File size: 22,462 Bytes
06aa092
78e4509
 
 
 
 
 
 
86e568b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06aa092
86e568b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a299d07
86e568b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06aa092
86e568b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06aa092
 
 
 
86e568b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06aa092
86e568b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06aa092
 
 
 
 
 
 
86e568b
 
06aa092
 
86e568b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06aa092
86e568b
06aa092
 
 
86e568b
 
06aa092
 
 
 
 
 
 
 
 
 
 
 
 
86e568b
06aa092
 
 
86e568b
 
 
 
 
 
06aa092
 
86e568b
 
 
 
 
 
06aa092
 
 
 
 
 
 
 
 
 
 
 
 
a299d07
 
 
06aa092
 
 
 
 
 
 
 
 
 
 
86e568b
 
 
 
 
 
 
 
 
06aa092
86e568b
 
78e4509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86e568b
 
78e4509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86e568b
78e4509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06aa092
78e4509
86e568b
 
 
 
 
 
 
 
 
 
 
 
 
78e4509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86e568b
78e4509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86e568b
06aa092
 
78e4509
86e568b
 
 
 
06aa092
 
86e568b
 
 
 
06aa092
86e568b
 
 
 
 
 
06aa092
86e568b
 
 
 
06aa092
 
 
 
 
 
86e568b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78e4509
 
 
 
 
 
 
 
 
 
 
 
 
 
06aa092
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
import time
import streamlit as st
import numpy as np
from pathlib import Path
from experiments.gmm_dataset import GeneralizedGaussianMixture
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from typing import List, Tuple
import torch
import os
import sys
import matplotlib.pyplot as plt

# Set torch path
torch.classes.__path__ = [os.path.join(torch.__path__[0], torch.classes.__file__ or "")]

# Add pykan to path
pykan_path = Path(__file__).parent.parent / 'third_party' / 'pykan'
sys.path.append(str(pykan_path))

# Import KAN related modules
from kan import KAN  # type: ignore
from kan.utils import create_dataset, ex_round  # type: ignore

# Set torch dtype
torch.set_default_dtype(torch.float64)

def show_kan_prediction(model, device, samples, placeholder, phase_name):
    """显示KAN的预测结果"""
    # 生成网格数据
    x = np.linspace(-5, 5, 100)
    y = np.linspace(-5, 5, 100)
    X, Y = np.meshgrid(x, y)
    xy = np.column_stack((X.ravel(), Y.ravel()))
    
    # 使用KAN预测
    grid_points = torch.from_numpy(xy).to(device)
    with torch.no_grad():
        Z_kan = model(grid_points).cpu().numpy().reshape(X.shape)
    
    # 创建预测的概率密度图
    fig_kan = make_subplots(
        rows=1, cols=2,
        specs=[[{'type': 'surface'}, {'type': 'contour'}]],
        subplot_titles=('KAN预测的3D概率密度曲面', 'KAN预测的等高线图')
    )
    
    # 3D Surface
    surface_kan = go.Surface(
        x=X, y=Y, z=Z_kan,
        colorscale='viridis',
        showscale=True,
        colorbar=dict(x=0.45)
    )
    fig_kan.add_trace(surface_kan, row=1, col=1)
    
    # Contour Plot
    contour_kan = go.Contour(
        x=x, y=y, z=Z_kan,
        colorscale='viridis',
        showscale=True,
        colorbar=dict(x=1.0),
        contours=dict(
            showlabels=True,
            labelfont=dict(size=12)
        )
    )
    fig_kan.add_trace(contour_kan, row=1, col=2)
    
    # 添加采样点
    if samples is not None:
        samples = samples.cpu().numpy() if torch.is_tensor(samples) else samples
        fig_kan.add_trace(
            go.Scatter(
                x=samples[:, 0], y=samples[:, 1],
                mode='markers',
                marker=dict(
                    size=8,
                    color='yellow',
                    line=dict(color='black', width=1)
                ),
                name='训练点'
            ),
            row=1, col=2
        )
    
