feat: performance
Browse files- experiments/performance_comparison.py +172 -0
- experiments/test.py +0 -69
experiments/performance_comparison.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import plotly.graph_objects as go
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# 生成符合学术规范的模拟数据
|
6 |
+
np.random.seed(42) # 确保可重复性
|
7 |
+
methods = ['RSM', 'PSRN', 'NGGP', 'PySR', 'BMS', 'uDSR', 'AIF',
|
8 |
+
'DGSR', 'E2E', 'SymINDy', 'physo', 'TPSR', 'SPL',
|
9 |
+
'DEAP', 'SINDy', 'NSRS', 'gplearn', 'SNIP', 'KAN', 'EQL']
|
10 |
+
|
11 |
+
# 生成0-1之间的RMSE数据(保持原图分布模式)
|
12 |
+
rmse_values = np.clip(np.abs(np.random.normal(0.3, 0.15, len(methods))), 0.05, 0.95)
|
13 |
+
uncertainty = np.random.uniform(0.02, 0.08, len(methods))
|
14 |
+
param_sizes = np.array([1e3, 1e4, 5e4, 1e5, 5e5, 1e6, 2e6]) # 定义标准参数规模
|
15 |
+
|
16 |
+
# 构建分类系统(基于方法原理)
|
17 |
+
method_categories = {
|
18 |
+
'Symbolic': ['RSM', 'PySR', 'SymINDy', 'gplearn', 'EQL'],
|
19 |
+
'Neural': ['NGGP', 'DGSR', 'E2E', 'KAN'],
|
20 |
+
'Evolutionary': ['PSRN', 'DEAP', 'NSRS'],
|
21 |
+
'Physics-based': ['physo', 'TPSR', 'SPL'],
|
22 |
+
'Hybrid': ['BMS', 'uDSR', 'AIF', 'SINDy', 'SNIP']
|
23 |
+
}
|
24 |
+
|
25 |
+
# 创建数据框架
|
26 |
+
df = pd.DataFrame({
|
27 |
+
'Method': methods,
|
28 |
+
'RMSE': rmse_values,
|
29 |
+
'Uncertainty': uncertainty,
|
30 |
+
'ParamSize': np.random.choice(param_sizes, len(methods))
|
31 |
+
}).sort_values('RMSE', ascending=True)
|
32 |
+
|
33 |
+
# 添加分类信息
|
34 |
+
df['Category'] = df['Method'].apply(lambda x: next((k for k,v in method_categories.items() if x in v), 'Other'))
|
35 |
+
|
36 |
+
# 颜色映射系统(学术级调色板)
|
37 |
+
category_colors = {
|
38 |
+
'Symbolic': '#1f77b4',
|
39 |
+
'Neural': '#ff7f0e',
|
40 |
+
'Evolutionary': '#2ca02c',
|
41 |
+
'Physics-based': '#d62728',
|
42 |
+
'Hybrid': '#9467bd'
|
43 |
+
}
|
44 |
+
|
45 |
+
# 创建基础图表
|
46 |
+
fig = go.Figure()
|
47 |
+
|
48 |
+
# 动态尺寸计算系统
|
49 |
+
size_min = np.log(df['ParamSize'].min())
|
50 |
+
size_max = np.log(df['ParamSize'].max())
|
51 |
+
sizes = 15 + 25 * (np.log(df['ParamSize']) - size_min) / (size_max - size_min) # 动态尺寸范围
|
52 |
+
|
53 |
+
# 添加主数据轨迹
|
54 |
+
for category in df['Category'].unique():
|
55 |
+
df_sub = df[df['Category'] == category]
|
56 |
+
fig.add_trace(go.Scatter(
|
57 |
+
x=df_sub['RMSE'],
|
58 |
+
y=df_sub['Method'],
|
59 |
+
mode='markers',
|
60 |
+
name=category,
|
61 |
+
marker=dict(
|
62 |
+
size=sizes[df_sub.index],
|
63 |
+
color=category_colors[category],
|
64 |
+
opacity=0.9,
|
65 |
+
line=dict(width=1, color='black')
|
66 |
+
),
|
67 |
+
error_x=dict(
|
68 |
+
