File size: 9,107 Bytes
78e4509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import streamlit as st
import numpy as np
from pathlib import Path
from experiments.gmm_dataset import GeneralizedGaussianMixture
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from typing import List, Tuple

def init_session_state():
    """初始化session state"""
    if 'prev_K' not in st.session_state:
        st.session_state.prev_K = 3
    if 'p' not in st.session_state:
        st.session_state.p = 2.0
    if 'centers' not in st.session_state:
        st.session_state.centers = np.array([[-2, -2], [0, 0], [2, 2]], dtype=np.float64)
    if 'scales' not in st.session_state:
        st.session_state.scales = np.array([[0.3, 0.3], [0.2, 0.2], [0.4, 0.4]], dtype=np.float64)
    if 'weights' not in st.session_state:
        st.session_state.weights = np.ones(3, dtype=np.float64) / 3
    if 'sample_points' not in st.session_state:
        st.session_state.sample_points = None

def create_default_parameters(K: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    """创建默认参数"""
    # 在[-3, 3]范围内均匀生成K个中心点
    x = np.linspace(-3, 3, K)
    y = np.linspace(-3, 3, K)
    centers = np.column_stack((x, y))
    
    # 默认尺度和权重
    scales = np.ones((K, 2), dtype=np.float64) * 3
    weights = np.random.random(size=K).astype(np.float64)
    weights /= weights.sum()  # 归一化权重
    return centers, scales, weights

def generate_latex_formula(p: float, K: int, centers: np.ndarray, 
                         scales: np.ndarray, weights: np.ndarray) -> str:
    """生成LaTeX公式"""
    formula = r"P(x) = \sum_{k=1}^{" + str(K) + r"} \pi_k P_{\theta_k}(x) \\"
    formula += r"P_{\theta_k}(x) = \eta_k \exp(-s_k d_k(x)) = \frac{p}{2\alpha_k \Gamma(1/p) }\exp(-\frac{|x-c_k|^p}{\alpha_k^p})= \frac{p}{2\alpha_k \Gamma(1/p) }\exp(-|\frac{x-c_k}{\alpha_k}|^p) \\"
    formula += r"\text{where: }"
    
    for k in range(K):
        c = centers[k]
        s = scales[k]
        w = weights[k]
        component = f"P_{k+1}(x) = \\frac{{{p:.1f}}}{{2\\alpha_{k+1} \\Gamma(1/{p:.1f})}}\\exp(-|\\frac{{x-({c[0]:.1f}, {c[1]:.1f})}}{{{s[0]:.1f}, {s[1]:.1f}}}|^{{{p:.1f}}}) \\\\"
        formula += component
        formula += f"\\pi_{k+1} = {w:.2f} \\\\"
    
    return formula

st.set_page_config(page_title="GMM Distribution Visualization", layout="wide")
st.title("广义高斯混合分布可视化")

# 初始化session state
init_session_state()

# 侧边栏参数设置
with st.sidebar:
    st.header("分布参数")
    
    # 分布基本参数
    st.session_state.p = st.slider("形状参数 (p)", 0.1, 5.0, st.session_state.p, 0.1,
                                 help="p=1: 拉普拉斯分布, p=2: 高斯分布, p→∞: 均匀分布")
    K = st.slider("分量数 (K)", 1, 5, st.session_state.prev_K)
    
    # 如果K发生变化,重新初始化参数
    if K != st.session_state.prev_K:
        centers, scales, weights = create_default_parameters(K)
        st.session_state.centers = centers
        st.session_state.scales = scales
        st.session_state.weights = weights
        st.session_state.prev_K = K
    
    # 高级参数设置
    st.subheader("高级设置")
    show_advanced = st.checkbox("显示分量参数", value=False)
    
    if show_advanced:
        # 为每个分量设置参数
        centers_list: List[List[float]] = []
        scales_list: List[List[float]] = []
        weights_list: List[float] = []
        
        for k in range(K):
            st.write(f"分量 {k+1}")
            col1, col2 = st.columns(2)
            with col1:
                cx = st.number_input(f"中心X_{k+1}", -5.0, 5.0, float(st.session_state.centers[k][0]), 0.1)
                cy = st.number_input(f"中心Y_{k+1}", -5.0, 5.0, float(st.session_state.centers[k][1]), 0.1)
            with col2:
                sx = st.number_input(f"尺度X_{k+1}", 0.1, 3.0, float(st.session_state.scales[k][0]), 0.1)
                sy = st.number_input(f"尺度Y_{k+1}", 0.1, 3.0, float(st.session_state.scales[k][1]), 0.1)
            w = st.slider(f"权重_{k+1}", 0.0, 1.0, float(st.session_state.weights[k]), 0.1)
            
            centers_list.append([cx, cy])
            scales_list.append([sx, sy])
            weights_list.append(w)
        
        centers = np.array(centers_list, dtype=np.float64)
        scales = np.array(scales_list, dtype=np.float64)
        weights = np.array(weights_list, dtype=np.float64)
        weights = weights / weights.sum()
        
        st.session_state.centers = centers
        st.session_state.scales = scales
        st.session_state.weights = weights
    else:
        centers = st.session_state.centers
        scales = st.session_state.scales
        weights = st.session_state.weights

