File size: 22,462 Bytes
06aa092 78e4509 86e568b 06aa092 86e568b a299d07 86e568b 06aa092 86e568b 06aa092 86e568b 06aa092 86e568b 06aa092 86e568b 06aa092 86e568b 06aa092 86e568b 06aa092 86e568b 06aa092 86e568b 06aa092 86e568b 06aa092 86e568b 06aa092 a299d07 06aa092 86e568b 06aa092 86e568b 78e4509 86e568b 78e4509 86e568b 78e4509 06aa092 78e4509 86e568b 78e4509 86e568b 78e4509 86e568b 06aa092 78e4509 86e568b 06aa092 86e568b 06aa092 86e568b 06aa092 86e568b 06aa092 86e568b 78e4509 06aa092 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
import time
import streamlit as st
import numpy as np
from pathlib import Path
from experiments.gmm_dataset import GeneralizedGaussianMixture
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from typing import List, Tuple
import torch
import os
import sys
import matplotlib.pyplot as plt
# Set torch path
torch.classes.__path__ = [os.path.join(torch.__path__[0], torch.classes.__file__ or "")]
# Add pykan to path
pykan_path = Path(__file__).parent.parent / 'third_party' / 'pykan'
sys.path.append(str(pykan_path))
# Import KAN related modules
from kan import KAN # type: ignore
from kan.utils import create_dataset, ex_round # type: ignore
# Set torch dtype
torch.set_default_dtype(torch.float64)
def show_kan_prediction(model, device, samples, placeholder, phase_name):
"""显示KAN的预测结果"""
# 生成网格数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
xy = np.column_stack((X.ravel(), Y.ravel()))
# 使用KAN预测
grid_points = torch.from_numpy(xy).to(device)
with torch.no_grad():
Z_kan = model(grid_points).cpu().numpy().reshape(X.shape)
# 创建预测的概率密度图
fig_kan = make_subplots(
rows=1, cols=2,
specs=[[{'type': 'surface'}, {'type': 'contour'}]],
subplot_titles=('KAN预测的3D概率密度曲面', 'KAN预测的等高线图')
)
# 3D Surface
surface_kan = go.Surface(
x=X, y=Y, z=Z_kan,
colorscale='viridis',
showscale=True,
colorbar=dict(x=0.45)
)
fig_kan.add_trace(surface_kan, row=1, col=1)
# Contour Plot
contour_kan = go.Contour(
x=x, y=y, z=Z_kan,
colorscale='viridis',
showscale=True,
colorbar=dict(x=1.0),
contours=dict(
showlabels=True,
labelfont=dict(size=12)
)
)
fig_kan.add_trace(contour_kan, row=1, col=2)
# 添加采样点
if samples is not None:
samples = samples.cpu().numpy() if torch.is_tensor(samples) else samples
fig_kan.add_trace(
go.Scatter(
x=samples[:, 0], y=samples[:, 1],
mode='markers',
marker=dict(
size=8,
color='yellow',
line=dict(color='black', width=1)
),
name='训练点'
),
row=1, col=2
)
# 更新布局
fig_kan.update_layout(
title='KAN预测分布',
showlegend=True,
width=1200,
height=600,
scene=dict(
xaxis_title='X',
yaxis_title='Y',
zaxis_title='密度'
)
)
# 更新2D图的坐标轴
fig_kan.update_xaxes(title_text='X', row=1, col=2)
fig_kan.update_yaxes(title_text='Y', row=1, col=2)
# 使用占位符显示图形
placeholder.plotly_chart(fig_kan,
use_container_width=False,
key=f"kan_plot_{phase_name}_{time.time()}")
def create_gmm_plot(dataset, centers, K, samples=None):
"""创建GMM分布的可视化图形"""
# 生成网格数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
xy = np.column_stack((X.ravel(), Y.ravel()))
# 计算概率密度
Z = dataset.pdf(xy).reshape(X.shape)
# 创建2D和3D可视化
fig = make_subplots(
rows=1, cols=2,
specs=[[{'type': 'surface'}, {'type': 'contour'}]],
subplot_titles=('3D概率密度曲面', '等高线图与分量中心')
)
# 3D Surface
surface = go.Surface(
x=X, y=Y, z=Z,
colorscale='viridis',
