File size: 36,242 Bytes
8918ac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
---

title: VenusFactory
app_file: app.py
sdk: gradio
sdk_version: 5.24.0
---

<div align="right">
  <a href="README.md">English</a> | <a href="README_CN.md">简体中文</a>
</div>

<p align="center">
  <img src="img/banner_2503.png" width="70%" alt="VenusFactory Banner">
</p>

<div align="center">

[![GitHub stars](https://img.shields.io/github/stars/tyang816/VenusFactory?style=flat-square)](https://github.com/tyang816/VenusFactory/stargazers) [![GitHub forks](https://img.shields.io/github/forks/tyang816/VenusFactory?style=flat-square)](https://github.com/tyang816/VenusFactory/network/members) [![GitHub issues](https://img.shields.io/github/issues/tyang816/VenusFactory?style=flat-square)](https://github.com/tyang816/VenusFactory/issues) [![GitHub license](https://img.shields.io/github/license/tyang816/VenusFactory?style=flat-square)](https://github.com/tyang816/VenusFactory/blob/main/LICENSE)
[![Python Version](https://img.shields.io/badge/Python-3.10-blue?style=flat-square&logo=python)](https://www.python.org/) [![Documentation](https://img.shields.io/badge/docs-latest-brightgreen?style=flat-square)](https://venusfactory.readthedocs.io/) [![Downloads](https://img.shields.io/github/downloads/tyang816/VenusFactory/total?style=flat-square)](https://github.com/tyang816/VenusFactory/releases)

</div>

Recent News:

- Welcome to VenusFactory! This project is developed by [**Liang's Lab**](https://lianglab.sjtu.edu.cn/) at [**Shanghai Jiao Tong University**](https://www.sjtu.edu.cn/).
- [2025-03-26] Add [VenusPLM-300M](https://huggingface.co/AI4Protein/VenusPLM-300M) model, trained based on **VenusPod**, is a protein language model independently developed by Hong Liang's research group at Shanghai Jiao Tong University.
- [2025-03-17] Add [Venus-PETA, Venus-ProPrime, Venus-ProSST models](https://huggingface.co/AI4Protein), for more details, please refer to [Supported Models](#-supported-models)
- [2025-03-05] 🎉 Congratulations! 🎉 

  🚀 Our latest research achievement, **VenusMutHub**, has been officially accepted by [**Acta Pharmaceutica Sinica B**](https://www.sciencedirect.com/science/article/pii/S2211383525001650) and is now featured in a series of [**leaderboards**](https://lianglab.sjtu.edu.cn/muthub/)!    
  💡 In this study, we built **900+ high-quality benchmark** [**datasets**](https://huggingface.co/datasets/AI4Protein/VenusMutHub) covering **500+ protein functional properties**. VenusMutHub not only offers a new collection of small-sample datasets for **real-world protein mutation engineering**, but also fills the gap in **diversity** within existing benchmarks, laying a stronger foundation for AI-driven protein mutation effect prediction.


## ✏️ Table of Contents

- [Features](#-features)
- [Supported Models](#-supported-models)
- [Supported Training Approaches](#-supported-training-approaches)
- [Supported Datasets](#-supported-datasets)
- [Supported Metrics](#-supported-metrics)
- [Requirements](#-requirements)
- [Installation Guide](#-installation-guide)
- [Quick Start with Venus Web UI](#-quick-start-with-venus-web-ui)
- [Code-line Usage](#-code-line-usage)
- [Citation](#-citation)
- [Acknowledgement](#-acknowledgement)

## 📑 Features

- **Vaious protein langugae models**: Venus series, ESM series, ProtTrans series, Ankh series, etc
- **Comprehensive supervised datasets**: Localization, Fitness, Solubility, Stability, etc
- **Easy and quick data collector**: AlphaFold2 Database, RCSB, InterPro, Uniprot, etc
- **Experiment moitors**: Wandb, Local
- **Friendly interface**: Gradio UI

## 🤖 Supported Models

### Pre-training Protein Language Models

<details>
<summary>Venus Series Models (Published by Liang's Lab)</summary>

| Model | Size | Parameters | GPU Memory | Features | Template |
|-------|------|------------|------------|----------|----------|
| ProSST-20 | 20 | 110M | 4GB+ | Mutation | [AI4Protein/ProSST-20](https://huggingface.co/AI4Protein/ProSST-20) |
| ProSST-128 | 128 | 110M | 4GB+ | Mutation | [AI4Protein/ProSST-128](https://huggingface.co/AI4Protein/ProSST-128) |
| ProSST-512 | 512 | 110M | 4GB+ | Mutation | [AI4Protein/ProSST-512](https://huggingface.co/AI4Protein/ProSST-512) |
| ProSST-2048 | 2048 | 110M | 4GB+ | Mutation | [AI4Protein/ProSST-2048](https://huggingface.co/AI4Protein/ProSST-2048) |
| ProSST-4096 | 4096 | 110M | 4GB+ | Mutation | [AI4Protein/ProSST-4096](https://huggingface.co/AI4Protein/ProSST-4096) |
| ProPrime-690M | 690M | 690M | 16GB+ | OGT-prediction | [AI4Protein/Prime_690M](https://huggingface.co/AI4Protein/Prime_690M) |
| VenusPLM-300M | 300M | 300M | 12GB+ | Protein-language | [AI4Protein/VenusPLM-300M](https://huggingface.co/AI4Protein/VenusPLM-300M) |