    # 采样设置
    st.subheader("采样设置")
    n_samples = st.slider("采样点数", 5, 20, 10)
    if st.button("重新采样"):
        # 生成随机样本
        samples = []
        for _ in range(n_samples):
            # 选择分量
            k = np.random.choice(K, p=weights)
            # 从选定的分量生成样本
            sample = np.random.normal(centers[k], scales[k], size=2)
            samples.append(sample)
        st.session_state.sample_points = np.array(samples)

# 创建GMM数据集
dataset = GeneralizedGaussianMixture(
    D=2,
    K=K,
    p=st.session_state.p,
    centers=centers[:K],
    scales=scales[:K],
    weights=weights[:K]
)

# 生成网格数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
xy = np.column_stack((X.ravel(), Y.ravel()))

# 计算概率密度
Z = dataset.pdf(xy).reshape(X.shape)

# 创建2D和3D可视化
fig = make_subplots(
    rows=1, cols=2,
    specs=[[{'type': 'surface'}, {'type': 'contour'}]],
    subplot_titles=('3D概率密度曲面', '等高线图与分量中心')
)

# 3D Surface
surface = go.Surface(
    x=X, y=Y, z=Z,
    colorscale='viridis',
    showscale=True,
    colorbar=dict(x=0.45)
)
fig.add_trace(surface, row=1, col=1)

# Contour Plot with component centers
contour = go.Contour(
    x=x, y=y, z=Z,
    colorscale='viridis',
    showscale=True,
    colorbar=dict(x=1.0),
    contours=dict(
        showlabels=True,
        labelfont=dict(size=12)
    )
)
fig.add_trace(contour, row=1, col=2)

# 添加分量中心点
fig.add_trace(
    go.Scatter(
        x=centers[:K, 0], y=centers[:K, 1],
        mode='markers+text',
        marker=dict(size=10, color='red'),
        text=[f'C{i+1}' for i in range(K)],
        textposition="top center",
        name='分量中心'
    ),
    row=1, col=2
)

# 添加采样点(如果有)
if st.session_state.sample_points is not None:
    samples = st.session_state.sample_points
    # 计算每个样本点的概率密度
    probs = dataset.pdf(samples)
    # 计算每个样本点属于每个分量的后验概率
    posteriors = []
    for sample in samples:
        component_probs = [
            weights[k] * np.exp(-np.sum(((sample - centers[k]) / scales[k])**st.session_state.p)) 
            for k in range(K)
        ]
        total = sum(component_probs)
        posteriors.append([p/total for p in component_probs])
    
    # 添加样本点到图表
    fig.add_trace(
        go.Scatter(
            x=samples[:, 0], y=samples[:, 1],
            mode='markers+text',
            marker=dict(
                size=8,
                color='yellow',
                line=dict(color='black', width=1)
            ),
            text=[f'S{i+1}' for i in range(len(samples))],
            textposition="bottom center",
            name='采样点'
        ),
        row=1, col=2
    )
    
    # 显示样本点的概率信息
    st.subheader("采样点信息")
    for i, (sample, prob, post) in enumerate(zip(samples, probs, posteriors)):
        st.write(f"样本点 S{i+1} ({sample[0]:.2f}, {sample[1]:.2f}):")
        st.write(f"- 概率密度: {prob:.4f}")
        st.write("- 后验概率:")
        for k in range(K):
            st.write(f"  - 分量 {k+1}: {post[k]:.4f}")
        st.write("---")

# 更新布局
fig.update_layout(
    title='广义高斯混合分布',
    showlegend=True,
    width=1200,
    height=600,
    scene=dict(
        xaxis_title='X',
        yaxis_title='Y',
        zaxis_title='密度'
    )
)

# 更新2D图的坐标轴
fig.update_xaxes(title_text='X', row=1, col=2)
fig.update_yaxes(title_text='Y', row=1, col=2)

# 显示图形
st.plotly_chart(fig, use_container_width=True)

# 添加参数说明
with st.expander("分布参数说明"):
    st.markdown("""
    - **形状参数 (p)**:控制分布的形状
        - p = 1: 拉普拉斯分布
        - p = 2: 高斯分布
        - p → ∞: 均匀分布
    - **分量参数**:每个分量由以下参数确定
        - 中心 (μ): 峰值位置,通过X和Y坐标确定
        - 尺度 (α): 分布的展宽程度,X和Y方向可不同
        - 权重 (π): 混合系数,所有分量权重和为1
    """)

# 显示当前参数的数学公式
st.latex(generate_latex_formula(st.session_state.p, K, centers[:K], scales[:K], weights[:K]))