showscale=True,
colorbar=dict(x=0.45)
)
fig.add_trace(surface, row=1, col=1)
# Contour Plot
contour = go.Contour(
x=x, y=y, z=Z,
colorscale='viridis',
showscale=True,
colorbar=dict(x=1.0),
contours=dict(
showlabels=True,
labelfont=dict(size=12)
)
)
fig.add_trace(contour, row=1, col=2)
# 添加分量中心点
fig.add_trace(
go.Scatter(
x=centers[:K, 0], y=centers[:K, 1],
mode='markers+text',
marker=dict(size=10, color='red'),
text=[f'C{i+1}' for i in range(K)],
textposition="top center",
name='分量中心'
),
row=1, col=2
)
# 添加采样点(如果有)
if samples is not None:
fig.add_trace(
go.Scatter(
x=samples[:, 0], y=samples[:, 1],
mode='markers+text',
marker=dict(
size=8,
color='yellow',
line=dict(color='black', width=1)
),
text=[f'S{i+1}' for i in range(len(samples))],
textposition="bottom center",
name='采样点'
),
row=1, col=2
)
# 更新布局
fig.update_layout(
title='广义高斯混合分布',
showlegend=True,
width=1200,
height=600,
scene=dict(
xaxis_title='X',
yaxis_title='Y',
zaxis_title='密度'
)
)
# 更新2D图的坐标轴
fig.update_xaxes(title_text='X', row=1, col=2)
fig.update_yaxes(title_text='Y', row=1, col=2)
return fig
def train_kan(samples, gmm_dataset, device='cuda'):
"""训练KAN网络"""
if torch.cuda.is_available() and device == 'cuda':
device = torch.device('cuda')
else:
device = torch.device('cpu')
st.info(f"使用设备: {device} 训练网络")
# 转换采样点为tensor
samples = torch.from_numpy(samples).to(device)
# 计算标签(概率密度值)
labels = torch.from_numpy(gmm_dataset.pdf(samples.cpu().numpy())).reshape(-1, 1).to(device)
# 创建KAN模型
model = KAN(width=[2,5,1], grid=3, k=3, seed=42, device=device)
# 创建训练和测试数据集
train_size = int(0.8 * samples.shape[0])
train_dataset = {
'train_input': samples[:train_size],
'train_label': labels[:train_size],
'test_input': samples[train_size:],
'test_label': labels[train_size:]
}
# 创建训练进度显示组件
# st.write("网络预测分布:")
st.write("网络图形结构:")
kan_network_arch_placeholder = st.empty()
progress_container = st.container()
# total_steps = 100
total_steps = 50
steps_per_update = 10
def calculate_error(model, x, y):
"""计算预测误差"""
with torch.no_grad():
pred = model(x)
return torch.mean((pred - y) ** 2).item()
def train_phase(phase_name, steps, lamb=None, show_plot=True):
with progress_container:
progress_bar = st.progress(0)
status_text = st.empty()
for step in range(0, steps, steps_per_update):
# 训练几步
if lamb is not None:
model.fit(train_dataset, opt="LBFGS", steps=steps_per_update, lamb=lamb)
else:
model.fit(train_dataset, opt="LBFGS", steps=steps_per_update)
# 更新进度和误差
progress = (step + steps_per_update) / steps
progress_bar.progress(progress)
# 计算当前误差
train_error = calculate_error(model, train_dataset['train_input'], train_dataset['train_label'])
test_error = calculate_error(model, train_dataset['test_input'], train_dataset['test_label'])
# 使用表格格式显示进度和误差
status_text.markdown(f"""
### {phase_name}
| 项目 | 值 |
|:---|:---|
| 进度 | {progress:.0%} |
| 训练误差 | {train_error:.8f} |
| 测试误差 | {test_error:.8f} |
""")
# 更新可视化(每5步更新一次)
# if step % (steps_per_update * 5) == 0 or step + steps_per_update >= steps:
# # 更新预测结果
# show_kan_prediction(model, device, samples, kan_plot_placeholder, phase_name)
# 更新网络结构图(可选)
if show_plot:
try:
model.plot()
kan_fig = plt.gcf()
# if isinstance(kan_fig, tuple):
# kan_fig = kan_fig[0] # 如果是元组,取第一个元素
# if kan_fig is not None:
kan_network_arch_placeholder.pyplot(kan_fig, use_container_width=False)
