.Column(scale=1, min_width=120, elem_classes="preview-button-container"):
# Add dataset preview functionality
preview_button = gr.Button(
"Preview Dataset",
variant="primary",
size="lg",
elem_classes="preview-button"
)
# 将数据统计和表格都放入折叠面板
with gr.Row():
with gr.Accordion("Dataset Preview", open=False) as preview_accordion:
# 数据统计区域
with gr.Row():
dataset_stats_md = gr.HTML("", elem_classes=["dataset-stats"])
# 表格区域
with gr.Row():
preview_table = gr.Dataframe(
headers=["Name", "Sequence", "Label"],
value=[["No dataset selected", "-", "-"]],
wrap=True,
interactive=False,
row_count=3,
elem_classes=["preview-table"]
)
# Add CSS styles
gr.HTML("""
<style>
/* 数据统计样式 */
.dataset-stats {
margin: 0 0 15px 0;
padding: 0;
}
.dataset-stats table {
width: 100%;
border-collapse: collapse;
font-size: 0.9em;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
border-radius: 8px;
overflow: hidden;
table-layout: fixed;
}
.dataset-stats th {
background-color: #e0e0e0;
font-weight: bold;
padding: 6px 10px;
text-align: center;
border: 1px solid #ddd;
font-size: 0.95em;
white-space: nowrap;
overflow: hidden;
min-width: 120px;
}
.dataset-stats td {
padding: 6px 10px;
text-align: center;
border: 1px solid #ddd;
}
.dataset-stats h2 {
font-size: 1.1em;
margin: 0 0 10px 0;
text-align: center;
}
/* 表格样式 */
.preview-table table {
background-color: white !important;
font-size: 0.9em !important;
width: 100%;
table-layout: fixed !important;
}
.preview-table .gr-block.gr-box {
background-color: transparent !important;
}
.preview-table .gr-input-label {
background-color: transparent !important;
}
/* 表格外观增强 */
.preview-table table {
margin-top: 0;
border-radius: 8px;
overflow: hidden;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
/* 表头样式 */
.preview-table th {
background-color: #e0e0e0 !important;
font-weight: bold !important;
padding: 6px !important;
border-bottom: 1px solid #ccc !important;
font-size: 0.95em !important;
text-align: center !important;
white-space: nowrap !important;
min-width: 120px !important;
}
/* 单元格样式 */
.preview-table td {
padding: 4px 6px !important;
max-width: 300px !important;
overflow: hidden;
text-overflow: ellipsis;
white-space: nowrap;
text-align: left !important;
}
/* 悬停效果 */
.preview-table tr:hover {
background-color: #f0f0f0 !important;
}
/* 折叠面板样式 */
.gr-accordion {
border: 1px solid #e0e0e0;
border-radius: 8px;
overflow: hidden;
margin-bottom: 15px;
}
/* 折叠面板标题样式 */
.gr-accordion .label-wrap {
background-color: #f5f5f5;
padding: 8px 15px;
font-weight: bold;
}
.preview-button {
height: 86px !important;
}
</style>
""", visible=True)
### These are settings for custom dataset. ###
with gr.Row(visible=True) as custom_dataset_settings:
problem_type = gr.Dropdown(
choices=["single_label_classification", "multi_label_classification", "regression"],
label="Problem Type",
value="single_label_classification",
scale=23,
interactive=False
)
num_labels = gr.Number(
value=2,
label="Number of Labels",
scale=11,
interactive=False
)
metrics = gr.Dropdown(
choices=["accuracy", "recall", "precision", "f1", "mcc", "auroc", "f1_max", "spearman_corr", "mse"],
label="Metrics",
value=["accuracy", "mcc", "f1", "precision", "recall", "auroc"],
scale=101,
multiselect=True,
interactive=False
)
# Add dataset preview function
def update_dataset_preview(dataset_type=None, defined_dataset=None, custom_dataset=None):
"""Update dataset preview content"""
# Determine which dataset to use based on selection
if dataset_type == "Use Custom Dataset" and custom_dataset:
try:
# Try to load custom dataset
dataset = load_dataset(custom_dataset)
stats_html = f"""
<div style="text-align: center; margin: 20px 0;">
