Spaces:
Runtime error
Runtime error
File size: 36,242 Bytes
8918ac7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
---
title: VenusFactory
app_file: app.py
sdk: gradio
sdk_version: 5.24.0
---
<div align="right">
<a href="README.md">English</a> | <a href="README_CN.md">简体中文</a>
</div>
<p align="center">
<img src="img/banner_2503.png" width="70%" alt="VenusFactory Banner">
</p>
<div align="center">
[](https://github.com/tyang816/VenusFactory/stargazers) [](https://github.com/tyang816/VenusFactory/network/members) [](https://github.com/tyang816/VenusFactory/issues) [](https://github.com/tyang816/VenusFactory/blob/main/LICENSE)
[](https://www.python.org/) [](https://venusfactory.readthedocs.io/) [](https://github.com/tyang816/VenusFactory/releases)
</div>
Recent News:
- Welcome to VenusFactory! This project is developed by [**Liang's Lab**](https://lianglab.sjtu.edu.cn/) at [**Shanghai Jiao Tong University**](https://www.sjtu.edu.cn/).
- [2025-03-26] Add [VenusPLM-300M](https://huggingface.co/AI4Protein/VenusPLM-300M) model, trained based on **VenusPod**, is a protein language model independently developed by Hong Liang's research group at Shanghai Jiao Tong University.
- [2025-03-17] Add [Venus-PETA, Venus-ProPrime, Venus-ProSST models](https://huggingface.co/AI4Protein), for more details, please refer to [Supported Models](#-supported-models)
- [2025-03-05] 🎉 Congratulations! 🎉
🚀 Our latest research achievement, **VenusMutHub**, has been officially accepted by [**Acta Pharmaceutica Sinica B**](https://www.sciencedirect.com/science/article/pii/S2211383525001650) and is now featured in a series of [**leaderboards**](https://lianglab.sjtu.edu.cn/muthub/)!
💡 In this study, we built **900+ high-quality benchmark** [**datasets**](https://huggingface.co/datasets/AI4Protein/VenusMutHub) covering **500+ protein functional properties**. VenusMutHub not only offers a new collection of small-sample datasets for **real-world protein mutation engineering**, but also fills the gap in **diversity** within existing benchmarks, laying a stronger foundation for AI-driven protein mutation effect prediction.
## ✏️ Table of Contents
- [Features](#-features)
- [Supported Models](#-supported-models)
- [Supported Training Approaches](#-supported-training-approaches)
- [Supported Datasets](#-supported-datasets)
- [Supported Metrics](#-supported-metrics)
- [Requirements](#-requirements)
- [Installation Guide](#-installation-guide)
- [Quick Start with Venus Web UI](#-quick-start-with-venus-web-ui)
- [Code-line Usage](#-code-line-usage)
- [Citation](#-citation)
- [Acknowledgement](#-acknowledgement)
## 📑 Features
- **Vaious protein langugae models**: Venus series, ESM series, ProtTrans series, Ankh series, etc
- **Comprehensive supervised datasets**: Localization, Fitness, Solubility, Stability, etc
- **Easy and quick data collector**: AlphaFold2 Database, RCSB, InterPro, Uniprot, etc
- **Experiment moitors**: Wandb, Local
- **Friendly interface**: Gradio UI
## 🤖 Supported Models
### Pre-training Protein Language Models
<details>
<summary>Venus Series Models (Published by Liang's Lab)</summary>
| Model | Size | Parameters | GPU Memory | Features | Template |
|-------|------|------------|------------|----------|----------|
| ProSST-20 | 20 | 110M | 4GB+ | Mutation | [AI4Protein/ProSST-20](https://huggingface.co/AI4Protein/ProSST-20) |
| ProSST-128 | 128 | 110M | 4GB+ | Mutation | [AI4Protein/ProSST-128](https://huggingface.co/AI4Protein/ProSST-128) |
| ProSST-512 | 512 | 110M | 4GB+ | Mutation | [AI4Protein/ProSST-512](https://huggingface.co/AI4Protein/ProSST-512) |
| ProSST-2048 | 2048 | 110M | 4GB+ | Mutation | [AI4Protein/ProSST-2048](https://huggingface.co/AI4Protein/ProSST-2048) |
