File size: 22,823 Bytes
8918ac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
import biotite
import joblib
import math
import numpy as np
import os
import scipy.spatial as spa
import torch
import torch.nn.functional as F
from Bio import PDB
from Bio.SeqUtils import seq1
from pathlib import Path
from torch_geometric.data import Batch, Data
from torch_scatter import scatter_mean, scatter_sum, scatter_max
from tqdm import tqdm
from typing import List
from biotite.sequence import ProteinSequence
from biotite.structure import filter_backbone, get_chains
from biotite.structure.io import pdb, pdbx
from biotite.structure.residues import get_residues
from .encoder import AutoGraphEncoder


def _normalize(tensor, dim=-1):
    """

    Normalizes a `torch.Tensor` along dimension `dim` without `nan`s.

    """
    return torch.nan_to_num(
        torch.div(tensor, torch.norm(tensor, dim=dim, keepdim=True))
    )


def _rbf(D, D_min=0.0, D_max=20.0, D_count=16, device="cpu"):
    """

    From https://github.com/jingraham/neurips19-graph-protein-design



    Returns an RBF embedding of `torch.Tensor` `D` along a new axis=-1.

    That is, if `D` has shape [...dims], then the returned tensor will have

    shape [...dims, D_count].

    """
    D_mu = torch.linspace(D_min, D_max, D_count, device=device)
    D_mu = D_mu.view([1, -1])
    D_sigma = (D_max - D_min) / D_count
    D_expand = torch.unsqueeze(D, -1)

    RBF = torch.exp(-(((D_expand - D_mu) / D_sigma) ** 2))
    return RBF


def _orientations(X_ca):
    forward = _normalize(X_ca[1:] - X_ca[:-1])
    backward = _normalize(X_ca[:-1] - X_ca[1:])
    forward = F.pad(forward, [0, 0, 0, 1])
    backward = F.pad(backward, [0, 0, 1, 0])
    return torch.cat([forward.unsqueeze(-2), backward.unsqueeze(-2)], -2)


def _sidechains(X):
    n, origin, c = X[:, 0], X[:, 1], X[:, 2]
    c, n = _normalize(c - origin), _normalize(n - origin)
    bisector = _normalize(c + n)
    perp = _normalize(torch.cross(c, n))
    vec = -bisector * math.sqrt(1 / 3) - perp * math.sqrt(2 / 3)
    return vec


def _positional_embeddings(edge_index, num_embeddings=16, period_range=[2, 1000]):
    # From https://github.com/jingraham/neurips19-graph-protein-design
    d = edge_index[0] - edge_index[1]

    frequency = torch.exp(
        torch.arange(0, num_embeddings, 2, dtype=torch.float32)
        * -(np.log(10000.0) / num_embeddings)
    )
    angles = d.unsqueeze(-1) * frequency
    E = torch.cat((torch.cos(angles), torch.sin(angles)), -1)
    return E


def generate_graph(pdb_file, max_distance=10):
    """

    generate graph data from pdb file



    params:

        pdb_file: pdb file path

        node_level: residue or secondary_structure

        node_s_type: ss3, ss8, foldseek

        max_distance: cut off

        foldseek_fasta_file: foldseek fasta file path

        foldseek_fasta_multi_chain: pdb multi chain for foldseek fasta



    return:

        graph data



    """
    pdb_parser = PDB.PDBParser(QUIET=True)
    structure = pdb_parser.get_structure("protein", pdb_file)
    model = structure[0]

    # extract amino acid sequence
    seq = []
    # extract amino acid coordinates
    aa_coords = {"N": [], "CA": [], "C": [], "O": []}

    for model in structure:
        for chain in model:
            for residue in chain:
                if residue.get_id()[0] == " ":
                    seq.append(residue.get_resname())
                    for atom_name in aa_coords.keys():
                        atom = residue[atom_name]
                        aa_coords[atom_name].append(atom.get_coord().tolist())
    one_letter_seq = "".join([seq1(aa) for aa in seq])

    # aa means amino acid
    coords = list(zip(aa_coords["N"], aa_coords["CA"], aa_coords["C"], aa_coords["O"]))
    coords = torch.tensor(coords)
    # mask out the missing coordinates
    mask = torch.isfinite(coords.sum(dim=(1, 2)))
    coords[~mask] = np.inf
    ca_coords = coords[:, 1]
    node_s = torch.zeros(len(ca_coords), 20)
    # build graph and max_distance
    distances = spa.distance_matrix(ca_coords, ca_coords)
    edge_index = torch.tensor(np.array(np.where(distances < max_distance)))
    # remove loop
    mask = edge_index[0] != edge_index[1]
    edge_index = edge_index[:, mask]