    # 更新布局
    fig_kan.update_layout(
        title='KAN预测分布',
        showlegend=True,
        width=1200,
        height=600,
        scene=dict(
            xaxis_title='X',
            yaxis_title='Y',
            zaxis_title='密度'
        )
    )
    
    # 更新2D图的坐标轴
    fig_kan.update_xaxes(title_text='X', row=1, col=2)
    fig_kan.update_yaxes(title_text='Y', row=1, col=2)
    
    # 使用占位符显示图形
    
    placeholder.plotly_chart(fig_kan, 
                             use_container_width=False, 
                             key=f"kan_plot_{phase_name}_{time.time()}")

def create_gmm_plot(dataset, centers, K, samples=None):
    """创建GMM分布的可视化图形"""
    # 生成网格数据
    x = np.linspace(-5, 5, 100)
    y = np.linspace(-5, 5, 100)
    X, Y = np.meshgrid(x, y)
    xy = np.column_stack((X.ravel(), Y.ravel()))

    # 计算概率密度
    Z = dataset.pdf(xy).reshape(X.shape)

    # 创建2D和3D可视化
    fig = make_subplots(
        rows=1, cols=2,
        specs=[[{'type': 'surface'}, {'type': 'contour'}]],
        subplot_titles=('3D概率密度曲面', '等高线图与分量中心')
    )

    # 3D Surface
    surface = go.Surface(
        x=X, y=Y, z=Z,
        colorscale='viridis',
        showscale=True,
        colorbar=dict(x=0.45)
    )
    fig.add_trace(surface, row=1, col=1)

    # Contour Plot
    contour = go.Contour(
        x=x, y=y, z=Z,
        colorscale='viridis',
        showscale=True,
        colorbar=dict(x=1.0),
        contours=dict(
            showlabels=True,
            labelfont=dict(size=12)
        )
    )
    fig.add_trace(contour, row=1, col=2)

    # 添加分量中心点
    fig.add_trace(
        go.Scatter(
            x=centers[:K, 0], y=centers[:K, 1],
            mode='markers+text',
            marker=dict(size=10, color='red'),
            text=[f'C{i+1}' for i in range(K)],
            textposition="top center",
            name='分量中心'
        ),
        row=1, col=2
    )

    # 添加采样点(如果有)
    if samples is not None:
        fig.add_trace(
            go.Scatter(
                x=samples[:, 0], y=samples[:, 1],
                mode='markers+text',
                marker=dict(
                    size=8,
                    color='yellow',
                    line=dict(color='black', width=1)
                ),
                text=[f'S{i+1}' for i in range(len(samples))],
                textposition="bottom center",
                name='采样点'
            ),
            row=1, col=2
        )

    # 更新布局
    fig.update_layout(
        title='广义高斯混合分布',
        showlegend=True,
        width=1200,
        height=600,
        scene=dict(
            xaxis_title='X',
            yaxis_title='Y',
            zaxis_title='密度'
        )
    )

    # 更新2D图的坐标轴
    fig.update_xaxes(title_text='X', row=1, col=2)
    fig.update_yaxes(title_text='Y', row=1, col=2)

    return fig

def train_kan(samples, gmm_dataset, device='cuda'):
    """训练KAN网络"""
    if torch.cuda.is_available() and device == 'cuda':
        device = torch.device('cuda')
    else:
        device = torch.device('cpu')
    st.info(f"使用设备: {device} 训练网络")

    # 转换采样点为tensor
    samples = torch.from_numpy(samples).to(device)
    # 计算标签(概率密度值)
    labels = torch.from_numpy(gmm_dataset.pdf(samples.cpu().numpy())).reshape(-1, 1).to(device)

    # 创建KAN模型
    model = KAN(width=[2,5,1], grid=3, k=3, seed=42, device=device)
    # 创建训练和测试数据集
    train_size = int(0.8 * samples.shape[0])
    train_dataset = {
        'train_input': samples[:train_size],
        'train_label': labels[:train_size],
        'test_input': samples[train_size:],
        'test_label': labels[train_size:]
    }