> 💡 These models often excel in specific tasks or offer unique architectural benefits
</details>

<details>
<summary>Venus-PETA Models: Tokenization variants</summary>

#### BPE Tokenization Series
| Model | Vocab Size | Parameters | GPU Memory | Template |
|-------|------------|------------|------------|----------|
| PETA-base | base | 80M | 4GB+ | [AI4Protein/deep_base](https://huggingface.co/AI4Protein/deep_base) |
| PETA-bpe-50 | 50 | 80M | 4GB+ | [AI4Protein/deep_bpe_50](https://huggingface.co/AI4Protein/deep_bpe_50) |
| PETA-bpe-200 | 200 | 80M | 4GB+ | [AI4Protein/deep_bpe_200](https://huggingface.co/AI4Protein/deep_bpe_200) |
| PETA-bpe-400 | 400 | 80M | 4GB+ | [AI4Protein/deep_bpe_400](https://huggingface.co/AI4Protein/deep_bpe_400) |
| PETA-bpe-800 | 800 | 80M | 4GB+ | [AI4Protein/deep_bpe_800](https://huggingface.co/AI4Protein/deep_bpe_800) |
| PETA-bpe-1600 | 1600 | 80M | 4GB+ | [AI4Protein/deep_bpe_1600](https://huggingface.co/AI4Protein/deep_bpe_1600) |
| PETA-bpe-3200 | 3200 | 80M | 4GB+ | [AI4Protein/deep_bpe_3200](https://huggingface.co/AI4Protein/deep_bpe_3200) |

#### Unigram Tokenization Series
| Model | Vocab Size | Parameters | GPU Memory | Template |
|-------|------------|------------|------------|----------|
| PETA-unigram-50 | 50 | 80M | 4GB+ | [AI4Protein/deep_unigram_50](https://huggingface.co/AI4Protein/deep_unigram_50) |
| PETA-unigram-100 | 100 | 80M | 4GB+ | [AI4Protein/deep_unigram_100](https://huggingface.co/AI4Protein/deep_unigram_100) |
| PETA-unigram-200 | 200 | 80M | 4GB+ | [AI4Protein/deep_unigram_200](https://huggingface.co/AI4Protein/deep_unigram_200) |
| PETA-unigram-400 | 400 | 80M | 4GB+ | [AI4Protein/deep_unigram_400](https://huggingface.co/AI4Protein/deep_unigram_400) |
| PETA-unigram-800 | 800 | 80M | 4GB+ | [AI4Protein/deep_unigram_800](https://huggingface.co/AI4Protein/deep_unigram_800) |
| PETA-unigram-1600 | 1600 | 80M | 4GB+ | [AI4Protein/deep_unigram_1600](https://huggingface.co/AI4Protein/deep_unigram_1600) |
| PETA-unigram-3200 | 3200 | 80M | 4GB+ | [AI4Protein/deep_unigram_3200](https://huggingface.co/AI4Protein/deep_unigram_3200) |

> 💡 Different tokenization strategies may be better suited for specific tasks
</details>

<details>
<summary>ESM Series Models: Meta AI's protein language models</summary>

| Model | Size | Parameters | GPU Memory | Training Data | Template |
|-------|------|------------|------------|---------------|----------|
| ESM2-8M | 8M | 8M | 2GB+ | UR50/D | [facebook/esm2_t6_8M_UR50D](https://huggingface.co/facebook/esm2_t6_8M_UR50D) |
| ESM2-35M | 35M | 35M | 4GB+ | UR50/D | [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) |
| ESM2-150M | 150M | 150M | 8GB+ | UR50/D | [facebook/esm2_t30_150M_UR50D](https://huggingface.co/facebook/esm2_t30_150M_UR50D) |
| ESM2-650M | 650M | 650M | 16GB+ | UR50/D | [facebook/esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D) |
| ESM2-3B | 3B | 3B | 24GB+ | UR50/D | [facebook/esm2_t36_3B_UR50D](https://huggingface.co/facebook/esm2_t36_3B_UR50D) |
| ESM2-15B | 15B | 15B | 40GB+ | UR50/D | [facebook/esm2_t48_15B_UR50D](https://huggingface.co/facebook/esm2_t48_15B_UR50D) |
| ESM-1b | 650M | 650M | 16GB+ | UR50/S | [facebook/esm1b_t33_650M_UR50S](https://huggingface.co/facebook/esm1b_t33_650M_UR50S) |
| ESM-1v-1 | 650M | 650M | 16GB+ | UR90/S | [facebook/esm1v_t33_650M_UR90S_1](https://huggingface.co/facebook/esm1v_t33_650M_UR90S_1) |
| ESM-1v-2 | 650M | 650M | 16GB+ | UR90/S | [facebook/esm1v_t33_650M_UR90S_2](https://huggingface.co/facebook/esm1v_t33_650M_UR90S_2) |
| ESM-1v-3 | 650M | 650M | 16GB+ | UR90/S | [facebook/esm1v_t33_650M_UR90S_3](https://huggingface.co/facebook/esm1v_t33_650M_UR90S_3) |
| ESM-1v-4 | 650M | 650M | 16GB+ | UR90/S | [facebook/esm1v_t33_650M_UR90S_4](https://huggingface.co/facebook/esm1v_t33_650M_UR90S_4) |
| ESM-1v-5 | 650M | 650M | 16GB+ | UR90/S | [facebook/esm1v_t33_650M_UR90S_5](https://huggingface.co/facebook/esm1v_t33_650M_UR90S_5) |