    # node features
    orientations = _orientations(ca_coords)
    sidechains = _sidechains(coords)
    node_v = torch.cat([orientations, sidechains.unsqueeze(-2)], dim=-2)

    # edge features
    pos_embeddings = _positional_embeddings(edge_index)
    E_vectors = ca_coords[edge_index[0]] - ca_coords[edge_index[1]]
    rbf = _rbf(E_vectors.norm(dim=-1), D_count=16)
    edge_s = torch.cat([rbf, pos_embeddings], dim=-1)
    edge_v = _normalize(E_vectors).unsqueeze(-2)

    # node_v: [node_num, 3, 3]
    # edge_index: [2, edge_num]
    # edge_s: [edge_num, 16+16]
    # edge_v: [edge_num, 1, 3]
    node_s, node_v, edge_s, edge_v = map(
        torch.nan_to_num, (node_s, node_v, edge_s, edge_v)
    )
    data = Data(
        node_s=node_s,
        node_v=node_v,
        edge_index=edge_index,
        edge_s=edge_s,
        edge_v=edge_v,
        distances=distances,
        aa_seq=one_letter_seq,
    )

    return data


def get_atom_coords_residuewise(atoms: List[str], struct: biotite.structure.AtomArray):
    """

    Example for atoms argument: ["N", "CA", "C"]

    """

    def filterfn(s, axis=None):
        filters = np.stack([s.atom_name == name for name in atoms], axis=1)
        sum = filters.sum(0)
        if not np.all(sum <= np.ones(filters.shape[1])):
            raise RuntimeError("structure has multiple atoms with same name")
        index = filters.argmax(0)
        coords = s[index].coord
        coords[sum == 0] = float("nan")
        return coords

    return biotite.structure.apply_residue_wise(struct, struct, filterfn)


def extract_coords_from_structure(structure: biotite.structure.AtomArray):
    """

    Args:

        structure: An instance of biotite AtomArray

    Returns:

        Tuple (coords, seq)

            - coords is an L x 3 x 3 array for N, CA, C coordinates

            - seq is the extracted sequence

    """
    coords = get_atom_coords_residuewise(["N", "CA", "C"], structure)
    residue_identities = get_residues(structure)[1]
    seq = "".join([ProteinSequence.convert_letter_3to1(r) for r in residue_identities])
    return coords

def extract_seq_from_pdb(pdb_file, chain=None):
    """

    Args:

        structure: An instance of biotite AtomArray

    Returns:

        - seq is the extracted sequence

    """
    structure = load_structure(pdb_file, chain)
    residue_identities = get_residues(structure)[1]
    seq = "".join([ProteinSequence.convert_letter_3to1(r) for r in residue_identities])
    return seq


def generate_pos_subgraph(

    graph_data,

    subgraph_depth=None,

    subgraph_interval=1,

    max_distance=10,

    anchor_nodes=None,

    pure_subgraph=False,

    device="cuda" if torch.cuda.is_available() else "cpu"

):

    # move graph_data to GPU
    graph_data = Data(
        node_s=graph_data.node_s.to(device) if torch.is_tensor(graph_data.node_s) else torch.tensor(graph_data.node_s, device=device),
        node_v=graph_data.node_v.to(device) if torch.is_tensor(graph_data.node_v) else torch.tensor(graph_data.node_v, device=device),
        edge_index=graph_data.edge_index.to(device) if torch.is_tensor(graph_data.edge_index) else torch.tensor(graph_data.edge_index, device=device),
        edge_s=graph_data.edge_s.to(device) if torch.is_tensor(graph_data.edge_s) else torch.tensor(graph_data.edge_s, device=device),
        edge_v=graph_data.edge_v.to(device) if torch.is_tensor(graph_data.edge_v) else torch.tensor(graph_data.edge_v, device=device),
        distances=graph_data.distances.to(device) if torch.is_tensor(graph_data.distances) else torch.tensor(graph_data.distances, device=device),
        aa_seq=graph_data.aa_seq
    )

    distances = graph_data.distances
    if subgraph_depth is None:
        subgraph_depth = 50

    # Calculate anchor nodes if not provided
    if anchor_nodes is None:
        anchor_nodes = list(range(0, len(graph_data.aa_seq), subgraph_interval))
    anchor_nodes_tensor = torch.tensor(anchor_nodes, device=device)  # Move anchor nodes to device