<table style="width: 100%; border-collapse: collapse; margin: 0 auto;">
<tr>
<th style="padding: 8px; font-size: 14px; border: 1px solid #ddd; background-color: #e0e0e0; font-weight: bold; border-bottom: 1px solid #ccc; text-align: center;">Dataset</th>
<th style="padding: 8px; font-size: 14px; border: 1px solid #ddd; background-color: #e0e0e0; font-weight: bold; border-bottom: 1px solid #ccc; text-align: center;">Train Samples</th>
<th style="padding: 8px; font-size: 14px; border: 1px solid #ddd; background-color: #e0e0e0; font-weight: bold; border-bottom: 1px solid #ccc; text-align: center;">Val Samples</th>
<th style="padding: 8px; font-size: 14px; border: 1px solid #ddd; background-color: #e0e0e0; font-weight: bold; border-bottom: 1px solid #ccc; text-align: center;">Test Samples</th>
</tr>
<tr>
<td style="padding: 15px; font-size: 14px; border: 1px solid #ddd; text-align: center;">{custom_dataset}</td>
<td style="padding: 15px; font-size: 14px; border: 1px solid #ddd; text-align: center;">{len(dataset["train"]) if "train" in dataset else 0}</td>
<td style="padding: 15px; font-size: 14px; border: 1px solid #ddd; text-align: center;">{len(dataset["validation"]) if "validation" in dataset else 0}</td>
<td style="padding: 15px; font-size: 14px; border: 1px solid #ddd; text-align: center;">{len(dataset["test"]) if "test" in dataset else 0}</td>
</tr>
</table>
</div>
"""
# Get sample data points
split = "train" if "train" in dataset else list(dataset.keys())[0]
samples = dataset[split].select(range(min(3, len(dataset[split]))))
if len(samples) == 0:
return gr.update(value=stats_html), gr.update(value=[["No data available", "-", "-"]], headers=["Name", "Sequence", "Label"]), gr.update(open=True)
# Get fields actually present in the dataset
available_fields = list(samples[0].keys())
# Build sample data
sample_data = []
for sample in samples:
sample_dict = {}
for field in available_fields:
# Keep full sequence
sample_dict[field] = str(sample[field])
sample_data.append(sample_dict)
df = pd.DataFrame(sample_data)
return gr.update(value=stats_html), gr.update(value=df.values.tolist(), headers=df.columns.tolist()), gr.update(open=True)
except Exception as e:
error_html = f"""
<div>
<h2>Error loading dataset</h2>
<p style="color: #c62828;">{str(e)}</p>
</div>
"""
return gr.update(value=error_html), gr.update(value=[["Error", str(e), "-"]], headers=["Name", "Sequence", "Label"]), gr.update(open=True)
# Use predefined dataset
elif dataset_type == "Use Pre-defined Dataset" and defined_dataset:
try:
config_path = dataset_configs[defined_dataset]
with open(config_path, 'r') as f:
config = json.load(f)
# Load dataset statistics
dataset = load_dataset(config["dataset"])
stats_html = f"""
<div style="text-align: center; margin: 20px 0;">
<table style="width: 100%; border-collapse: collapse; margin: 0 auto;">
<tr>
<th style="padding: 8px; font-size: 14px; border: 1px solid #ddd; background-color: #e0e0e0; font-weight: bold; border-bottom: 1px solid #ccc; text-align: center;">Dataset</th>
<th style="padding: 8px; font-size: 14px; border: 1px solid #ddd; background-color: #e0e0e0; font-weight: bold; border-bottom: 1px solid #ccc; text-align: center;">Train Samples</th>
<th style="padding: 8px; font-size: 14px; border: 1px solid #ddd; background-color: #e0e0e0; font-weight: bold; border-bottom: 1px solid #ccc; text-align: center;">Val Samples</th>
<th style="padding: 8px; font-size: 14px; border: 1px solid #ddd; background-color: #e0e0e0; font-weight: bold; border-bottom: 1px solid #ccc; text-align: center;">Test Samples</th>
</tr>
<tr>
<td style="padding: 15px; font-size: 14px; border: 1px solid #ddd; text-align: center;">{config["dataset"]}</td>