| ProSST-4096 | 4096 | 110M | 4GB+ | Mutation | [AI4Protein/ProSST-4096](https://huggingface.co/AI4Protein/ProSST-4096) |
| ProPrime-690M | 690M | 690M | 16GB+ | OGT-prediction | [AI4Protein/Prime_690M](https://huggingface.co/AI4Protein/Prime_690M) |
| VenusPLM-300M | 300M | 300M | 12GB+ | Protein-language | [AI4Protein/VenusPLM-300M](https://huggingface.co/AI4Protein/VenusPLM-300M) |
> 💡 These models often excel in specific tasks or offer unique architectural benefits
</details>
<details>
<summary>Venus-PETA Models: Tokenization variants</summary>
#### BPE Tokenization Series
| Model | Vocab Size | Parameters | GPU Memory | Template |
|-------|------------|------------|------------|----------|
| PETA-base | base | 80M | 4GB+ | [AI4Protein/deep_base](https://huggingface.co/AI4Protein/deep_base) |
| PETA-bpe-50 | 50 | 80M | 4GB+ | [AI4Protein/deep_bpe_50](https://huggingface.co/AI4Protein/deep_bpe_50) |
| PETA-bpe-200 | 200 | 80M | 4GB+ | [AI4Protein/deep_bpe_200](https://huggingface.co/AI4Protein/deep_bpe_200) |
| PETA-bpe-400 | 400 | 80M | 4GB+ | [AI4Protein/deep_bpe_400](https://huggingface.co/AI4Protein/deep_bpe_400) |
| PETA-bpe-800 | 800 | 80M | 4GB+ | [AI4Protein/deep_bpe_800](https://huggingface.co/AI4Protein/deep_bpe_800) |
| PETA-bpe-1600 | 1600 | 80M | 4GB+ | [AI4Protein/deep_bpe_1600](https://huggingface.co/AI4Protein/deep_bpe_1600) |
| PETA-bpe-3200 | 3200 | 80M | 4GB+ | [AI4Protein/deep_bpe_3200](https://huggingface.co/AI4Protein/deep_bpe_3200) |
#### Unigram Tokenization Series
| Model | Vocab Size | Parameters | GPU Memory | Template |
|-------|------------|------------|------------|----------|
| PETA-unigram-50 | 50 | 80M | 4GB+ | [AI4Protein/deep_unigram_50](https://huggingface.co/AI4Protein/deep_unigram_50) |
| PETA-unigram-100 | 100 | 80M | 4GB+ | [AI4Protein/deep_unigram_100](https://huggingface.co/AI4Protein/deep_unigram_100) |
| PETA-unigram-200 | 200 | 80M | 4GB+ | [AI4Protein/deep_unigram_200](https://huggingface.co/AI4Protein/deep_unigram_200) |
| PETA-unigram-400 | 400 | 80M | 4GB+ | [AI4Protein/deep_unigram_400](https://huggingface.co/AI4Protein/deep_unigram_400) |
| PETA-unigram-800 | 800 | 80M | 4GB+ | [AI4Protein/deep_unigram_800](https://huggingface.co/AI4Protein/deep_unigram_800) |
| PETA-unigram-1600 | 1600 | 80M | 4GB+ | [AI4Protein/deep_unigram_1600](https://huggingface.co/AI4Protein/deep_unigram_1600) |
| PETA-unigram-3200 | 3200 | 80M | 4GB+ | [AI4Protein/deep_unigram_3200](https://huggingface.co/AI4Protein/deep_unigram_3200) |
> 💡 Different tokenization strategies may be better suited for specific tasks
</details>
<details>
<summary>ESM Series Models: Meta AI's protein language models</summary>
| Model | Size | Parameters | GPU Memory | Training Data | Template |
|-------|------|------------|------------|---------------|----------|
| ESM2-8M | 8M | 8M | 2GB+ | UR50/D | [facebook/esm2_t6_8M_UR50D](https://huggingface.co/facebook/esm2_t6_8M_UR50D) |
| ESM2-35M | 35M | 35M | 4GB+ | UR50/D | [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) |
| ESM2-150M | 150M | 150M | 8GB+ | UR50/D | [facebook/esm2_t30_150M_UR50D](https://huggingface.co/facebook/esm2_t30_150M_UR50D) |
| ESM2-650M | 650M | 650M | 16GB+ | UR50/D | [facebook/esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D) |
| ESM2-3B | 3B | 3B | 24GB+ | UR50/D | [facebook/esm2_t36_3B_UR50D](https://huggingface.co/facebook/esm2_t36_3B_UR50D) |
| ESM2-15B | 15B | 15B | 40GB+ | UR50/D | [facebook/esm2_t48_15B_UR50D](https://huggingface.co/facebook/esm2_t48_15B_UR50D) |
| ESM-1b | 650M | 650M | 16GB+ | UR50/S | [facebook/esm1b_t33_650M_UR50S](https://huggingface.co/facebook/esm1b_t33_650M_UR50S) |