    # Get the k nearest neighbors for ALL anchor nodes (batched)
    k = 50
    nearest_indices = torch.argsort(distances, dim=1)[:, :k]  # (num_nodes, k)
    distance_mask = torch.gather(distances, 1, nearest_indices) < max_distance  # (num_nodes, k)
    nearest_indices = torch.where(distance_mask, nearest_indices, torch.tensor(-1, device=device))  # (num_nodes, k)

    subgraph_dict = {}

    for anchor_node in anchor_nodes: #Reverted back to for loop to ensure everything works with batches
        try:

            #Get neighbors for each anchornode
            k_neighbors = nearest_indices[anchor_node]
            k_neighbors = k_neighbors[k_neighbors != -1]

            if len(k_neighbors) == 0:  # Skip if no neighbors found
                    continue

            if len(k_neighbors) > 30:
                k_neighbors = k_neighbors[:40]

            k_neighbors, _ = torch.sort(k_neighbors)

            sub_matrix = distances.index_select(0, k_neighbors).index_select(1, k_neighbors)

            # Create edge indices efficiently
            sub_edges = torch.nonzero(sub_matrix < max_distance, as_tuple=False)
            mask = sub_edges[:, 0] != sub_edges[:, 1]
            sub_edge_index = sub_edges[mask]

            if len(sub_edge_index) == 0:  # Skip if no edges found
                continue
            # Move edge_index to GPU only when needed
            edge_index_device = graph_data.edge_index.to(device)
            original_edge_index = k_neighbors[sub_edge_index]

            # More memory efficient edge matching
            matches = []
            for edge in original_edge_index:
                match = (edge_index_device[0] == edge[0]) & (edge_index_device[1] == edge[1])
                matches.append(match)
            matches = torch.stack(matches)
            edge_to_feature_idx = torch.nonzero(matches, as_tuple=True)[0].to(device)
            if len(edge_to_feature_idx) == 0:  # Skip if no matching edges
                continue
            #Create data
            new_node_s = graph_data.node_s[k_neighbors].to(device)
            new_node_v = graph_data.node_v[k_neighbors].to(device)
            new_edge_s = graph_data.edge_s[edge_to_feature_idx].to(device)
            new_edge_v = graph_data.edge_v[edge_to_feature_idx].to(device)

            result = Data(
                edge_index=sub_edge_index.T.to(device),
                edge_s=new_edge_s.to(device),
                edge_v=new_edge_v.to(device),
                node_s=new_node_s.to(device),
                node_v=new_node_v.to(device),
            )
            if not pure_subgraph:
                result.index_map = {
                int(old_id.to(device).item()): new_id
                for new_id, old_id in enumerate(k_neighbors)
                }
            subgraph_dict[anchor_node] = result
        except Exception as e:
             print(f"Error processing anchor node {anchor_node}: {str(e)}")
             continue

    return subgraph_dict

def load_structure(fpath, chain=None):
    """

    Args:

        fpath: filepath to either pdb or cif file

        chain: the chain id or list of chain ids to load

    Returns:

        biotite.structure.AtomArray

    """
    if fpath.endswith("cif"):
        with open(fpath) as fin:
            pdbxf = pdbx.PDBxFile.read(fin)
        structure = pdbx.get_structure(pdbxf, model=1)
    elif fpath.endswith("pdb"):
        with open(fpath) as fin:
            pdbf = pdb.PDBFile.read(fin)
        structure = pdb.get_structure(pdbf, model=1)
    bbmask = filter_backbone(structure)
    structure = structure[bbmask]
    all_chains = get_chains(structure)
    if len(all_chains) == 0:
        raise ValueError("No chains found in the input file.")
    if chain is None:
        chain_ids = all_chains
    elif isinstance(chain, list):
        chain_ids = chain
    else:
        chain_ids = [chain]
    for chain in chain_ids:
        if chain not in all_chains:
            raise ValueError(f"Chain {chain} not found in input file")
    chain_filter = [a.chain_id in chain_ids for a in structure]
    structure = structure[chain_filter]
    return structure


def get_atom_coords_residuewise(atoms: List[str], struct: biotite.structure.AtomArray):
    """

    Example for atoms argument: ["N", "CA", "C"]

    """

    def filterfn(s, axis=None):
        filters = np.stack([s.atom_name == name for name in atoms], axis=1)
        sum = filters.sum(0)
        if not np.all(sum <= np.ones(filters.shape[1])):
            raise RuntimeError("structure has multiple atoms with same name")
        index = filters.argmax(0)
        coords = s[index].coord
        coords[sum == 0] = float("nan")
        return coords

    return biotite.structure.apply_residue_wise(struct, struct, filterfn)


def extract_coords_from_structure(structure: biotite.structure.AtomArray):
    """