<td style="padding: 15px; font-size: 14px; border: 1px solid #ddd; text-align: center;">{len(dataset["train"]) if "train" in dataset else 0}</td>
<td style="padding: 15px; font-size: 14px; border: 1px solid #ddd; text-align: center;">{len(dataset["validation"]) if "validation" in dataset else 0}</td>
<td style="padding: 15px; font-size: 14px; border: 1px solid #ddd; text-align: center;">{len(dataset["test"]) if "test" in dataset else 0}</td>
</tr>
</table>
</div>
"""
# Get sample data points and available fields
samples = dataset["train"].select(range(min(3, len(dataset["train"]))))
if len(samples) == 0:
return gr.update(value=stats_html), gr.update(value=[["No data available", "-", "-"]], headers=["Name", "Sequence", "Label"]), gr.update(open=True)
# Get fields actually present in the dataset
available_fields = list(samples[0].keys())
# Build sample data
sample_data = []
for sample in samples:
sample_dict = {}
for field in available_fields:
# Keep full sequence
sample_dict[field] = str(sample[field])
sample_data.append(sample_dict)
df = pd.DataFrame(sample_data)
return gr.update(value=stats_html), gr.update(value=df.values.tolist(), headers=df.columns.tolist()), gr.update(open=True)
except Exception as e:
error_html = f"""
<div>
<h2>Error loading dataset</h2>
<p style="color: #c62828;">{str(e)}</p>
</div>
"""
return gr.update(value=error_html), gr.update(value=[["Error", str(e), "-"]], headers=["Name", "Sequence", "Label"]), gr.update(open=True)
# If no valid dataset information provided
return gr.update(value=""), gr.update(value=[["No dataset selected", "-", "-"]], headers=["Name", "Sequence", "Label"]), gr.update(open=True)
# Preview button click event
preview_button.click(
fn=update_dataset_preview,
inputs=[is_custom_dataset, eval_dataset_defined, eval_dataset_custom],
outputs=[dataset_stats_md, preview_table, preview_accordion]
)
def update_dataset_settings(choice, dataset_name=None):
if choice == "Use Pre-defined Dataset":
# Load configuration from dataset_config
if dataset_name and dataset_name in dataset_configs:
with open(dataset_configs[dataset_name], 'r') as f:
config = json.load(f)
# 处理metrics,将字符串转换为列表以适应多选组件
metrics_value = config.get("metrics", "accuracy,mcc,f1,precision,recall,auroc")
if isinstance(metrics_value, str):
metrics_value = metrics_value.split(",")
return [
gr.update(visible=True), # eval_dataset_defined
gr.update(visible=False), # eval_dataset_custom
gr.update(value=config.get("problem_type", ""), interactive=False),
gr.update(value=config.get("num_labels", 1), interactive=False),
gr.update(value=metrics_value, interactive=False)
]
else:
# Custom dataset settings
return [
gr.update(visible=False), # eval_dataset_defined
gr.update(visible=True), # eval_dataset_custom
gr.update(value="", interactive=True),
gr.update(value=2, interactive=True),
gr.update(value="", interactive=True)
]
is_custom_dataset.change(
fn=update_dataset_settings,
inputs=[is_custom_dataset, eval_dataset_defined],
outputs=[eval_dataset_defined, eval_dataset_custom,
problem_type, num_labels, metrics]
)
eval_dataset_defined.change(
fn=lambda x: update_dataset_settings("Use Pre-defined Dataset", x),
inputs=[eval_dataset_defined],
outputs=[eval_dataset_defined, eval_dataset_custom,
problem_type, num_labels, metrics]
)
### These are settings for different training methods. ###
# for ses-adapter
with gr.Row(visible=False) as structure_seq_row:
eval_structure_seq = gr.CheckboxGroup(
label="Structure Sequence",
choices=["foldseek_seq", "ss8_seq"],
value=["foldseek_seq", "ss8_seq"]
)
def update_training_method(method):
return {
structure_seq_row: gr.update(visible=method == "ses-adapter")
}