| ESM-1v-1 | 650M | 650M | 16GB+ | UR90/S | [facebook/esm1v_t33_650M_UR90S_1](https://huggingface.co/facebook/esm1v_t33_650M_UR90S_1) |
| ESM-1v-2 | 650M | 650M | 16GB+ | UR90/S | [facebook/esm1v_t33_650M_UR90S_2](https://huggingface.co/facebook/esm1v_t33_650M_UR90S_2) |
| ESM-1v-3 | 650M | 650M | 16GB+ | UR90/S | [facebook/esm1v_t33_650M_UR90S_3](https://huggingface.co/facebook/esm1v_t33_650M_UR90S_3) |
| ESM-1v-4 | 650M | 650M | 16GB+ | UR90/S | [facebook/esm1v_t33_650M_UR90S_4](https://huggingface.co/facebook/esm1v_t33_650M_UR90S_4) |
| ESM-1v-5 | 650M | 650M | 16GB+ | UR90/S | [facebook/esm1v_t33_650M_UR90S_5](https://huggingface.co/facebook/esm1v_t33_650M_UR90S_5) |
> 💡 ESM2 models are the latest generation, offering better performance than ESM-1b/1v
</details>
<details>
<summary>BERT-based Models: Transformer encoder architecture</summary>
| Model | Size | Parameters | GPU Memory | Training Data | Template |
|-------|------|------------|------------|---------------|----------|
| ProtBert-Uniref100 | 420M | 420M | 12GB+ | UniRef100 | [Rostlab/prot_bert](https://huggingface.co/Rostlab/prot_bert) |
| ProtBert-BFD | 420M | 420M | 12GB+ | BFD100 | [Rostlab/prot_bert_bfd](https://huggingface.co/Rostlab/prot_bert_bfd) |
| IgBert | 420M | 420M | 12GB+ | Antibody | [Exscientia/IgBert](https://huggingface.co/Exscientia/IgBert) |
| IgBert-unpaired | 420M | 420M | 12GB+ | Antibody | [Exscientia/IgBert_unpaired](https://huggingface.co/Exscientia/IgBert_unpaired) |
> 💡 BFD-trained models generally show better performance on structure-related tasks
</details>
<details>
<summary>T5-based Models: Encoder-decoder architecture</summary>
| Model | Size | Parameters | GPU Memory | Training Data | Template |
|-------|------|------------|------------|---------------|----------|
| ProtT5-XL-UniRef50 | 3B | 3B | 24GB+ | UniRef50 | [Rostlab/prot_t5_xl_uniref50](https://huggingface.co/Rostlab/prot_t5_xl_uniref50) |
| ProtT5-XXL-UniRef50 | 11B | 11B | 40GB+ | UniRef50 | [Rostlab/prot_t5_xxl_uniref50](https://huggingface.co/Rostlab/prot_t5_xxl_uniref50) |
| ProtT5-XL-BFD | 3B | 3B | 24GB+ | BFD100 | [Rostlab/prot_t5_xl_bfd](https://huggingface.co/Rostlab/prot_t5_xl_bfd) |
| ProtT5-XXL-BFD | 11B | 11B | 40GB+ | BFD100 | [Rostlab/prot_t5_xxl_bfd](https://huggingface.co/Rostlab/prot_t5_xxl_bfd) |
| IgT5 | 3B | 3B | 24GB+ | Antibody | [Exscientia/IgT5](https://huggingface.co/Exscientia/IgT5) |
| IgT5-unpaired | 3B | 3B | 24GB+ | Antibody | [Exscientia/IgT5_unpaired](https://huggingface.co/Exscientia/IgT5_unpaired) |
| Ankh-base | 450M | 450M | 12GB+ | Encoder-decoder | [ElnaggarLab/ankh-base](https://huggingface.co/ElnaggarLab/ankh-base) |
| Ankh-large | 1.2B | 1.2B | 20GB+ | Encoder-decoder | [ElnaggarLab/ankh-large](https://huggingface.co/ElnaggarLab/ankh-large) |
> 💡 T5 models can be used for both encoding and generation tasks
</details>
### Model Selection Guide
<details>
<summary>How to choose the right model?</summary>
1. **Based on Hardware Constraints:**
- Limited GPU (<8GB): ESM2-8M, ESM2-35M, ProSST
- Medium GPU (8-16GB): ESM2-150M, ESM2-650M, ProtBert series
- High-end GPU (24GB+): ESM2-3B, ProtT5-XL, Ankh-large
- Multiple GPUs: ESM2-15B, ProtT5-XXL
2. **Based on Task Type:**
- Sequence classification: ESM2, ProtBert
- Structure prediction: ESM2, Ankh
- Generation tasks: ProtT5
- Antibody design: IgBert, IgT5
- Lightweight deployment: ProSST, PETA-base
3. **Based on Training Data:**
- General protein tasks: ESM2, ProtBert
- Structure-aware tasks: Ankh
- Antibody-specific: IgBert, IgT5
- Custom tokenization needs: PETA series
</details>
> 🔍 All models are available through the Hugging Face Hub and can be easily loaded using their templates.