# plt.close('all') # 确保关闭所有图形
except Exception as e:
if step == 0: # 只在第一次出错时显示警告
st.warning(f"注意:网络结构图显示失败 ({str(e)})")
# 更新进度和预测结果
show_kan_prediction(model, device, samples, kan_distribution_plot_placeholder, phase_name)
with progress_container:
st.markdown("#### 训练过程")
error_text = st.empty()
# 第一阶段训练
# 第一阶段:初始训练
with st.spinner("参数调整中..."):
train_phase("第一阶段: 正则化训练", total_steps, lamb=0.001, show_plot=True)
# 剪枝阶段
with st.spinner("正在进行网络剪枝优化..."):
model = model.prune()
progress_container.info("网络剪枝完成")
with st.spinner("参数调整中..."):
train_phase("第二阶段: 剪枝适应性训练", total_steps, show_plot=True)
with st.spinner("正在进行网格精细化..."):
model = model.refine(10)
progress_container.info("网格精细化完成")
with st.spinner("参数调整中..."):
train_phase("第三阶段: 网格适应性训练", total_steps, show_plot=True)
with st.spinner("符号简化中..."):
# model = model.prune()
# progress_container.info("网络剪枝完成")
lib = ['x','x^2','x^3','x^4','exp','log','sqrt','tanh','sin','abs']
model.auto_symbolic(lib=lib)
# model.auto_symbolic()
progress_container.info("符号简化完成")
with st.spinner("参数调整中..."):
train_phase("第四阶段:符号适应性训练", total_steps, show_plot=True)
from kan.utils import ex_round
from sympy import latex
s= ex_round(model.symbolic_formula()[0][0],4)
st.write("网络公式:")
st.latex(latex(s))
# 显示最终误差
train_error = calculate_error(model, train_dataset['train_input'], train_dataset['train_label'])
test_error = calculate_error(model, train_dataset['test_input'], train_dataset['test_label'])
error_text.markdown(f"""
#### 训练结果
- 训练集误差: {train_error:.6f}
- 测试集误差: {test_error:.6f}
""")
progress_container.success("🎉 训练完成!")
return model
def init_session_state():
"""初始化session state"""
if 'prev_K' not in st.session_state:
st.session_state.prev_K = 3
if 'p' not in st.session_state:
st.session_state.p = 2.0
if 'centers' not in st.session_state:
st.session_state.centers = np.array([[-2, -2], [0, 0], [2, 2]], dtype=np.float64)
if 'scales' not in st.session_state:
st.session_state.scales = np.array([[0.3, 0.3], [0.2, 0.2], [0.4, 0.4]], dtype=np.float64)
if 'weights' not in st.session_state:
st.session_state.weights = np.ones(3, dtype=np.float64) / 3
if 'sample_points' not in st.session_state:
st.session_state.sample_points = None
if 'kan_model' not in st.session_state:
st.session_state.kan_model = None
def create_default_parameters(K: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""创建默认参数"""
# 在[-3, 3]范围内均匀生成K个中心点
x = np.linspace(-3, 3, K)
y = np.linspace(-3, 3, K)
centers = np.column_stack((x, y))
# 默认尺度和权重
scales = np.ones((K, 2), dtype=np.float64) * 3
weights = np.random.random(size=K).astype(np.float64)
weights /= weights.sum() # 归一化权重
return centers, scales, weights
def generate_latex_formula(p: float, K: int, centers: np.ndarray,
scales: np.ndarray, weights: np.ndarray) -> str:
"""生成LaTeX公式"""
formula = r"P(x) = \sum_{k=1}^{" + str(K) + r"} \pi_k P_{\theta_k}(x) \\"
formula += r"P_{\theta_k}(x) = \eta_k \exp(-s_k d_k(x)) = \frac{p}{2\alpha_k \Gamma(1/p) }\exp(-\frac{|x-c_k|^p}{\alpha_k^p})= \frac{p}{2\alpha_k \Gamma(1/p) }\exp(-|\frac{x-c_k}{\alpha_k}|^p) \\"
formula += r"\text{where: }"
for k in range(K):
c = centers[k]
s = scales[k]
w = weights[k]