    Args:

        structure: An instance of biotite AtomArray

    Returns:

        Tuple (coords, seq)

            - coords is an L x 3 x 3 array for N, CA, C coordinates

            - seq is the extracted sequence

    """
    coords = get_atom_coords_residuewise(["N", "CA", "C"], structure)
    residue_identities = get_residues(structure)[1]
    seq = "".join([ProteinSequence.convert_letter_3to1(r) for r in residue_identities])
    return coords


def extract_seq_from_pdb(pdb_file, chain=None):
    """

    Args:

        structure: An instance of biotite AtomArray

    Returns:

        - seq is the extracted sequence

    """
    structure = load_structure(pdb_file, chain)
    residue_identities = get_residues(structure)[1]
    seq = "".join([ProteinSequence.convert_letter_3to1(r) for r in residue_identities])
    return seq


def convert_graph(graph):
    graph = Data(
        node_s=graph.node_s.to(torch.float32),
        node_v=graph.node_v.to(torch.float32),
        edge_index=graph.edge_index.to(torch.int64),
        edge_s=graph.edge_s.to(torch.float32),
        edge_v=graph.edge_v.to(torch.float32),
    )
    return graph

def predict_structure(model, cluster_models, dataloader, datalabels, device):
    epoch_iterator = dataloader
    struc_label_dict = {}
    cluster_model_dict = {}

    for cluster_model_path in cluster_models:
        cluster_model_name = cluster_model_path.split("/")[-1].split(".")[0]
        struc_label_dict[cluster_model_name] = {}
        cluster_model_dict[cluster_model_name] = joblib.load(cluster_model_path)

    with torch.no_grad():
        for batch, label_dict in zip(epoch_iterator, datalabels):
            batch.to(device)
            h_V = (batch.node_s, batch.node_v)
            h_E = (batch.edge_s, batch.edge_v)

            node_emebddings = model.get_embedding(h_V, batch.edge_index, h_E)
            graph_emebddings = scatter_mean(node_emebddings, batch.batch, dim=0).to(device)
            norm_graph_emebddings = F.normalize(graph_emebddings, p=2, dim=1)
            struc_label_dict[cluster_model_name][label_dict['name']]={}
            for name, cluster_model in cluster_model_dict.items():
                batch_structure_labels = cluster_model.predict(
                    norm_graph_emebddings.cpu()
                ).tolist()
                struc_label_dict[name][label_dict['name']]['seq']=label_dict['aa_seq']
                struc_label_dict[name][label_dict['name']]['struct']=batch_structure_labels

    return struc_label_dict


def get_embeds(model, dataloader, device, pooling="mean"):
    epoch_iterator = tqdm(dataloader)
    embeds = []
    with torch.no_grad():
        for batch in epoch_iterator:
            batch.to(device)
            h_V = (batch.node_s, batch.node_v)
            h_E = (batch.edge_s, batch.edge_v)
            node_embeds = model.get_embedding(h_V, batch.edge_index, h_E).cpu()
            if pooling == "mean":
                graph_embeds = scatter_mean(node_embeds, batch.batch.cpu(), dim=0)
            elif pooling == "sum":
                graph_embeds = scatter_sum(node_embeds, batch.batch.cpu(), dim=0)
            elif pooling == "max":
                graph_embeds, _ = scatter_max(node_embeds, batch.batch.cpu(), dim=0)
            else:
                raise ValueError("pooling should be mean, sum or max")
            embeds.append(graph_embeds)

    embeds = torch.cat(embeds, dim=0)
    norm_embeds = F.normalize(embeds, p=2, dim=1)
    return norm_embeds

def process_pdb_file(

    pdb_file,

    subgraph_depth,

    subgraph_interval,

    max_distance,

    device="cuda" if torch.cuda.is_available() else "cpu"