## 🔬 Supported Training Approaches
<details>
<summary>Supported Training Approaches</summary>
| Approach | Full-tuning | Freeze-tuning | SES-Adapter | AdaLoRA | QLoRA | LoRA | DoRA | IA3 |
| ---------------------- | ----------- | ------------------ | ------------------ | ------------------ |----------- | ------------------ | -----------------| -----------------|
| Supervised Fine-Tuning | ✅ | ✅ | ✅ | ✅ |✅ | ✅ | ✅ | ✅ |
</details>
## 📚 Supported Datasets
<details><summary>Pre-training datasets</summary>
| dataset | data level | link |
|------------|------|------|
| CATH_V43_S40 | structures | [CATH_V43_S40](https://huggingface.co/datasets/tyang816/cath) |
| AGO_family | structures | [AGO_family](https://huggingface.co/datasets/tyang816/Ago_database_PDB) |
</details>
<details><summary>Zero-shot datasets</summary>
| dataset | task | link |
|------------|------|------|
| VenusMutHub | mutation effects prediction | [VenusMutHub](https://huggingface.co/datasets/AI4Protein/VenusMutHub) |
| ProteinGym | mutation effects prediction | [ProteinGym](https://proteingym.org/) |
</details>
<details><summary>Supervised fine-tuning datasets (amino acid sequences/ foldseek sequences/ ss8 sequences)</summary>
| dataset | task | data level | problem type | link |
|------------|------|----------|----------|------|
| DeepLocBinary | localization | protein-wise | single_label_classification | [DeepLocBinary_AlphaFold2](https://huggingface.co/datasets/tyang816/DeepLocBinary_AlphaFold2), [DeepLocBinary_ESMFold](https://huggingface.co/datasets/tyang816/DeepLocBinary_ESMFold) |
| DeepLocMulti | localization | protein-wise | multi_label_classification | [DeepLocMulti_AlphaFold2](https://huggingface.co/datasets/tyang816/DeepLocMulti_AlphaFold2), [DeepLocMulti_ESMFold](https://huggingface.co/datasets/tyang816/DeepLocMulti_ESMFold) |
| DeepLoc2Multi | localization | protein-wise | single_label_classification | [DeepLoc2Multi_AlphaFold2](https://huggingface.co/datasets/tyang816/DeepLoc2Multi_AlphaFold2), [DeepLoc2Multi_ESMFold](https://huggingface.co/datasets/tyang816/DeepLoc2Multi_ESMFold) |
| DeepSol | solubility | protein-wise | single_label_classification | [DeepSol_ESMFold](https://huggingface.co/datasets/tyang816/DeepSol_ESMFold) |
| DeepSoluE | solubility | protein-wise | single_label_classification | [DeepSoluE_ESMFold](https://huggingface.co/datasets/tyang816/DeepSoluE_ESMFold) |
| ProtSolM | solubility | protein-wise | single_label_classification | [ProtSolM_ESMFold](https://huggingface.co/datasets/tyang816/ProtSolM_ESMFold) |
| eSOL | solubility | protein-wise | regression | [eSOL_AlphaFold2](https://huggingface.co/datasets/tyang816/eSOL_AlphaFold2), [eSOL_ESMFold](https://huggingface.co/datasets/tyang816/eSOL_ESMFold) |
| DeepET_Topt | optimum temperature | protein-wise | regression | [DeepET_Topt_AlphaFold2](https://huggingface.co/datasets/tyang816/DeepET_Topt_AlphaFold2), [DeepET_Topt_ESMFold](https://huggingface.co/datasets/tyang816/DeepET_Topt_ESMFold) |
| EC | function | protein-wise | multi_label_classification | [EC_AlphaFold2](https://huggingface.co/datasets/tyang816/EC_AlphaFold2), [EC_ESMFold](https://huggingface.co/datasets/tyang816/EC_ESMFold) |
| GO_BP | function | protein-wise | multi_label_classification | [GO_BP_AlphaFold2](https://huggingface.co/datasets/tyang816/GO_BP_AlphaFold2), [GO_BP_ESMFold](https://huggingface.co/datasets/tyang816/GO_BP_ESMFold) |
| GO_CC | function | protein-wise | multi_label_classification | [GO_CC_AlphaFold2](https://huggingface.co/datasets/tyang816/GO_CC_AlphaFold2), [GO_CC_ESMFold](https://huggingface.co/datasets/tyang816/GO_CC_ESMFold) |
| GO_MF | function | protein-wise | multi_label_classification | [GO_MF_AlphaFold2](https://huggingface.co/datasets/tyang816/GO_MF_AlphaFold2), [GO_MF_ESMFold](https://huggingface.co/datasets/tyang816/GO_MF_ESMFold) |
| MetalIonBinding | binding | protein-wise | single_label_classification | [MetalIonBinding_AlphaFold2](https://huggingface.co/datasets/tyang816/MetalIonBinding_AlphaFold2), [MetalIonBinding_ESMFold](https://huggingface.co/datasets/tyang816/MetalIonBinding_ESMFold) |
| Thermostability | stability | protein-wise | regression | [Thermostability_AlphaFold2](https://huggingface.co/datasets/tyang816/Thermostability_AlphaFold2), [Thermostability_ESMFold](https://huggingface.co/datasets/tyang816/Thermostability_ESMFold) |
> ✨ Only structural sequences are different for the same dataset, for example, ``DeepLocBinary_ESMFold`` and ``DeepLocBinary_AlphaFold2`` share the same amino acid sequences, this means if you only want to use the ``aa_seqs``, both are ok!