    # 创建训练进度显示组件
    # st.write("网络预测分布:")
    

    st.write("网络图形结构:")
    kan_network_arch_placeholder = st.empty()


    progress_container = st.container()

    # total_steps = 100
    total_steps = 50
    steps_per_update = 10

    def calculate_error(model, x, y):
        """计算预测误差"""
        with torch.no_grad():
            pred = model(x)
            return torch.mean((pred - y) ** 2).item()
    
    def train_phase(phase_name, steps, lamb=None, show_plot=True):
        with progress_container:
            progress_bar = st.progress(0)
            status_text = st.empty()
            
            for step in range(0, steps, steps_per_update):
                # 训练几步
                if lamb is not None:
                    model.fit(train_dataset, opt="LBFGS", steps=steps_per_update, lamb=lamb)
                else:
                    model.fit(train_dataset, opt="LBFGS", steps=steps_per_update)
                
                # 更新进度和误差
                progress = (step + steps_per_update) / steps
                progress_bar.progress(progress)
                
                # 计算当前误差
                train_error = calculate_error(model, train_dataset['train_input'], train_dataset['train_label'])
                test_error = calculate_error(model, train_dataset['test_input'], train_dataset['test_label'])
                # 使用表格格式显示进度和误差
                status_text.markdown(f"""
                ### {phase_name}
                | 项目 | 值 |
                |:---|:---|
                | 进度 | {progress:.0%} |
                | 训练误差 | {train_error:.8f} |
                | 测试误差 | {test_error:.8f} |
                """)
                

                # 更新可视化(每5步更新一次)
                # if step % (steps_per_update * 5) == 0 or step + steps_per_update >= steps:
                #     # 更新预测结果
                #     show_kan_prediction(model, device, samples, kan_plot_placeholder, phase_name)
                    
                    # 更新网络结构图(可选)
                if show_plot:
                    try:
                        model.plot()
                        kan_fig = plt.gcf()
                        # if isinstance(kan_fig, tuple):
                            # kan_fig = kan_fig[0]  # 如果是元组,取第一个元素
                        # if kan_fig is not None:
                        kan_network_arch_placeholder.pyplot(kan_fig, use_container_width=False)
                        # plt.close('all')  # 确保关闭所有图形
                    except Exception as e:
                        if step == 0:  # 只在第一次出错时显示警告
                            st.warning(f"注意:网络结构图显示失败 ({str(e)})")


                # 更新进度和预测结果
                show_kan_prediction(model, device, samples, kan_distribution_plot_placeholder, phase_name)
                
    with progress_container:
        st.markdown("#### 训练过程")
        error_text = st.empty()

    # 第一阶段训练
    # 第一阶段:初始训练
    with st.spinner("参数调整中..."):
        train_phase("第一阶段: 正则化训练", total_steps, lamb=0.001, show_plot=True)  
    
    # 剪枝阶段
    with st.spinner("正在进行网络剪枝优化..."):
        model = model.prune()
        progress_container.info("网络剪枝完成")
    
    with st.spinner("参数调整中..."):
        train_phase("第二阶段: 剪枝适应性训练", total_steps, show_plot=True)  
    
    with st.spinner("正在进行网格精细化..."):
        model = model.refine(10)
        progress_container.info("网格精细化完成")

    with st.spinner("参数调整中..."):
        train_phase("第三阶段: 网格适应性训练", total_steps, show_plot=True) 

    with st.spinner("符号简化中..."):
        # model = model.prune()
        # progress_container.info("网络剪枝完成")
        lib = ['x','x^2','x^3','x^4','exp','log','sqrt','tanh','sin','abs']
        model.auto_symbolic(lib=lib)
        # model.auto_symbolic()
        progress_container.info("符号简化完成")

    with st.spinner("参数调整中..."):
        train_phase("第四阶段:符号适应性训练", total_steps, show_plot=True)  
    
    from kan.utils import ex_round
    from sympy import latex
    s= ex_round(model.symbolic_formula()[0][0],4)

    st.write("网络公式:")
    st.latex(latex(s))
    