> 💡 ESM2 models are the latest generation, offering better performance than ESM-1b/1v
</details>

<details>
<summary>BERT-based Models: Transformer encoder architecture</summary>

| Model | Size | Parameters | GPU Memory | Training Data | Template |
|-------|------|------------|------------|---------------|----------|
| ProtBert-Uniref100 | 420M | 420M | 12GB+ | UniRef100 | [Rostlab/prot_bert](https://huggingface.co/Rostlab/prot_bert) |
| ProtBert-BFD | 420M | 420M | 12GB+ | BFD100 | [Rostlab/prot_bert_bfd](https://huggingface.co/Rostlab/prot_bert_bfd) |
| IgBert | 420M | 420M | 12GB+ | Antibody | [Exscientia/IgBert](https://huggingface.co/Exscientia/IgBert) |
| IgBert-unpaired | 420M | 420M | 12GB+ | Antibody | [Exscientia/IgBert_unpaired](https://huggingface.co/Exscientia/IgBert_unpaired) |

> 💡 BFD-trained models generally show better performance on structure-related tasks
</details>

<details>
<summary>T5-based Models: Encoder-decoder architecture</summary>

| Model | Size | Parameters | GPU Memory | Training Data | Template |
|-------|------|------------|------------|---------------|----------|
| ProtT5-XL-UniRef50 | 3B | 3B | 24GB+ | UniRef50 | [Rostlab/prot_t5_xl_uniref50](https://huggingface.co/Rostlab/prot_t5_xl_uniref50) |
| ProtT5-XXL-UniRef50 | 11B | 11B | 40GB+ | UniRef50 | [Rostlab/prot_t5_xxl_uniref50](https://huggingface.co/Rostlab/prot_t5_xxl_uniref50) |
| ProtT5-XL-BFD | 3B | 3B | 24GB+ | BFD100 | [Rostlab/prot_t5_xl_bfd](https://huggingface.co/Rostlab/prot_t5_xl_bfd) |
| ProtT5-XXL-BFD | 11B | 11B | 40GB+ | BFD100 | [Rostlab/prot_t5_xxl_bfd](https://huggingface.co/Rostlab/prot_t5_xxl_bfd) |
| IgT5 | 3B | 3B | 24GB+ | Antibody | [Exscientia/IgT5](https://huggingface.co/Exscientia/IgT5) |
| IgT5-unpaired | 3B | 3B | 24GB+ | Antibody | [Exscientia/IgT5_unpaired](https://huggingface.co/Exscientia/IgT5_unpaired) |
| Ankh-base | 450M | 450M | 12GB+ | Encoder-decoder | [ElnaggarLab/ankh-base](https://huggingface.co/ElnaggarLab/ankh-base) |
| Ankh-large | 1.2B | 1.2B | 20GB+ | Encoder-decoder | [ElnaggarLab/ankh-large](https://huggingface.co/ElnaggarLab/ankh-large) |

> 💡 T5 models can be used for both encoding and generation tasks
</details>

### Model Selection Guide

<details>
<summary>How to choose the right model?</summary>

1. **Based on Hardware Constraints:**
   - Limited GPU (<8GB): ESM2-8M, ESM2-35M, ProSST
   - Medium GPU (8-16GB): ESM2-150M, ESM2-650M, ProtBert series
   - High-end GPU (24GB+): ESM2-3B, ProtT5-XL, Ankh-large
   - Multiple GPUs: ESM2-15B, ProtT5-XXL

2. **Based on Task Type:**
   - Sequence classification: ESM2, ProtBert
   - Structure prediction: ESM2, Ankh
   - Generation tasks: ProtT5
   - Antibody design: IgBert, IgT5
   - Lightweight deployment: ProSST, PETA-base

3. **Based on Training Data:**
   - General protein tasks: ESM2, ProtBert
   - Structure-aware tasks: Ankh
   - Antibody-specific: IgBert, IgT5
   - Custom tokenization needs: PETA series

</details>

> 🔍 All models are available through the Hugging Face Hub and can be easily loaded using their templates.