</details>
<details><summary>Supervised fine-tuning datasets (amino acid sequences)</summary>
| dataset | task | data level | problem type | link |
|------------|------|----------|----------|------|
| Demo_Solubility | solubility | protein-wise | single_label_classification | [Demo_Solubility](https://huggingface.co/datasets/tyang816/Demo_Solubility) |
| DeepLocBinary | localization | protein-wise | single_label_classification | [DeepLocBinary](https://huggingface.co/datasets/tyang816/DeepLocBinary) |
| DeepLocMulti | localization | protein-wise | multi_label_classification | [DeepLocMulti](https://huggingface.co/datasets/tyang816/DeepLocMulti) |
| DeepLoc2Multi | localization | protein-wise | single_label_classification | [DeepLoc2Multi](https://huggingface.co/datasets/tyang816/DeepLoc2Multi) |
| DeepSol | solubility | protein-wise | single_label_classification | [DeepSol](https://huggingface.co/datasets/tyang816/DeepSol) |
| DeepSoluE | solubility | protein-wise | single_label_classification | [DeepSoluE](https://huggingface.co/datasets/tyang816/DeepSoluE) |
| ProtSolM | solubility | protein-wise | single_label_classification | [ProtSolM](https://huggingface.co/datasets/tyang816/ProtSolM) |
| eSOL | solubility | protein-wise | regression | [eSOL](https://huggingface.co/datasets/tyang816/eSOL) |
| DeepET_Topt | optimum temperature | protein-wise | regression | [DeepET_Topt](https://huggingface.co/datasets/tyang816/DeepET_Topt) |
| EC | function | protein-wise | multi_label_classification | [EC](https://huggingface.co/datasets/tyang816/EC) |
| GO_BP | function | protein-wise | multi_label_classification | [GO_BP](https://huggingface.co/datasets/tyang816/GO_BP) |
| GO_CC | function | protein-wise | multi_label_classification | [GO_CC](https://huggingface.co/datasets/tyang816/GO_CC) |
| GO_MF | function | protein-wise | multi_label_classification | [GO_MF](https://huggingface.co/datasets/tyang816/GO_MF) |
| MetalIonBinding | binding | protein-wise | single_label_classification | [MetalIonBinding](https://huggingface.co/datasets/tyang816/MetalIonBinding) |
| Thermostability | stability | protein-wise | regression | [Thermostability](https://huggingface.co/datasets/tyang816/Thermostability) |
| PaCRISPR | CRISPR | protein-wise | single_label_classification | [PaCRISPR](https://huggingface.co/datasets/tyang816/PaCRISPR) |
| PETA_CHS_Sol | solubility | protein-wise | single_label_classification | [PETA_CHS_Sol](https://huggingface.co/datasets/tyang816/PETA_CHS_Sol) |
| PETA_LGK_Sol | solubility | protein-wise | single_label_classification | [PETA_LGK_Sol](https://huggingface.co/datasets/tyang816/PETA_LGK_Sol) |
| PETA_TEM_Sol | solubility | protein-wise | single_label_classification | [PETA_TEM_Sol](https://huggingface.co/datasets/tyang816/PETA_TEM_Sol) |
| SortingSignal | sorting signal | protein-wise | single_label_classification | [SortingSignal](https://huggingface.co/datasets/tyang816/SortingSignal) |
| FLIP_AAV | mutation | protein-site | regression |
| FLIP_AAV_one-vs-rest | mutation | protein-site | single_label_classification | [FLIP_AAV_one-vs-rest](https://huggingface.co/datasets/tyang816/FLIP_AAV_one-vs-rest) |
| FLIP_AAV_two-vs-rest | mutation | protein-site | single_label_classification | [FLIP_AAV_two-vs-rest](https://huggingface.co/datasets/tyang816/FLIP_AAV_two-vs-rest) |
| FLIP_AAV_mut-des | mutation | protein-site | single_label_classification | [FLIP_AAV_mut-des](https://huggingface.co/datasets/tyang816/FLIP_AAV_mut-des) |
| FLIP_AAV_des-mut | mutation | protein-site | single_label_classification | [FLIP_AAV_des-mut](https://huggingface.co/datasets/tyang816/FLIP_AAV_des-mut) |
| FLIP_AAV_seven-vs-rest | mutation | protein-site | single_label_classification | [FLIP_AAV_seven-vs-rest](https://huggingface.co/datasets/tyang816/FLIP_AAV_seven-vs-rest) |
| FLIP_AAV_low-vs-high | mutation | protein-site | single_label_classification | [FLIP_AAV_low-vs-high](https://huggingface.co/datasets/tyang816/FLIP_AAV_low-vs-high) |
| FLIP_AAV_sampled | mutation | protein-site | single_label_classification | [FLIP_AAV_sampled](https://huggingface.co/datasets/tyang816/FLIP_AAV_sampled) |
| FLIP_GB1 | mutation | protein-site | regression |
| FLIP_GB1_one-vs-rest | mutation | protein-site | single_label_classification | [FLIP_GB1_one-vs-rest](https://huggingface.co/datasets/tyang816/FLIP_GB1_one-vs-rest) |