component = f"P_{{\\theta_{k+1}}}(x) = \\frac{{{p:.1f}}}{{2\\alpha_{k+1} \\Gamma(1/{p:.1f})}}\\exp(-|\\frac{{x-({c[0]:.1f}, {c[1]:.1f})}}{{{s[0]:.1f}, {s[1]:.1f}}}|^{{{p:.1f}}}) \\\\"
formula += component
formula += f"\\pi_{k+1} = {w:.2f} \\\\"
return formula
st.set_page_config(page_title="GMM Distribution Visualization", layout="wide")
st.title("广义高斯混合分布可视化")
# 初始化session state
init_session_state()
# 侧边栏参数设置
with st.sidebar:
st.header("分布参数")
# 分布基本参数
st.session_state.p = st.slider("形状参数 (p)", 0.1, 5.0, st.session_state.p, 0.1,
help="p=1: 拉普拉斯分布, p=2: 高斯分布, p→∞: 均匀分布")
K = st.slider("分量数 (K)", 1, 5, st.session_state.prev_K)
# 如果K发生变化,重新初始化参数
if K != st.session_state.prev_K:
centers, scales, weights = create_default_parameters(K)
st.session_state.centers = centers
st.session_state.scales = scales
st.session_state.weights = weights
st.session_state.prev_K = K
# 高级参数设置
st.subheader("高级设置")
show_advanced = st.checkbox("显示分量参数", value=False)
if show_advanced:
# 为每个分量设置参数
centers_list: List[List[float]] = []
scales_list: List[List[float]] = []
weights_list: List[float] = []
for k in range(K):
st.write(f"分量 {k+1}")
col1, col2 = st.columns(2)
with col1:
cx = st.number_input(f"中心X_{k+1}", -5.0, 5.0, float(st.session_state.centers[k][0]), 0.1)
cy = st.number_input(f"中心Y_{k+1}", -5.0, 5.0, float(st.session_state.centers[k][1]), 0.1)
with col2:
sx = st.number_input(f"尺度X_{k+1}", 0.1, 3.0, float(st.session_state.scales[k][0]), 0.1)
sy = st.number_input(f"尺度Y_{k+1}", 0.1, 3.0, float(st.session_state.scales[k][1]), 0.1)
w = st.slider(f"权重_{k+1}", 0.0, 1.0, float(st.session_state.weights[k]), 0.1)
centers_list.append([cx, cy])
scales_list.append([sx, sy])
weights_list.append(w)
centers = np.array(centers_list, dtype=np.float64)
scales = np.array(scales_list, dtype=np.float64)
weights = np.array(weights_list, dtype=np.float64)
weights = weights / weights.sum()
st.session_state.centers = centers
st.session_state.scales = scales
st.session_state.weights = weights
else:
centers = st.session_state.centers
scales = st.session_state.scales
weights = st.session_state.weights
# 采样设置
st.subheader("采样设置")
n_samples = st.slider("采样点数", 5, 1000, 100)
if st.button("重新采样"):
# 创建GMM数据集进行采样
gmm = GeneralizedGaussianMixture(
D=2,
K=K,
p=st.session_state.p,
centers=centers[:K],
scales=scales[:K],
weights=weights[:K]
)
# 使用GMM生成采样点
samples, _ = gmm.generate_samples(n_samples)
st.session_state.sample_points = samples
st.session_state.kan_model = None # 重置KAN模型
# 创建GMM数据集
dataset = GeneralizedGaussianMixture(
D=2,
K=K,
p=st.session_state.p,
centers=centers[:K],
scales=scales[:K],
weights=weights[:K]
)
# 生成网格数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
xy = np.column_stack((X.ravel(), Y.ravel()))
# 计算概率密度
Z = dataset.pdf(xy).reshape(X.shape)
# 创建2D和3D可视化
fig = make_subplots(
rows=1, cols=2,
specs=[[{'type': 'surface'}, {'type': 'contour'}]],
subplot_titles=('3D概率密度曲面', '等高线图与分量中心')
)
# 3D Surface
surface = go.Surface(
x=X, y=Y, z=Z,
colorscale='viridis',
showscale=True,
colorbar=dict(x=0.45)
)
fig.add_trace(surface, row=1, col=1)
# Contour Plot with component centers
contour = go.Contour(
x=x, y=y, z=Z,
colorscale='viridis',
showscale=True,
colorbar=dict(x=1.0),
contours=dict(
showlabels=True,
labelfont=dict(size=12)
)
)