## 🔬 Supported Training Approaches

<details>
<summary>Supported Training Approaches</summary>

| Approach               | Full-tuning | Freeze-tuning      | SES-Adapter        | AdaLoRA            | QLoRA      | LoRA               | DoRA            | IA3              | 
| ---------------------- | ----------- | ------------------ | ------------------ | ------------------ |----------- | ------------------ | -----------------| -----------------|
| Supervised Fine-Tuning | ✅          | ✅                | ✅                 | ✅                |✅          | ✅                | ✅               | ✅              |

</details>

## 📚 Supported Datasets

<details><summary>Pre-training datasets</summary>

| dataset | data level | link |
|------------|------|------|
| CATH_V43_S40 | structures | [CATH_V43_S40](https://huggingface.co/datasets/tyang816/cath) |
| AGO_family | structures | [AGO_family](https://huggingface.co/datasets/tyang816/Ago_database_PDB) |



</details>



<details><summary>Zero-shot datasets</summary>



| dataset | task | link |

|------------|------|------|

| VenusMutHub | mutation effects prediction | [VenusMutHub](https://huggingface.co/datasets/AI4Protein/VenusMutHub) |

| ProteinGym | mutation effects prediction | [ProteinGym](https://proteingym.org/) |



</details>



<details><summary>Supervised fine-tuning datasets (amino acid sequences/ foldseek sequences/ ss8 sequences)</summary>



| dataset | task | data level | problem type | link |

|------------|------|----------|----------|------|

| DeepLocBinary | localization | protein-wise | single_label_classification | [DeepLocBinary_AlphaFold2](https://huggingface.co/datasets/tyang816/DeepLocBinary_AlphaFold2), [DeepLocBinary_ESMFold](https://huggingface.co/datasets/tyang816/DeepLocBinary_ESMFold) |

| DeepLocMulti | localization | protein-wise | multi_label_classification | [DeepLocMulti_AlphaFold2](https://huggingface.co/datasets/tyang816/DeepLocMulti_AlphaFold2), [DeepLocMulti_ESMFold](https://huggingface.co/datasets/tyang816/DeepLocMulti_ESMFold) |

| DeepLoc2Multi | localization | protein-wise | single_label_classification | [DeepLoc2Multi_AlphaFold2](https://huggingface.co/datasets/tyang816/DeepLoc2Multi_AlphaFold2), [DeepLoc2Multi_ESMFold](https://huggingface.co/datasets/tyang816/DeepLoc2Multi_ESMFold) |

| DeepSol | solubility | protein-wise | single_label_classification | [DeepSol_ESMFold](https://huggingface.co/datasets/tyang816/DeepSol_ESMFold) |

| DeepSoluE | solubility | protein-wise | single_label_classification | [DeepSoluE_ESMFold](https://huggingface.co/datasets/tyang816/DeepSoluE_ESMFold) |

| ProtSolM | solubility | protein-wise | single_label_classification | [ProtSolM_ESMFold](https://huggingface.co/datasets/tyang816/ProtSolM_ESMFold) |

| eSOL | solubility | protein-wise | regression | [eSOL_AlphaFold2](https://huggingface.co/datasets/tyang816/eSOL_AlphaFold2), [eSOL_ESMFold](https://huggingface.co/datasets/tyang816/eSOL_ESMFold) |

| DeepET_Topt | optimum temperature | protein-wise | regression | [DeepET_Topt_AlphaFold2](https://huggingface.co/datasets/tyang816/DeepET_Topt_AlphaFold2), [DeepET_Topt_ESMFold](https://huggingface.co/datasets/tyang816/DeepET_Topt_ESMFold) |
| EC | function | protein-wise | multi_label_classification | [EC_AlphaFold2](https://huggingface.co/datasets/tyang816/EC_AlphaFold2), [EC_ESMFold](https://huggingface.co/datasets/tyang816/EC_ESMFold) |
| GO_BP | function | protein-wise | multi_label_classification | [GO_BP_AlphaFold2](https://huggingface.co/datasets/tyang816/GO_BP_AlphaFold2), [GO_BP_ESMFold](https://huggingface.co/datasets/tyang816/GO_BP_ESMFold) |

| GO_CC | function | protein-wise | multi_label_classification | [GO_CC_AlphaFold2](https://huggingface.co/datasets/tyang816/GO_CC_AlphaFold2), [GO_CC_ESMFold](https://huggingface.co/datasets/tyang816/GO_CC_ESMFold) |
| GO_MF | function | protein-wise | multi_label_classification | [GO_MF_AlphaFold2](https://huggingface.co/datasets/tyang816/GO_MF_AlphaFold2), [GO_MF_ESMFold](https://huggingface.co/datasets/tyang816/GO_MF_ESMFold) |

| MetalIonBinding | binding | protein-wise | single_label_classification | [MetalIonBinding_AlphaFold2](https://huggingface.co/datasets/tyang816/MetalIonBinding_AlphaFold2), [MetalIonBinding_ESMFold](https://huggingface.co/datasets/tyang816/MetalIonBinding_ESMFold) |

| Thermostability | stability | protein-wise | regression | [Thermostability_AlphaFold2](https://huggingface.co/datasets/tyang816/Thermostability_AlphaFold2), [Thermostability_ESMFold](https://huggingface.co/datasets/tyang816/Thermostability_ESMFold) |



> ✨ Only structural sequences are different for the same dataset, for example, ``DeepLocBinary_ESMFold`` and ``DeepLocBinary_AlphaFold2`` share the same amino acid sequences, this means if you only want to use the ``aa_seqs``, both are ok! 