| FLIP_GB1_two-vs-rest | mutation | protein-site | single_label_classification | [FLIP_GB1_two-vs-rest](https://huggingface.co/datasets/tyang816/FLIP_GB1_two-vs-rest) |
| FLIP_GB1_three-vs-rest | mutation | protein-site | single_label_classification | [FLIP_GB1_three-vs-rest](https://huggingface.co/datasets/tyang816/FLIP_GB1_three-vs-rest) |
| FLIP_GB1_low-vs-high | mutation | protein-site | single_label_classification | [FLIP_GB1_low-vs-high](https://huggingface.co/datasets/tyang816/FLIP_GB1_low-vs-high) |
| FLIP_GB1_sampled | mutation | protein-site | single_label_classification | [FLIP_GB1_sampled](https://huggingface.co/datasets/tyang816/FLIP_GB1_sampled) |
| TAPE_Fluorescence | fluorescence | protein-site | regression | [TAPE_Fluorescence](https://huggingface.co/datasets/tyang816/TAPE_Fluorescence) |
| TAPE_Stability | stability | protein-site | regression | [TAPE_Stability](https://huggingface.co/datasets/tyang816/TAPE_Stability) |
</details>
## 📈 Supported Metrics
<details>
<summary>Supported Metrics</summary>
| Name | Torchmetrics | Problem Type |
| ------------- | ---------------- | ------------------------------------------------------- |
| accuracy | Accuracy | single_label_classification/ multi_label_classification |
| recall | Recall | single_label_classification/ multi_label_classification |
| precision | Precision | single_label_classification/ multi_label_classification |
| f1 | F1Score | single_label_classification/ multi_label_classification |
| mcc | MatthewsCorrCoef | single_label_classification/ multi_label_classification |
| auc | AUROC | single_label_classification/ multi_label_classification |
| f1_max | F1ScoreMax | multi_label_classification |
| spearman_corr | SpearmanCorrCoef | regression |
| mse | MeanSquaredError | regression |
</details>
## ✈️ Requirements
### Hardware Requirements
- Recommended: NVIDIA RTX 3090 (24GB) or better
- Actual requirements depend on your chosen protein language model
### Software Requirements
- [Anaconda3](https://www.anaconda.com/download) or [Miniconda3](https://docs.conda.io/projects/miniconda/en/latest/)
- Python 3.10
## 📦 Installation Guide
<details><summary> Git start with macOS</summary>
## To achieve the best performance and experience, we recommend using Mac devices with M-series chips (such as M1, M2, M3, etc.).
## 1️⃣ Clone the repository
First, get the VenusFactory code:
```bash
git clone https://github.com/tyang816/VenusFactory.git
cd VenusFactory
```
## 2️⃣ Create a Conda environment
Ensure you have Anaconda or Miniconda installed. Then, create a new environment named `venus` with Python 3.10:
```bash
conda create -n venus python=3.10
conda activate venus
```
## 3️⃣ Install Pytorch and PyG dependencies
```bash
# Install PyTorch
pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
# Install PyG dependencies
pip install torch_scatter torch-sparse torch-geometric -f https://data.pyg.org/whl/torch-2.2.0+cpu.html
```
## 4️⃣ Install remaining dependencies
Install the remaining dependencies using `requirements_for_macOS.txt`:
```bash
pip install -r requirements_for_macOS.txt
```
</details>
<details><summary> Git start with Windows or Linux on CUDA 12.x</summary>
## We recommend using CUDA 12.2
## 1️⃣ Clone the repository
First, get the VenusFactory code:
```bash
git clone https://github.com/tyang816/VenusFactory.git
cd VenusFactory
```
## 2️⃣ Create a Conda environment
Ensure you have Anaconda or Miniconda installed. Then, create a new environment named `venus` with Python 3.10:
```bash
conda create -n venus python=3.10
conda activate venus
```
## 3️⃣ Install Pytorch and PyG dependencies
```bash
# Install PyTorch
pip install torch==2.5.1 torchvision==0.20.1 --index-url https://download.pytorch.org/whl/cu121
# Install PyG dependencies
pip install torch_geometric==2.6.1 -f https://pytorch-geometric.com/whl/torch-2.5.1+cu121.html
pip install --no-index torch_scatter==2.1.2 -f https://pytorch-geometric.com/whl/torch-2.5.1+cu121.html
```
## 4️⃣ Install remaining dependencies
Install the remaining dependencies using `requirements.txt`:
```bash
pip install -r requirements.txt
```
</details>
<details><summary> Git start with Windows or Linux on CUDA 11.x</summary>
## We recommend using CUDA 11.8 or later versions, as they support higher versions of PyTorch, providing a better experience.