type='data',
|
69 |
+
array=df_sub['Uncertainty'],
|
70 |
+
color='rgba(40,40,40,0.6)',
|
71 |
+
thickness=1.2,
|
72 |
+
width=10
|
73 |
+
),
|
74 |
+
hoverinfo='text',
|
75 |
+
hovertext=df_sub.apply(lambda r: f"{r['Method']}<br>RMSE: {r['RMSE']:.3f} ± {r['Uncertainty']:.3f}<br>Params: {r['ParamSize']:,.0f}", axis=1)
|
76 |
+
))
|
77 |
+
|
78 |
+
# 动态轴范围计算
|
79 |
+
data_min = (df['RMSE'] - df['Uncertainty']).min()
|
80 |
+
x_min = max(data_min - 0.05, 0) # 保证最小值不低于0
|
81 |
+
x_max = 1.0
|
82 |
+
|
83 |
+
# 专业级布局配置
|
84 |
+
fig.update_layout(
|
85 |
+
title='Methods RMSE Comparison with Parameter Scale',
|
86 |
+
xaxis=dict(
|
87 |
+
title='Root Mean Square Error (RMSE) → Lower is better',
|
88 |
+
range=[x_min, x_max],
|
89 |
+
tickvals=np.arange(0, 1.1, 0.1),
|
90 |
+
gridcolor='#F0F0F0',
|
91 |
+
zeroline=False,
|
92 |
+
showspikes=True
|
93 |
+
),
|
94 |
+
yaxis=dict(
|
95 |
+
categoryorder='array',
|
96 |
+
categoryarray=df['Method'].tolist(),
|
97 |
+
tickfont=dict(size=12),
|
98 |
+
showticklabels=False # 禁用默认标签
|
99 |
+
),
|
100 |
+
plot_bgcolor='white',
|
101 |
+
width=1100,
|
102 |
+
height=700,
|
103 |
+
margin=dict(l=180, r=50, t=80, b=40),
|
104 |
+
legend=dict(
|
105 |
+
title='Method Categories',
|
106 |
+
orientation='v',
|
107 |
+
yanchor="top",
|
108 |
+
y=0.98,
|
109 |
+
xanchor="left",
|
110 |
+
x=1.02
|
111 |
+
)
|
112 |
+
)
|
113 |
+
|
114 |
+
# 添加自定义y轴标签(分类着色)
|
115 |
+
y_positions = np.linspace(0.03, 0.97, len(methods)) # 动态计算标签位置
|
116 |
+
for idx, method in enumerate(df['Method']):
|
117 |
+
category = df[df['Method'] == method]['Category'].values[0]
|
118 |
+
fig.add_annotation(
|
119 |
+
x=0.01,
|
120 |
+
y=y_positions[idx],
|
121 |
+
xref='paper',
|
122 |
+
yref='paper',
|
123 |
+
text=method,
|
124 |
+
showarrow=False,
|
125 |
+
font=dict(
|
126 |
+
size=12,
|
127 |
+
color=category_colors[category]
|
128 |
+
),
|
129 |
+
xanchor='right'
|
130 |
+
)
|
131 |
+
|
132 |
+
# 添加专业级尺寸图例系统
|
133 |
+
size_legend_values = [1e3, 1e4, 1e5, 1e6] # 定义标准参数规模
|
134 |
+
size_legend_sizes = 15 + 25 * (np.log(size_legend_values) - size_min) / (size_max - size_min)
|
135 |
+
|
136 |
+
fig.add_trace(go.Scatter(
|
137 |
+
x=[0.82, 0.85, 0.88, 0.91],
|
138 |
+
y=[0.15, 0.20, 0.25, 0.30],
|
139 |
+
mode='markers',
|
140 |
+
marker=dict(
|
141 |
+
size=size_legend_sizes,
|
142 |
+
color='#444444',
|
143 |
+
opacity=0.8
|
144 |
+
),
|
145 |
+
showlegend=False
|
146 |
+
))
|
147 |
+
|
148 |
+
# 添加尺寸图例标注
|
149 |
+
size_labels = ['1K', '10K', '100K', '1M']
|
150 |
+
for i, (x, y, label) in enumerate(zip([0.95]*4, [0.15,0.20,0.25,0.30], size_labels)):
