Spaces:
Sleeping
Sleeping
初步结果
Browse files- app.py +22 -10
- {pages → dev}/test.py +0 -0
- {pages → my_pages}/page1.py +88 -27
- {pages → my_pages}/page2.py +3 -1
- {pages → my_pages}/page3.py +3 -1
- pages/__pycache__/page1.cpython-311.pyc +0 -0
- pages/__pycache__/page2.cpython-311.pyc +0 -0
- pages/__pycache__/page3.cpython-311.pyc +0 -0
- utils/__pycache__/data_processor.cpython-311.pyc +0 -0
- utils/__pycache__/hypergraph_drawer.cpython-311.pyc +0 -0
- utils/data_processor.py +8 -5
- utils/hypergraph_drawer.py +43 -10
app.py
CHANGED
@@ -1,22 +1,34 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
|
4 |
# 设置页面配置
|
5 |
st.set_page_config(layout="wide")
|
6 |
|
7 |
# 主应用
|
8 |
def main():
|
9 |
-
st.sidebar.title("导航")
|
10 |
-
pages = {
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
}
|
15 |
|
16 |
-
page = st.sidebar.radio("选择子应用", tuple(pages.keys()))
|
17 |
|
18 |
-
# 根据选择的子应用加载相应的页面
|
19 |
-
pages[page].main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
if __name__ == "__main__":
|
22 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
# from subapps import page1, page2, page3
|
3 |
|
4 |
# 设置页面配置
|
5 |
st.set_page_config(layout="wide")
|
6 |
|
7 |
# 主应用
|
8 |
def main():
|
9 |
+
# st.sidebar.title("导航")
|
10 |
+
# pages = {
|
11 |
+
# "NIPS 论文数据集高斯混合聚类分析": page1,
|
12 |
+
# "第二个子应用": page2,
|
13 |
+
# "第三个子应用": page3
|
14 |
+
# }
|
15 |
|
16 |
+
# page = st.sidebar.radio("选择子应用", tuple(pages.keys()))
|
17 |
|
18 |
+
# # 根据选择的子应用加载相应的页面
|
19 |
+
# pages[page].main()
|
20 |
+
# app.py
|
21 |
+
|
22 |
+
# https://www.cnblogs.com/wang_yb/p/18502232
|
23 |
+
|
24 |
+
page1 = st.Page("my_pages/page1.py", title="无监督聚类动态变化", icon="📊", default=True)
|
25 |
+
page2 = st.Page("my_pages/page2.py", title="第二个子应用", icon="📈")
|
26 |
+
page3 = st.Page("my_pages/page3.py", title="第三个子应用", icon="📉")
|
27 |
+
# page3 = st.Page("dev/test.py", title="第三个子应用", icon="📉")
|
28 |
+
|
29 |
+
pg = st.navigation([page1, page2, page3])
|
30 |
+
pg.run()
|
31 |
+
# pass
|
32 |
|
33 |
if __name__ == "__main__":
|
34 |
main()
|
{pages → dev}/test.py
RENAMED
File without changes
|
{pages → my_pages}/page1.py
RENAMED
@@ -10,10 +10,10 @@ from io import BytesIO
|
|
10 |
import time
|
11 |
from utils.data_processor import load_data, process_data, build_hyperedges
|
12 |
from utils.visualizer import visualize_gmm, visualize_ratings
|
13 |
-
from utils.hypergraph_drawer import draw_hypergraph
|
14 |
|
15 |
def main():
|
16 |
-
st.title("
|
17 |
|
18 |
# 自动播放
|
19 |
slider_max = 10
|
@@ -31,10 +31,11 @@ def main():
|
|
31 |
if st.session_state.play_state:
|
32 |
button_label = "暂停"
|
33 |
else:
|
34 |
-
button_label = "
|
35 |
st.button(button_label, on_click=toggle_play, key="play_button")
|
36 |
# 播放速度
|
37 |
-
speed = st.slider("
|
|
|
38 |
# 主页面布局
|
39 |
|
40 |