</details>

<details><summary>Supervised fine-tuning datasets (amino acid sequences)</summary>

| dataset | task | data level | problem type | link |
|------------|------|----------|----------|------|
| Demo_Solubility | solubility | protein-wise | single_label_classification | [Demo_Solubility](https://huggingface.co/datasets/tyang816/Demo_Solubility) |

| DeepLocBinary | localization | protein-wise | single_label_classification | [DeepLocBinary](https://huggingface.co/datasets/tyang816/DeepLocBinary) |

| DeepLocMulti | localization | protein-wise | multi_label_classification | [DeepLocMulti](https://huggingface.co/datasets/tyang816/DeepLocMulti) |

| DeepLoc2Multi | localization | protein-wise | single_label_classification | [DeepLoc2Multi](https://huggingface.co/datasets/tyang816/DeepLoc2Multi) |

| DeepSol | solubility | protein-wise | single_label_classification | [DeepSol](https://huggingface.co/datasets/tyang816/DeepSol) |

| DeepSoluE | solubility | protein-wise | single_label_classification | [DeepSoluE](https://huggingface.co/datasets/tyang816/DeepSoluE) |

| ProtSolM | solubility | protein-wise | single_label_classification | [ProtSolM](https://huggingface.co/datasets/tyang816/ProtSolM) |

| eSOL | solubility | protein-wise | regression | [eSOL](https://huggingface.co/datasets/tyang816/eSOL) |

| DeepET_Topt | optimum temperature | protein-wise | regression | [DeepET_Topt](https://huggingface.co/datasets/tyang816/DeepET_Topt) |
| EC | function | protein-wise | multi_label_classification | [EC](https://huggingface.co/datasets/tyang816/EC) |
| GO_BP | function | protein-wise | multi_label_classification | [GO_BP](https://huggingface.co/datasets/tyang816/GO_BP) |

| GO_CC | function | protein-wise | multi_label_classification | [GO_CC](https://huggingface.co/datasets/tyang816/GO_CC) |
| GO_MF | function | protein-wise | multi_label_classification | [GO_MF](https://huggingface.co/datasets/tyang816/GO_MF) |

| MetalIonBinding | binding | protein-wise | single_label_classification | [MetalIonBinding](https://huggingface.co/datasets/tyang816/MetalIonBinding) |

| Thermostability | stability | protein-wise | regression | [Thermostability](https://huggingface.co/datasets/tyang816/Thermostability) |

| PaCRISPR | CRISPR | protein-wise | single_label_classification | [PaCRISPR](https://huggingface.co/datasets/tyang816/PaCRISPR) |

| PETA_CHS_Sol | solubility | protein-wise | single_label_classification | [PETA_CHS_Sol](https://huggingface.co/datasets/tyang816/PETA_CHS_Sol) |

| PETA_LGK_Sol | solubility | protein-wise | single_label_classification | [PETA_LGK_Sol](https://huggingface.co/datasets/tyang816/PETA_LGK_Sol) |

| PETA_TEM_Sol | solubility | protein-wise | single_label_classification | [PETA_TEM_Sol](https://huggingface.co/datasets/tyang816/PETA_TEM_Sol) |

| SortingSignal | sorting signal | protein-wise | single_label_classification | [SortingSignal](https://huggingface.co/datasets/tyang816/SortingSignal) |

| FLIP_AAV | mutation | protein-site | regression |
| FLIP_AAV_one-vs-rest | mutation | protein-site | single_label_classification | [FLIP_AAV_one-vs-rest](https://huggingface.co/datasets/tyang816/FLIP_AAV_one-vs-rest) |
| FLIP_AAV_two-vs-rest | mutation | protein-site | single_label_classification | [FLIP_AAV_two-vs-rest](https://huggingface.co/datasets/tyang816/FLIP_AAV_two-vs-rest) |
| FLIP_AAV_mut-des | mutation | protein-site | single_label_classification | [FLIP_AAV_mut-des](https://huggingface.co/datasets/tyang816/FLIP_AAV_mut-des) |
| FLIP_AAV_des-mut | mutation | protein-site | single_label_classification | [FLIP_AAV_des-mut](https://huggingface.co/datasets/tyang816/FLIP_AAV_des-mut) |
| FLIP_AAV_seven-vs-rest | mutation | protein-site | single_label_classification | [FLIP_AAV_seven-vs-rest](https://huggingface.co/datasets/tyang816/FLIP_AAV_seven-vs-rest) |
| FLIP_AAV_low-vs-high | mutation | protein-site | single_label_classification | [FLIP_AAV_low-vs-high](https://huggingface.co/datasets/tyang816/FLIP_AAV_low-vs-high) |
| FLIP_AAV_sampled | mutation | protein-site | single_label_classification | [FLIP_AAV_sampled](https://huggingface.co/datasets/tyang816/FLIP_AAV_sampled) |
| FLIP_GB1 | mutation | protein-site | regression |