eval_method.change(
fn=update_training_method,
inputs=[eval_method],
outputs=[structure_seq_row]
)
gr.Markdown("### Batch Processing Configuration")
with gr.Group():
with gr.Row(equal_height=True):
with gr.Column(scale=1):
batch_mode = gr.Radio(
choices=["Batch Size Mode", "Batch Token Mode"],
label="Batch Processing Mode",
value="Batch Size Mode"
)
with gr.Column(scale=2):
batch_size = gr.Slider(
minimum=1,
maximum=128,
value=16,
step=1,
label="Batch Size",
visible=True
)
batch_token = gr.Slider(
minimum=1000,
maximum=50000,
value=10000,
step=1000,
label="Tokens per Batch",
visible=False
)
def update_batch_inputs(mode):
return {
batch_size: gr.update(visible=mode == "Batch Size Mode"),
batch_token: gr.update(visible=mode == "Batch Token Mode")
}
# Update visibility when mode changes
batch_mode.change(
fn=update_batch_inputs,
inputs=[batch_mode],
outputs=[batch_size, batch_token]
)
with gr.Row():
preview_button = gr.Button("Preview Command")
abort_button = gr.Button("Abort", variant="stop")
eval_button = gr.Button("Start Evaluation", variant="primary")
with gr.Row():
command_preview = gr.Code(
label="Command Preview",
language="shell",
interactive=False,
visible=False
)
def handle_preview(plm_model, model_path, eval_method, is_custom_dataset, dataset_defined,
dataset_custom, problem_type, num_labels, metrics, batch_mode,
batch_size, batch_token, eval_structure_seq, eval_pooling_method):
"""处理预览命令按钮点击事件"""
if command_preview.visible:
return gr.update(visible=False)
# 构建参数字典
args = {
"plm_model": plm_models[plm_model],
"model_path": model_path,
"eval_method": eval_method,
"pooling_method": eval_pooling_method
}
# 处理数据集相关参数
if is_custom_dataset == "Use Custom Dataset":
args["dataset"] = dataset_custom
args["problem_type"] = problem_type
args["num_labels"] = num_labels
args["metrics"] = ",".join(metrics)
else:
with open(dataset_configs[dataset_defined], 'r') as f:
config = json.load(f)
args["dataset_config"] = dataset_configs[dataset_defined]
# 处理批处理参数
if batch_mode == "Batch Size Mode":
args["batch_size"] = batch_size
else:
args["batch_token"] = batch_token
# 处理结构序列参数
if eval_method == "ses-adapter" and eval_structure_seq:
args["structure_seq"] = ",".join(eval_structure_seq)
if "foldseek_seq" in eval_structure_seq:
args["use_foldseek"] = True
if "ss8_seq" in eval_structure_seq:
args["use_ss8"] = True
# 生成预览命令
preview_text = preview_eval_command(args)
return gr.update(value=preview_text, visible=True)
# 绑定预览按钮事件
preview_button.click(
fn=handle_preview,
inputs=[
eval_plm_model,
eval_model_path,
eval_method,
is_custom_dataset,
eval_dataset_defined,
eval_dataset_custom,
problem_type,
num_labels,
metrics,
batch_mode,
batch_size,
batch_token,
eval_structure_seq,
eval_pooling_method
],
outputs=[command_preview]
)
eval_output = gr.HTML(
value="<div style='padding: 15px; background-color: #f5f5f5; border-radius: 5px;'><p style='margin: 0;'>Click the 「Start Evaluation」 button to begin model evaluation</p></div>",
label="Evaluation Status & Results"
)
with gr.Row():
with gr.Column(scale=4):
pass
with gr.Column(scale=1):
download_csv_btn = gr.DownloadButton(
"Download CSV",
visible=False,
size="lg"
)
with gr.Column(scale=4):
pass
# Connect buttons to functions
eval_button.click(
fn=evaluate_model,
inputs=[
eval_plm_model,
eval_model_path,
eval_method,
is_custom_dataset,
eval_dataset_defined,
eval_dataset_custom,
problem_type,
num_labels,
metrics,
batch_mode,
batch_size,
batch_token,
eval_structure_seq,
eval_pooling_method
],
outputs=[eval_output, download_csv_btn]
)
abort_button.click(
fn=handle_abort,
inputs=[],
outputs=[eval_output, download_csv_btn]
)
return {
"eval_button": eval_button,
"eval_output": eval_output
} |