):
    result_dict, subgraph_dict = {}, {}
    result_dict["name"] = Path(pdb_file).name
    
    try:
        graph = generate_graph(pdb_file, max_distance)
    except Exception as e:
        print(f"Error in processing {pdb_file}")
        result_dict["error"] = str(e)
        return None, result_dict, 0

    result_dict["aa_seq"] = graph.aa_seq
    anchor_nodes = list(range(0, len(graph.node_s), subgraph_interval)) #Define anchor nodes
    try: #Run subgraph generation
        subgraph_dict = generate_pos_subgraph(
            graph,
            subgraph_depth,
            subgraph_interval,
            max_distance,
            anchor_nodes=anchor_nodes,
            pure_subgraph=True,
            device=device
        )
        #Move all subgraphs to GPU
        for key in subgraph_dict.keys():
            subgraph_dict[key] = convert_graph(subgraph_dict[key])
    except Exception as e:
        print(f"Error processing subgraph {e}")
        return None, result_dict, 0


    subgraph_dict = dict(sorted(subgraph_dict.items(), key=lambda x: x[0]))
    subgraphs = list(subgraph_dict.values())
    return subgraphs, result_dict, len(anchor_nodes)


def pdb_converter(

    pdb_files,

    subgraph_depth,

    subgraph_interval,

    max_distance,

    device="cuda" if torch.cuda.is_available() else "cpu",

    batch_size=32 

):
    error_proteins, error_messages = [], []
    dataset, results, node_counts = [], [], []

    for i in tqdm(range(0, len(pdb_files), batch_size), desc="Processing PDB files"):
        batch = pdb_files[i:i + batch_size]

        for pdb_file in batch:
            pdb_subgraphs, result_dict, node_count = process_pdb_file(
                pdb_file,
                subgraph_depth,
                subgraph_interval,
                max_distance,
                device=device
            )

            if pdb_subgraphs is None:
                error_proteins.append(result_dict["name"])
                error_messages.append(result_dict["error"])
                continue
            dataset.append(pdb_subgraphs)
            results.append(result_dict)
            node_counts.append(node_count)

    if error_proteins:
        print(f"Found {len(error_proteins)} errors:")
        for name, msg in zip(error_proteins, error_messages):
            print(f"{name}: {msg}")

    def collate_fn(batch):
        batch_graphs = []
        for d in batch:
            batch_graphs.extend(d)
        batch_graphs = Batch.from_data_list(batch_graphs)
        batch_graphs.node_s = torch.zeros_like(batch_graphs.node_s)
        return batch_graphs

    def data_loader():
        for item in dataset:
            yield collate_fn([item])

    return data_loader(), results


class PdbQuantizer:

    def __init__(

        self,

        structure_vocab_size=2048,

        max_distance=10,

        subgraph_depth=None,

        subgraph_interval=1,

        anchor_nodes=None,

        model_path=None,

        cluster_dir=None,

        cluster_model=None,

        device=None,

        batch_size=16,

    ) -> None:
        assert structure_vocab_size in [20, 64, 128, 512, 1024, 2048, 4096]
        self.batch_size = batch_size
        self.max_distance = max_distance
        self.subgraph_depth = subgraph_depth
        self.subgraph_interval = subgraph_interval
        self.anchor_nodes = anchor_nodes
        if model_path is None:
            self.model_path = str(Path(__file__).parent / "static" / "AE.pt")
        else:
            self.model_path = model_path
        self.structure_vocab_size = structure_vocab_size

        if cluster_dir is None:
            self.cluster_dir = str(Path(__file__).parent / "static")
            self.cluster_model = [
                Path(self.cluster_dir) / f"{structure_vocab_size}.joblib",
            ]
        else:
            self.cluster_dir = cluster_dir
            self.cluster_model = cluster_model

        if device is None:
            self.device = "cuda" if torch.cuda.is_available() else "cpu"
        else:
            self.device = device

        # Load model
        node_dim = (256, 32)
        edge_dim = (64, 2)
        model = AutoGraphEncoder(
            node_in_dim=(20, 3),
            node_h_dim=node_dim,
            edge_in_dim=(32, 1),
            edge_h_dim=edge_dim,
            num_layers=6,
        )
        model.load_state_dict(torch.load(self.model_path))
        model = model.to(self.device)
        model = model.eval()
        self.model = model
        self.cluster_models = [
            os.path.join(self.cluster_dir, m) for m in self.cluster_model
        ]

    def __call__(self, pdb_files, return_residue_seq=False):
        if isinstance(pdb_files, str):
            pdb_files = [pdb_files]
        elif isinstance(pdb_files, list):
            pass
        else:
            raise ValueError("pdb_files should be either a string or a list of strings")
        data_loader, results = pdb_converter(
            pdb_files,
            self.subgraph_depth,
            self.subgraph_interval,
            self.max_distance,
            device=self.device,
            batch_size=self.batch_size
        )
        structures = predict_structure(
            self.model, self.cluster_models, data_loader, results, self.device
        )
        if not return_residue_seq:
            for clusterModelLabels in structures.keys():
                for structureDict in structures[clusterModelLabels].keys():
                    structures[clusterModelLabels][structureDict].pop('seq', None)
        return structures