## 1️⃣ Clone the repository
First, get the VenusFactory code:
```bash
git clone https://github.com/tyang816/VenusFactory.git
cd VenusFactory
```
## 2️⃣ Create a Conda environment
Ensure you have Anaconda or Miniconda installed. Then, create a new environment named `venus` with Python 3.10:
```bash
conda create -n venus python=3.10
conda activate venus
```
## 3️⃣ Install Pytorch and PyG dependencies
```bash
# Install PyTorch
pip install torch==2.5.1 torchvision==0.20.1 --index-url https://download.pytorch.org/whl/cu118
# Install PyG dependencies
pip install torch_geometric==2.6.1 -f https://pytorch-geometric.com/whl/torch-2.5.1+cu118.html
pip install --no-index torch_scatter==2.1.2 -f https://pytorch-geometric.com/whl/torch-2.5.1+cu118.html
```
## 4️⃣ Install remaining dependencies
Install the remaining dependencies using `requirements.txt`:
```bash
pip install -r requirements.txt
```
</details>
<details><summary> Git start with Windows or Linux on CPU</summary>
## 1️⃣ Clone the repository
First, get the VenusFactory code:
```bash
git clone https://github.com/tyang816/VenusFactory.git
cd VenusFactory
```
## 2️⃣ Create a Conda environment
Ensure you have Anaconda or Miniconda installed. Then, create a new environment named `venus` with Python 3.10:
```bash
conda create -n venus python=3.10
conda activate venus
```
## 3️⃣ Install Pytorch and PyG dependencies
```bash
# Install PyTorch
pip install torch==2.5.1 torchvision==0.20.1 --index-url https://download.pytorch.org/whl/cpu
# Install PyG dependencies
pip install torch_geometric==2.6.1 -f https://pytorch-geometric.com/whl/torch-2.5.1+cpu.html
pip install --no-index torch_scatter==2.1.2 -f https://pytorch-geometric.com/whl/torch-2.5.1+cpu.html
```
## 4️⃣ Install remaining dependencies
Install the remaining dependencies using `requirements.txt`:
```bash
pip install -r requirements.txt
```
</details>
## 🚀 Quick Start with Venus Web UI
### Start Venus Web UI
Get started quickly with our intuitive graphical interface powered by [Gradio](https://github.com/gradio-app/gradio):
```bash
python ./src/webui.py
```
This will launch the Venus Web UI where you can:
- Configure and run fine-tuning experiments
- Monitor training progress
- Evaluate models
- Visualize results
### Using Each Tab
We provide a detailed guide to help you navigate through each tab of the Venus Web UI.
<details>
<summary>1. Training Tab: Train your own protein language model</summary>

Select a protein language model from the dropdown menu. Upload your dataset or select from available datasets and choose metrics appropriate for your problem type.

Choose a training method (Freeze, SES-Adapter, LoRA, QLoRA etc.) and configure training parameters (batch size, learning rate, etc.).




Click "Start Training" and monitor progress in real-time.
<p align="center">
<img src="img/Train/Metric_Results.png" width="60%" alt="Metric_Results">
</p>
Click "Download CSV" to download the test metrics results.
</details>
<details>
<summary>2. Evaluation Tab: Evaluate your trained model within a benchmark</summary>

Load your trained model by specifying the model path. Select the same protein language model and model configs used during training. Select a test dataset and configure batch size. Choose evaluation metrics appropriate for your problem type. Finally, click "Start Evaluation" to view performance metrics.
</details>
<details>
<summary>3. Prediction Tab: Use your trained model to predict samples</summary>

Load your trained model by specifying the model path. Select the same protein language model and model configs used during training.
For single sequence: Enter a protein sequence in the text box.
For batch prediction: Upload a CSV file with sequences.

Click "Predict" to generate and view results.
</details>
<details>
<summary>4. Download Tab: Collect data from different sources with high efficiency</summary>
- **AlphaFold2 Structures**: Enter UniProt IDs to download protein structures
- **UniProt**: Search for protein information using keywords or IDs
- **InterPro**: Retrieve protein family and domain information
- **RCSB PDB**: Download experimental protein structures
</details>
<details>
<summary>5. Manual Tab: Detailed documentation and guides</summary>
Select a language (English/Chinese).
Navigate through the documentation using the table of contents and find step-by-step guides.
</details>
## 🧬 Code-line Usage
For users who prefer command-line interface, we provide comprehensive script solutions for different scenarios.