fig.add_trace(contour, row=1, col=2)
# 添加分量中心点
fig.add_trace(
go.Scatter(
x=centers[:K, 0], y=centers[:K, 1],
mode='markers+text',
marker=dict(size=10, color='red'),
text=[f'C{i+1}' for i in range(K)],
textposition="top center",
name='分量中心'
),
row=1, col=2
)
# 添加采样点(如果有)
if st.session_state.sample_points is not None:
samples = st.session_state.sample_points
# 计算每个样本点的概率密度
probs = dataset.pdf(samples)
# 计算每个样本点属于每个分量的后验概率
posteriors = []
for sample in samples:
component_probs = [
weights[k] * np.exp(-np.sum(((sample - centers[k]) / scales[k])**st.session_state.p))
for k in range(K)
]
total = sum(component_probs)
posteriors.append([p/total for p in component_probs])
# 添加样本点到图表
fig.add_trace(
go.Scatter(
x=samples[:, 0], y=samples[:, 1],
mode='markers+text',
marker=dict(
size=8,
color='yellow',
line=dict(color='black', width=1)
),
text=[f'S{i+1}' for i in range(len(samples))],
textposition="bottom center",
name='采样点'
),
row=1, col=2
)
# 更新布局
fig.update_layout(
title='广义高斯混合分布',
showlegend=True,
width=1200,
height=600,
scene=dict(
xaxis_title='X',
yaxis_title='Y',
zaxis_title='密度'
)
)
# 更新2D图的坐标轴
fig.update_xaxes(title_text='X', row=1, col=2)
fig.update_yaxes(title_text='Y', row=1, col=2)
# 显示GMM主图
st.plotly_chart(fig, use_container_width=False)
# KAN网络训练和预测部分
if st.session_state.sample_points is not None:
st.markdown("---")
st.subheader("KAN网络训练与预测")
kan_distribution_plot_placeholder = st.empty()
# 训练控制按钮
col1, col2, col3 = st.columns([1, 2, 1])
with col1:
if st.button("拟合KAN", use_container_width=False):
with st.spinner('训练KAN网络中...'):
st.session_state.kan_model = train_kan(st.session_state.sample_points, dataset)
st.balloons()
with col3:
if st.session_state.kan_model is not None:
if st.button("清除KAN结果", use_container_width=False):
st.session_state.kan_model = None
st.rerun()
# 显示KAN预测结果
# if st.session_state.kan_model is not None:
# st.subheader("KAN预测结果")
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# kan_plot_placeholder = st.empty()
# show_kan_prediction(st.session_state.kan_model, device,
# st.session_state.sample_points, kan_plot_placeholder, "显示结果")
st.markdown("---")
# 显示采样点信息
if st.session_state.sample_points is not None:
# 重新计算采样点的概率密度和后验概率
samples = st.session_state.sample_points
probs = dataset.pdf(samples)
posteriors = []
for sample in samples:
component_probs = [
weights[k] * np.exp(-np.sum(((sample - centers[k]) / scales[k])**st.session_state.p))
for k in range(K)
]
total = sum(component_probs)
posteriors.append([p/total for p in component_probs])
with st.expander("采样点信息"):
# 创建数据列表
point_data = []
for i, (sample, prob, post) in enumerate(zip(samples, probs, posteriors)):
row = {
'采样点': f'S{i+1}',
'X坐标': f'{sample[0]:.2f}',
'Y坐标': f'{sample[1]:.2f}',
'概率密度': f'{prob:.4f}'
}
# 添加每个分量的后验概率
for k in range(K):
row[f'分量{k+1}后验概率'] = f'{post[k]:.4f}'
point_data.append(row)
# 显示dataframe
st.dataframe(point_data)
# 添加参数说明
with st.expander("分布参数说明"):
st.markdown("""
- **形状参数 (p)**:控制分布的形状
- p = 1: 拉普拉斯分布
- p = 2: 高斯分布
- p → ∞: 均匀分布
- **分量参数**:每个分量由以下参数确定
- 中心 (μ): 峰值位置,通过X和Y坐标确定
- 尺度 (α): 分布的展宽程度,X和Y方向可不同
- 权重 (π): 混合系数,所有分量权重和为1
""")
# 显示当前参数的数学公式
with st.expander("分布概率密度函数公式"):
st.latex(generate_latex_formula(st.session_state.p, K, centers[:K], scales[:K], weights[:K])) |