| FLIP_GB1_one-vs-rest | mutation | protein-site | single_label_classification | [FLIP_GB1_one-vs-rest](https://huggingface.co/datasets/tyang816/FLIP_GB1_one-vs-rest) |

| FLIP_GB1_two-vs-rest | mutation | protein-site | single_label_classification | [FLIP_GB1_two-vs-rest](https://huggingface.co/datasets/tyang816/FLIP_GB1_two-vs-rest) |

| FLIP_GB1_three-vs-rest | mutation | protein-site | single_label_classification | [FLIP_GB1_three-vs-rest](https://huggingface.co/datasets/tyang816/FLIP_GB1_three-vs-rest) |

| FLIP_GB1_low-vs-high | mutation | protein-site | single_label_classification | [FLIP_GB1_low-vs-high](https://huggingface.co/datasets/tyang816/FLIP_GB1_low-vs-high) |

| FLIP_GB1_sampled | mutation | protein-site | single_label_classification | [FLIP_GB1_sampled](https://huggingface.co/datasets/tyang816/FLIP_GB1_sampled) |

| TAPE_Fluorescence | fluorescence | protein-site | regression | [TAPE_Fluorescence](https://huggingface.co/datasets/tyang816/TAPE_Fluorescence) |
| TAPE_Stability | stability | protein-site | regression | [TAPE_Stability](https://huggingface.co/datasets/tyang816/TAPE_Stability) |



</details>



## 📈 Supported Metrics



<details>

<summary>Supported Metrics</summary>



| Name          | Torchmetrics     | Problem Type                                            |

| ------------- | ---------------- | ------------------------------------------------------- |

| accuracy      | Accuracy         | single_label_classification/ multi_label_classification |

| recall        | Recall           | single_label_classification/ multi_label_classification |

| precision     | Precision        | single_label_classification/ multi_label_classification |

| f1            | F1Score          | single_label_classification/ multi_label_classification |

| mcc           | MatthewsCorrCoef | single_label_classification/ multi_label_classification |

| auc           | AUROC            | single_label_classification/ multi_label_classification |

| f1_max        | F1ScoreMax       | multi_label_classification                              |
| spearman_corr | SpearmanCorrCoef | regression                                              |

| mse           | MeanSquaredError | regression                                              |



</details>



## ✈️ Requirements



### Hardware Requirements

- Recommended: NVIDIA RTX 3090 (24GB) or better

- Actual requirements depend on your chosen protein language model



### Software Requirements

- [Anaconda3](https://www.anaconda.com/download) or [Miniconda3](https://docs.conda.io/projects/miniconda/en/latest/)

- Python 3.10



## 📦 Installation Guide

<details><summary> Git start with macOS</summary>



## To achieve the best performance and experience, we recommend using ​Mac devices with M-series chips (such as M1, M2, M3, etc.).



## 1️⃣ Clone the repository



First, get the VenusFactory code:



```bash

git clone https://github.com/tyang816/VenusFactory.git

cd VenusFactory

```



## 2️⃣ Create a Conda environment



Ensure you have Anaconda or Miniconda installed. Then, create a new environment named `venus` with Python 3.10:



```bash

conda create -n venus python=3.10

conda activate venus

```



## 3️⃣ Install Pytorch and PyG dependencies



```bash

# Install PyTorch

pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu



# Install PyG dependencies

pip install torch_scatter torch-sparse torch-geometric -f https://data.pyg.org/whl/torch-2.2.0+cpu.html
```



## 4️⃣ Install remaining dependencies



Install the remaining dependencies using `requirements_for_macOS.txt`:

```bash

pip install -r requirements_for_macOS.txt

```
</details>

<details><summary> Git start with Windows or Linux on CUDA 12.x</summary>

## We recommend using CUDA 12.2


## 1️⃣ Clone the repository

First, get the VenusFactory code:

```bash

git clone https://github.com/tyang816/VenusFactory.git

cd VenusFactory

```

## 2️⃣ Create a Conda environment

Ensure you have Anaconda or Miniconda installed. Then, create a new environment named `venus` with Python 3.10:

```bash

conda create -n venus python=3.10

conda activate venus

```

## 3️⃣ Install Pytorch and PyG dependencies

```bash

# Install PyTorch

pip install torch==2.5.1 torchvision==0.20.1 --index-url https://download.pytorch.org/whl/cu121



# Install PyG dependencies

pip install torch_geometric==2.6.1 -f https://pytorch-geometric.com/whl/torch-2.5.1+cu121.html

pip install --no-index torch_scatter==2.1.2 -f https://pytorch-geometric.com/whl/torch-2.5.1+cu121.html

```

## 4️⃣ Install remaining dependencies

Install the remaining dependencies using `requirements.txt`:
```bash

pip install -r requirements.txt

```
</details>

<details><summary> Git start with Windows or Linux on CUDA 11.x</summary>

## We recommend using CUDA 11.8 or later versions, as they support higher versions of PyTorch, providing a better experience.