<details>
<summary>Training Methods: Various fine-tuning approaches for different needs</summary>
### Full Model Fine-tuning
```bash
# Freeze-tuning: Train only specific layers while freezing others
bash ./script/train/train_plm_vanilla.sh
```
### Parameter-Efficient Fine-tuning (PEFT)
```bash
# SES-Adapter: Selective and Efficient adapter fine-tuning
bash ./script/train/train_plm_ses-adapter.sh
# AdaLoRA: Adaptive Low-Rank Adaptation
bash ./script/train/train_plm_adalora.sh
# QLoRA: Quantized Low-Rank Adaptation
bash ./script/train/train_plm_qlora.sh
# LoRA: Low-Rank Adaptation
bash ./script/train/train_plm_lora.sh
# DoRA: Double Low-Rank Adaptation
bash ./script/train/train_plm_dora.sh
# IA3: Infused Adapter by Inhibiting and Amplifying Inner Activations
bash ./script/train/train_plm_ia3.sh
```
#### Training Method Comparison
| Method | Memory Usage | Training Speed | Performance |
|--------|--------------|----------------|-------------|
| Freeze | Low | Fast | Good |
| SES-Adapter | Medium | Medium | Better |
| AdaLoRA | Low | Medium | Better |
| QLoRA | Very Low | Slower | Good |
| LoRA | Low | Fast | Good |
| DoRA | Low | Medium | Better |
| IA3 | Very Low | Fast | Good |
</details>
<details>
<summary>Model Evaluation: Comprehensive evaluation tools</summary>
### Basic Evaluation
```bash
# Evaluate model performance on test sets
bash ./script/eval/eval.sh
```
### Available Metrics
- Classification: accuracy, precision, recall, F1, MCC, AUC
- Regression: MSE, Spearman correlation
- Multi-label: F1-max
### Visualization Tools
- Training curves
- Confusion matrices
- ROC curves
- Performance comparison plots
</details>
<details>
<summary>Structure Sequence Tools: Process protein structure information</summary>
### ESM Structure Sequence
```bash
# Generate structure sequences using ESM-3
bash ./script/get_get_structure_seq/get_esm3_structure_seq.sh
```
### Secondary Structure
```bash
# Predict protein secondary structure
bash ./script/get_get_structure_seq/get_secondary_structure_seq.sh
```
Features:
- Support for multiple sequence formats
- Batch processing capability
- Integration with popular structure prediction tools
</details>
<details>
<summary>Data Collection Tools: Multi-source protein data acquisition</summary>
### Format Conversion
```bash
# Convert CIF format to PDB
bash ./crawler/convert/maxit.sh
```
### Metadata Collection
```bash
# Download metadata from RCSB PDB
bash ./crawler/metadata/download_rcsb.sh
```
### Sequence Data
```bash
# Download protein sequences from UniProt
bash ./crawler/sequence/download_uniprot_seq.sh
```
### Structure Data
```bash
# Download from AlphaFold2 Database
bash ./crawler/structure/download_alphafold.sh
# Download from RCSB PDB
bash ./crawler/structure/download_rcsb.sh
```
Features:
- Automated batch downloading
- Resume interrupted downloads
- Data integrity verification
- Multiple source support
- Customizable search criteria
#### Supported Databases
| Database | Data Type | Access Method | Rate Limit |
|----------|-----------|---------------|------------|
| AlphaFold2 | Structures | REST API | Yes |
| RCSB PDB | Structures | FTP/HTTP | No |
| UniProt | Sequences | REST API | Yes |
| InterPro | Domains | REST API | Yes |
</details>
<details>
<summary>Usage Examples: Common scenarios and solutions</summary>
### Training Example
```bash
# Train a protein solubility predictor using ESM2
bash ./script/train/train_plm_lora.sh \
--model "facebook/esm2_t33_650M_UR50D" \
--dataset "DeepSol" \
--batch_size 32 \
--learning_rate 1e-4
```
### Evaluation Example
```bash
# Evaluate the trained model
bash ./script/eval/eval.sh \
--model_path "path/to/your/model" \
--test_dataset "DeepSol_test"
```
### Data Collection Example
```bash
# Download structures for a list of UniProt IDs
bash ./crawler/structure/download_alphafold.sh \
--input uniprot_ids.txt \
--output ./structures
```
</details>
> 💡 All scripts support additional command-line arguments for customization. Use `--help` with any script to see available options.
## 🙌 Citation
Please cite our work if you have used our code or data.
```bibtex
@article{tan2025venusfactory,
title={VenusFactory: A Unified Platform for Protein Engineering Data Retrieval and Language Model Fine-Tuning},
author={Tan, Yang and Liu, Chen and Gao, Jingyuan and Wu, Banghao and Li, Mingchen and Wang, Ruilin and Zhang, Lingrong and Yu, Huiqun and Fan, Guisheng and Hong, Liang and Zhou, Bingxin},
journal={arXiv preprint arXiv:2503.15438},
year={2025}
}
```
## 🎊 Acknowledgement
Thanks the support of [Liang's Lab](https://ins.sjtu.edu.cn/people/lhong/index.html).
|