    # 显示最终误差
    train_error = calculate_error(model, train_dataset['train_input'], train_dataset['train_label'])
    test_error = calculate_error(model, train_dataset['test_input'], train_dataset['test_label'])
    error_text.markdown(f"""
    #### 训练结果
    - 训练集误差: {train_error:.6f}
    - 测试集误差: {test_error:.6f}
    """)

    progress_container.success("🎉 训练完成!")
    return model

def init_session_state():
    """初始化session state"""
    if 'prev_K' not in st.session_state:
        st.session_state.prev_K = 3
    if 'p' not in st.session_state:
        st.session_state.p = 2.0
    if 'centers' not in st.session_state:
        st.session_state.centers = np.array([[-2, -2], [0, 0], [2, 2]], dtype=np.float64)
    if 'scales' not in st.session_state:
        st.session_state.scales = np.array([[0.3, 0.3], [0.2, 0.2], [0.4, 0.4]], dtype=np.float64)
    if 'weights' not in st.session_state:
        st.session_state.weights = np.ones(3, dtype=np.float64) / 3
    if 'sample_points' not in st.session_state:
        st.session_state.sample_points = None
    if 'kan_model' not in st.session_state:
        st.session_state.kan_model = None

def create_default_parameters(K: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    """创建默认参数"""
    # 在[-3, 3]范围内均匀生成K个中心点
    x = np.linspace(-3, 3, K)
    y = np.linspace(-3, 3, K)
    centers = np.column_stack((x, y))
    
    # 默认尺度和权重
    scales = np.ones((K, 2), dtype=np.float64) * 3
    weights = np.random.random(size=K).astype(np.float64)
    weights /= weights.sum()  # 归一化权重
    return centers, scales, weights

def generate_latex_formula(p: float, K: int, centers: np.ndarray, 
                         scales: np.ndarray, weights: np.ndarray) -> str:
    """生成LaTeX公式"""
    formula = r"P(x) = \sum_{k=1}^{" + str(K) + r"} \pi_k P_{\theta_k}(x) \\"
    formula += r"P_{\theta_k}(x) = \eta_k \exp(-s_k d_k(x)) = \frac{p}{2\alpha_k \Gamma(1/p) }\exp(-\frac{|x-c_k|^p}{\alpha_k^p})= \frac{p}{2\alpha_k \Gamma(1/p) }\exp(-|\frac{x-c_k}{\alpha_k}|^p) \\"
    formula += r"\text{where: }"
    
    for k in range(K):
        c = centers[k]
        s = scales[k]
        w = weights[k]
        component = f"P_{{\\theta_{k+1}}}(x) = \\frac{{{p:.1f}}}{{2\\alpha_{k+1} \\Gamma(1/{p:.1f})}}\\exp(-|\\frac{{x-({c[0]:.1f}, {c[1]:.1f})}}{{{s[0]:.1f}, {s[1]:.1f}}}|^{{{p:.1f}}}) \\\\"
        formula += component
        formula += f"\\pi_{k+1} = {w:.2f} \\\\"
    
    return formula

st.set_page_config(page_title="GMM Distribution Visualization", layout="wide")
st.title("广义高斯混合分布可视化")

# 初始化session state
init_session_state()

# 侧边栏参数设置
with st.sidebar:
    st.header("分布参数")
    
    # 分布基本参数
    st.session_state.p = st.slider("形状参数 (p)", 0.1, 5.0, st.session_state.p, 0.1,
                                 help="p=1: 拉普拉斯分布, p=2: 高斯分布, p→∞: 均匀分布")
    K = st.slider("分量数 (K)", 1, 5, st.session_state.prev_K)
    
    # 如果K发生变化,重新初始化参数
    if K != st.session_state.prev_K:
        centers, scales, weights = create_default_parameters(K)
        st.session_state.centers = centers
        st.session_state.scales = scales
        st.session_state.weights = weights
        st.session_state.prev_K = K
    