## 1️⃣ Clone the repository

First, get the VenusFactory code:

```bash

git clone https://github.com/tyang816/VenusFactory.git

cd VenusFactory

```

## 2️⃣ Create a Conda environment

Ensure you have Anaconda or Miniconda installed. Then, create a new environment named `venus` with Python 3.10:

```bash

conda create -n venus python=3.10

conda activate venus

```

## 3️⃣ Install Pytorch and PyG dependencies

```bash

# Install PyTorch

pip install torch==2.5.1 torchvision==0.20.1 --index-url https://download.pytorch.org/whl/cu118



# Install PyG dependencies

pip install torch_geometric==2.6.1 -f https://pytorch-geometric.com/whl/torch-2.5.1+cu118.html

pip install --no-index torch_scatter==2.1.2 -f https://pytorch-geometric.com/whl/torch-2.5.1+cu118.html

```

## 4️⃣ Install remaining dependencies

Install the remaining dependencies using `requirements.txt`:
```bash

pip install -r requirements.txt

```
</details>

<details><summary> Git start with Windows or Linux on CPU</summary>

## 1️⃣ Clone the repository

First, get the VenusFactory code:

```bash

git clone https://github.com/tyang816/VenusFactory.git

cd VenusFactory

```

## 2️⃣ Create a Conda environment

Ensure you have Anaconda or Miniconda installed. Then, create a new environment named `venus` with Python 3.10:

```bash

conda create -n venus python=3.10

conda activate venus

```

## 3️⃣ Install Pytorch and PyG dependencies

```bash

# Install PyTorch

pip install torch==2.5.1 torchvision==0.20.1 --index-url https://download.pytorch.org/whl/cpu



# Install PyG dependencies

pip install torch_geometric==2.6.1 -f https://pytorch-geometric.com/whl/torch-2.5.1+cpu.html

pip install --no-index torch_scatter==2.1.2 -f https://pytorch-geometric.com/whl/torch-2.5.1+cpu.html

```

## 4️⃣ Install remaining dependencies

Install the remaining dependencies using `requirements.txt`:
```bash

pip install -r requirements.txt

```
</details>

## 🚀 Quick Start with Venus Web UI

### Start Venus Web UI

Get started quickly with our intuitive graphical interface powered by [Gradio](https://github.com/gradio-app/gradio):

```bash

python ./src/webui.py

```

This will launch the Venus Web UI where you can:
- Configure and run fine-tuning experiments
- Monitor training progress
- Evaluate models
- Visualize results

### Using Each Tab

We provide a detailed guide to help you navigate through each tab of the Venus Web UI.

<details>
<summary>1. Training Tab: Train your own protein language model</summary>

![Model_Dataset_Config](img/Train/Model_Dataset_Config.png)

Select a protein language model from the dropdown menu. Upload your dataset or select from available datasets and choose metrics appropriate for your problem type.

![Training_Parameters](img/Train/Training_Parameters.png)
Choose a training method (Freeze, SES-Adapter, LoRA, QLoRA etc.) and configure training parameters (batch size, learning rate, etc.).

![Preview_Command](img/Train/Preview_Command.png)
![Training_Progress](img/Train/Training_Progress.png)
![Best_Model](img/Train/Best_Model.png)
![Monitor_Figs](img/Train/Monitor_Figs.png)
Click "Start Training" and monitor progress in real-time.

<p align="center">
  <img src="img/Train/Metric_Results.png" width="60%" alt="Metric_Results">
</p>

Click "Download CSV" to download the test metrics results.
</details>

<details>
<summary>2. Evaluation Tab: Evaluate your trained model within a benchmark</summary>

![Model_Dataset_Config](img/Eval/Model_Dataset_Config.png)

Load your trained model by specifying the model path. Select the same protein language model and model configs used during training. Select a test dataset and configure batch size. Choose evaluation metrics appropriate for your problem type. Finally, click "Start Evaluation" to view performance metrics.
</details>

<details>
<summary>3. Prediction Tab: Use your trained model to predict samples</summary>

![Predict_Tab](img/Predict/Predict_Tab.png)

Load your trained model by specifying the model path. Select the same protein language model and model configs used during training.

For single sequence: Enter a protein sequence in the text box.

For batch prediction: Upload a CSV file with sequences.

![Batch](img/Predict/Batch.png)

Click "Predict" to generate and view results.
</details>

<details>
<summary>4. Download Tab: Collect data from different sources with high efficiency</summary>

- **AlphaFold2 Structures**: Enter UniProt IDs to download protein structures
- **UniProt**: Search for protein information using keywords or IDs
- **InterPro**: Retrieve protein family and domain information
- **RCSB PDB**: Download experimental protein structures
</details>

<details>
<summary>5. Manual Tab: Detailed documentation and guides</summary>

Select a language (English/Chinese).

Navigate through the documentation using the table of contents and find step-by-step guides.
</details>

## 🧬 Code-line Usage

For users who prefer command-line interface, we provide comprehensive script solutions for different scenarios.