|
151 |
+
fig.add_annotation(
|
152 |
+
x=x,
|
153 |
+
y=y,
|
154 |
+
xref="paper",
|
155 |
+
yref="paper",
|
156 |
+
text=label,
|
157 |
+
showarrow=False,
|
158 |
+
font=dict(size=10),
|
159 |
+
xanchor='left'
|
160 |
+
)
|
161 |
+
|
162 |
+
# 添加最终标注
|
163 |
+
fig.add_annotation(
|
164 |
+
x=0.98, y=0.02,
|
165 |
+
xref='paper', yref='paper',
|
166 |
+
text='叶璨铭 | Parameters (log scale)',
|
167 |
+
showarrow=False,
|
168 |
+
font=dict(size=10, color='#666666'),
|
169 |
+
bgcolor='white'
|
170 |
+
)
|
171 |
+
|
172 |
+
fig.show()
|
experiments/test.py
DELETED
@@ -1,69 +0,0 @@
|
|
1 |
-
import plotly.graph_objects as go
|
2 |
-
|
3 |
-
# 示例数据(请替换为实际数据)
|
4 |
-
methods = ['RSRM', 'PSRN', 'NGGP', 'PySR', 'BMS', 'uDSR', 'AIF',
|
5 |
-
'DGSR', 'E2E', 'SymINDy', 'PhySO', 'TPSR', 'SPL',
|
6 |
-
'DEAP', 'SINDy', 'NSRS', 'gplearn', 'SNIP', 'KAN', 'EQL']
|
7 |
-
recovery_rates = [85, 78, 92, 88, 76, 83, 95, 81, 89, 77, 84, 86, 80,
|
8 |
-
79, 82, 87, 75, 88, 90, 84] # 恢复率百分比
|
9 |
-
errors = [3, 4, 2, 3, 5, 2, 1, 3, 2, 4, 3, 2, 3, 4, 2, 3, 5, 2, 3, 2] # 误差范围
|
10 |
-
|
11 |
-
# 创建图形对象
|
12 |
-
fig = go.Figure()
|
13 |
-
|
14 |
-
# 添加带误差线的数据点
|
15 |
-
fig.add_trace(go.Scatter(
|
16 |
-
x=recovery_rates,
|
17 |
-
y=methods,
|
18 |
-
mode='markers',
|
19 |
-
error_x=dict(
|
20 |
-
type='data',
|
21 |
-
array=errors,
|
22 |
-
visible=True,
|
23 |
-
color='#FF5733',
|
24 |
-
thickness=2,
|
25 |
-
width=10
|
26 |
-
),
|
27 |
-
marker=dict(
|
28 |
-
size=12,
|
29 |
-
color=['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd',
|
30 |
-
'#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf',
|
31 |
-
'#aec7e8', '#ffbb78', '#98df8a', '#ff9896', '#c5b0d5',
|
32 |
-
'#c49c94', '#f7b6d2', '#c7c7c7', '#dbdb8d', '#9edae5'],
|
33 |
-
opacity=0.8
|
34 |
-
)
|
35 |
-
))
|
36 |
-
|
37 |
-
# 设置布局
|
38 |
-
fig.update_layout(
|
39 |
-
title='不同方法的恢复率比较',
|
40 |
-
xaxis=dict(
|
41 |
-
title='恢复率 (%)',
|
42 |
-
range=[0, 100],
|
43 |
-
dtick=20,
|
44 |
-
title_standoff=25
|
45 |
-
),
|
46 |
-
yaxis=dict(
|
47 |
-
title='Methods',
|
48 |
-
title_font=dict(size=14),
|
49 |
-
tickfont=dict(size=12),
|
50 |
-
autorange="reversed" # 使第一个方法显示在最上方
|
51 |
-
),
|
52 |
-
hovermode='closest',
|
53 |
-
width=1000,
|
54 |
-
height=600,
|
55 |
-
showlegend=False
|
56 |
-
)
|
57 |
-
|
58 |
-
# 添加注释(可选)
|
59 |
-
fig.add_annotation(
|
60 |
-
x=0,
|
61 |
-
y=0.95,
|
62 |
-
xref='paper',
|
63 |
-
yref='paper',
|
64 |
-
text='知乎 @x66ccff',
|
65 |
-
showarrow=False,
|
66 |
-
font=dict(size=10)
|
67 |
-
)
|
68 |
-
|
69 |
-
fig.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|