    # 高级参数设置
    st.subheader("高级设置")
    show_advanced = st.checkbox("显示分量参数", value=False)
    
    if show_advanced:
        # 为每个分量设置参数
        centers_list: List[List[float]] = []
        scales_list: List[List[float]] = []
        weights_list: List[float] = []
        
        for k in range(K):
            st.write(f"分量 {k+1}")
            col1, col2 = st.columns(2)
            with col1:
                cx = st.number_input(f"中心X_{k+1}", -5.0, 5.0, float(st.session_state.centers[k][0]), 0.1)
                cy = st.number_input(f"中心Y_{k+1}", -5.0, 5.0, float(st.session_state.centers[k][1]), 0.1)
            with col2:
                sx = st.number_input(f"尺度X_{k+1}", 0.1, 3.0, float(st.session_state.scales[k][0]), 0.1)
                sy = st.number_input(f"尺度Y_{k+1}", 0.1, 3.0, float(st.session_state.scales[k][1]), 0.1)
            w = st.slider(f"权重_{k+1}", 0.0, 1.0, float(st.session_state.weights[k]), 0.1)
            
            centers_list.append([cx, cy])
            scales_list.append([sx, sy])
            weights_list.append(w)
        
        centers = np.array(centers_list, dtype=np.float64)
        scales = np.array(scales_list, dtype=np.float64)
        weights = np.array(weights_list, dtype=np.float64)
        weights = weights / weights.sum()
        
        st.session_state.centers = centers
        st.session_state.scales = scales
        st.session_state.weights = weights
    else:
        centers = st.session_state.centers
        scales = st.session_state.scales
        weights = st.session_state.weights

    # 采样设置
    st.subheader("采样设置")
    n_samples = st.slider("采样点数", 5, 1000, 100)
    if st.button("重新采样"):
        # 创建GMM数据集进行采样
        gmm = GeneralizedGaussianMixture(
            D=2,
            K=K,
            p=st.session_state.p,
            centers=centers[:K],
            scales=scales[:K],
            weights=weights[:K]
        )
        # 使用GMM生成采样点
        samples, _ = gmm.generate_samples(n_samples)
        st.session_state.sample_points = samples
        st.session_state.kan_model = None  # 重置KAN模型

# 创建GMM数据集
dataset = GeneralizedGaussianMixture(
    D=2,
    K=K,
    p=st.session_state.p,
    centers=centers[:K],
    scales=scales[:K],
    weights=weights[:K]
)

# 生成网格数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
xy = np.column_stack((X.ravel(), Y.ravel()))

# 计算概率密度
Z = dataset.pdf(xy).reshape(X.shape)

# 创建2D和3D可视化
fig = make_subplots(
    rows=1, cols=2,
    specs=[[{'type': 'surface'}, {'type': 'contour'}]],
    subplot_titles=('3D概率密度曲面', '等高线图与分量中心')
)

# 3D Surface
surface = go.Surface(
    x=X, y=Y, z=Z,
    colorscale='viridis',
    showscale=True,
    colorbar=dict(x=0.45)
)
fig.add_trace(surface, row=1, col=1)

# Contour Plot with component centers
contour = go.Contour(
    x=x, y=y, z=Z,
    colorscale='viridis',
    showscale=True,
    colorbar=dict(x=1.0),
    contours=dict(
        showlabels=True,
        labelfont=dict(size=12)
    )
)
fig.add_trace(contour, row=1, col=2)

# 添加分量中心点
fig.add_trace(
    go.Scatter(
        x=centers[:K, 0], y=centers[:K, 1],
        mode='markers+text',
        marker=dict(size=10, color='red'),
        text=[f'C{i+1}' for i in range(K)],
        textposition="top center",
        name='分量中心'
    ),
    row=1, col=2
)

# 添加采样点(如果有)
if st.session_state.sample_points is not None:
    samples = st.session_state.sample_points
    # 计算每个样本点的概率密度
    probs = dataset.pdf(samples)
    # 计算每个样本点属于每个分量的后验概率
    posteriors = []
    for sample in samples:
        component_probs = [
            weights[k] * np.exp(-np.sum(((sample - centers[k]) / scales[k])**st.session_state.p))
            for k in range(K)
        ]
        total = sum(component_probs)
        posteriors.append([p/total for p in component_probs])
    