<details>
<summary>Training Methods: Various fine-tuning approaches for different needs</summary>

### Full Model Fine-tuning
```bash

# Freeze-tuning: Train only specific layers while freezing others

bash ./script/train/train_plm_vanilla.sh

```

### Parameter-Efficient Fine-tuning (PEFT)
```bash

# SES-Adapter: Selective and Efficient adapter fine-tuning

bash ./script/train/train_plm_ses-adapter.sh



# AdaLoRA: Adaptive Low-Rank Adaptation

bash ./script/train/train_plm_adalora.sh



# QLoRA: Quantized Low-Rank Adaptation

bash ./script/train/train_plm_qlora.sh



# LoRA: Low-Rank Adaptation

bash ./script/train/train_plm_lora.sh



# DoRA: Double Low-Rank Adaptation

bash ./script/train/train_plm_dora.sh



# IA3: Infused Adapter by Inhibiting and Amplifying Inner Activations

bash ./script/train/train_plm_ia3.sh

```

#### Training Method Comparison
| Method | Memory Usage | Training Speed | Performance |
|--------|--------------|----------------|-------------|
| Freeze | Low | Fast | Good |
| SES-Adapter | Medium | Medium | Better |
| AdaLoRA | Low | Medium | Better |
| QLoRA | Very Low | Slower | Good |
| LoRA | Low | Fast | Good |
| DoRA | Low | Medium | Better |
| IA3 | Very Low | Fast | Good |

</details>

<details>
<summary>Model Evaluation: Comprehensive evaluation tools</summary>

### Basic Evaluation
```bash

# Evaluate model performance on test sets

bash ./script/eval/eval.sh

```

### Available Metrics
- Classification: accuracy, precision, recall, F1, MCC, AUC
- Regression: MSE, Spearman correlation
- Multi-label: F1-max

### Visualization Tools
- Training curves
- Confusion matrices
- ROC curves
- Performance comparison plots

</details>

<details>
<summary>Structure Sequence Tools: Process protein structure information</summary>

### ESM Structure Sequence
```bash

# Generate structure sequences using ESM-3

bash ./script/get_get_structure_seq/get_esm3_structure_seq.sh

```

### Secondary Structure
```bash

# Predict protein secondary structure

bash ./script/get_get_structure_seq/get_secondary_structure_seq.sh

```

Features:
- Support for multiple sequence formats
- Batch processing capability
- Integration with popular structure prediction tools

</details>

<details>
<summary>Data Collection Tools: Multi-source protein data acquisition</summary>

### Format Conversion
```bash

# Convert CIF format to PDB

bash ./crawler/convert/maxit.sh

```

### Metadata Collection
```bash

# Download metadata from RCSB PDB

bash ./crawler/metadata/download_rcsb.sh

```

### Sequence Data
```bash

# Download protein sequences from UniProt

bash ./crawler/sequence/download_uniprot_seq.sh

```

### Structure Data
```bash

# Download from AlphaFold2 Database

bash ./crawler/structure/download_alphafold.sh



# Download from RCSB PDB

bash ./crawler/structure/download_rcsb.sh

```

Features:
- Automated batch downloading
- Resume interrupted downloads
- Data integrity verification
- Multiple source support
- Customizable search criteria

#### Supported Databases
| Database | Data Type | Access Method | Rate Limit |
|----------|-----------|---------------|------------|
| AlphaFold2 | Structures | REST API | Yes |
| RCSB PDB | Structures | FTP/HTTP | No |
| UniProt | Sequences | REST API | Yes |
| InterPro | Domains | REST API | Yes |

</details>

<details>
<summary>Usage Examples: Common scenarios and solutions</summary>

### Training Example
```bash

# Train a protein solubility predictor using ESM2

bash ./script/train/train_plm_lora.sh \

    --model "facebook/esm2_t33_650M_UR50D" \

    --dataset "DeepSol" \

    --batch_size 32 \

    --learning_rate 1e-4

```

### Evaluation Example
```bash

# Evaluate the trained model

bash ./script/eval/eval.sh \

    --model_path "path/to/your/model" \

    --test_dataset "DeepSol_test"

```

### Data Collection Example
```bash

# Download structures for a list of UniProt IDs

bash ./crawler/structure/download_alphafold.sh \

    --input uniprot_ids.txt \

    --output ./structures

```

</details>

> 💡 All scripts support additional command-line arguments for customization. Use `--help` with any script to see available options.

## 🙌 Citation

Please cite our work if you have used our code or data.

```bibtex

@article{tan2025venusfactory,

  title={VenusFactory: A Unified Platform for Protein Engineering Data Retrieval and Language Model Fine-Tuning},

  author={Tan, Yang and Liu, Chen and Gao, Jingyuan and Wu, Banghao and Li, Mingchen and Wang, Ruilin and Zhang, Lingrong and Yu, Huiqun and Fan, Guisheng and Hong, Liang and Zhou, Bingxin},

  journal={arXiv preprint arXiv:2503.15438},

  year={2025}

}

```

## 🎊 Acknowledgement

Thanks the support of [Liang's Lab](https://ins.sjtu.edu.cn/people/lhong/index.html).