    # 添加样本点到图表
    fig.add_trace(
        go.Scatter(
            x=samples[:, 0], y=samples[:, 1],
            mode='markers+text',
            marker=dict(
                size=8,
                color='yellow',
                line=dict(color='black', width=1)
            ),
            text=[f'S{i+1}' for i in range(len(samples))],
            textposition="bottom center",
            name='采样点'
        ),
        row=1, col=2
    )

# 更新布局
fig.update_layout(
    title='广义高斯混合分布',
    showlegend=True,
    width=1200,
    height=600,
    scene=dict(
        xaxis_title='X',
        yaxis_title='Y',
        zaxis_title='密度'
    )
)

# 更新2D图的坐标轴
fig.update_xaxes(title_text='X', row=1, col=2)
fig.update_yaxes(title_text='Y', row=1, col=2)

# 显示GMM主图
st.plotly_chart(fig, use_container_width=False)


# KAN网络训练和预测部分
if st.session_state.sample_points is not None:
    st.markdown("---")
    st.subheader("KAN网络训练与预测")

    kan_distribution_plot_placeholder = st.empty()
    
    # 训练控制按钮
    col1, col2, col3 = st.columns([1, 2, 1])
    with col1:
        if st.button("拟合KAN", use_container_width=False):
            with st.spinner('训练KAN网络中...'):
                st.session_state.kan_model = train_kan(st.session_state.sample_points, dataset)
                st.balloons()

    with col3:
        if st.session_state.kan_model is not None:
            if st.button("清除KAN结果", use_container_width=False):
                st.session_state.kan_model = None
                st.rerun()
    
    # 显示KAN预测结果
    # if st.session_state.kan_model is not None:
        # st.subheader("KAN预测结果")
        # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        # kan_plot_placeholder = st.empty()
        # show_kan_prediction(st.session_state.kan_model, device,
        #                   st.session_state.sample_points, kan_plot_placeholder, "显示结果")

    st.markdown("---")

# 显示采样点信息
if st.session_state.sample_points is not None:
    # 重新计算采样点的概率密度和后验概率
    samples = st.session_state.sample_points
    probs = dataset.pdf(samples)
    posteriors = []
    for sample in samples:
        component_probs = [
            weights[k] * np.exp(-np.sum(((sample - centers[k]) / scales[k])**st.session_state.p))
            for k in range(K)
        ]
        total = sum(component_probs)
        posteriors.append([p/total for p in component_probs])
        
    with st.expander("采样点信息"):
        # 创建数据列表
        point_data = []
        for i, (sample, prob, post) in enumerate(zip(samples, probs, posteriors)):
            row = {
                '采样点': f'S{i+1}',
                'X坐标': f'{sample[0]:.2f}',
                'Y坐标': f'{sample[1]:.2f}',
                '概率密度': f'{prob:.4f}'
            }
            # 添加每个分量的后验概率
            for k in range(K):
                row[f'分量{k+1}后验概率'] = f'{post[k]:.4f}'
            point_data.append(row)
        
        # 显示dataframe
        st.dataframe(point_data)

# 添加参数说明
with st.expander("分布参数说明"):
    st.markdown("""
    - **形状参数 (p)**:控制分布的形状
        - p = 1: 拉普拉斯分布
        - p = 2: 高斯分布
        - p → ∞: 均匀分布
    - **分量参数**:每个分量由以下参数确定
        - 中心 (μ): 峰值位置,通过X和Y坐标确定
        - 尺度 (α): 分布的展宽程度,X和Y方向可不同
        - 权重 (π): 混合系数,所有分量权重和为1
    """)

# 显示当前参数的数学公式
with st.expander("分布概率密度函数公式"):
    st.latex(generate_latex_formula(st.session_state.p, K, centers[:K], scales[:K], weights[:K]))