# 显示迭代次数滑条
|
@@ -52,16 +53,18 @@ def main():
|
|
52 |
# 使用 sidebar 控制参数
|
53 |
with st.sidebar:
|
54 |
st.header("控制面板")
|
|
|
|
|
|
|
55 |
max_samples = len(df)
|
56 |
num_samples = st.slider("选择采样论文数量", min_value=1,
|
57 |
max_value=min(100, max_samples), value=min(10, max_samples), step=1)
|
58 |
-
|
59 |
-
|
60 |
|
61 |
# 添加复选框选择显示 paper 的属性
|
62 |
display_attribute = st.selectbox(
|
63 |
"选择显示 paper 的属性",
|
64 |
-
["index", "id", "title", "keywords", "author"]
|
65 |
)
|
66 |
# 选择是 top k 还是 top p
|
67 |
display_option = st.selectbox(
|
@@ -81,31 +84,89 @@ def main():
|
|
81 |
sampled_df, probabilities, paper_attributes = process_data(df, iteration, num_samples)
|
82 |
# print(display_attribute) # 字符串
|
83 |
hyperedges = build_hyperedges(probabilities, paper_attributes, display_attribute, top_k=top_k, top_p=top_p)
|
|
|
|
|
84 |
# print(hyperedges)
|
85 |
|
86 |
|
|
|
87 |
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
# 显示采样论文的详细信息
|
102 |
st.header("采样论文详细信息")
|
103 |
-
st.dataframe(sampled_df[["title", "keywords", "rating_avg", "confidence_avg", "site"]
|
|
|
|
|
|
|
104 |
|
105 |
# 增加第二种可视化方式
|
106 |
-
st.header("论文评分分布")
|
107 |
-
fig_bar = visualize_ratings(sampled_df)
|
108 |
-
st.plotly_chart(fig_bar, use_container_width=True)
|
109 |
|
110 |
|
111 |
|
@@ -131,8 +192,8 @@ def main():
|
|
131 |
|
132 |
|
133 |
|
134 |
-
if __name__ == "__main__":
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
10 |
import time
|
11 |
from utils.data_processor import load_data, process_data, build_hyperedges
|
12 |
from utils.visualizer import visualize_gmm, visualize_ratings
|
13 |
+
from utils.hypergraph_drawer import draw_hypergraph, pyplot_fig_to_buffer
|
14 |
|
15 |
def main():
|
16 |
+
st.title("NeurIPS 论文数据集高斯混合聚类分析")
|
17 |
|
18 |
# 自动播放
|
19 |
slider_max = 10
|
|
|
31 |
if st.session_state.play_state:
|
32 |
button_label = "暂停"
|
33 |
else:
|
34 |
+
button_label = "开始拟合"
|
35 |
st.button(button_label, on_click=toggle_play, key="play_button")
|
36 |
# 播放速度
|
37 |
+
speed = st.slider("拟合速度", min_value=0.1, max_value=2.0, value=1.0, step=0.1, key="speed_slider")
|
38 |
+
# speed = st.slider("播放速度", min_value=0.1, max_value=2.0, value=1.0, step=0.1, key="speed_slider")
|
39 |
# 主页面布局
|
40 |
|
41 |
# 显示迭代次数滑条
|
|
|
53 |
# 使用 sidebar 控制参数
|
54 |
with st.sidebar:
|
55 |
st.header("控制面板")
|
56 |
+
draw_width = st.slider("绘图宽度", min_value=3, max_value=20, value=6, step=1, key="draw_width")
|
57 |
+
draw_height = st.slider("绘图高度",min_value=3, max_value=20, value=6, step=1, key="draw_height")
|
58 |
+
|
59 |
max_samples = len(df)
|
60 |
num_samples = st.slider("选择采样论文数量", min_value=1,
|
61 |
max_value=min(100, max_samples), value=min(10, max_samples), step=1)
|
62 |
+
|
|
|
63 |
|
64 |
# 添加复选框选择显示 paper 的属性
|
65 |
display_attribute = st.selectbox(
|
66 |
"选择显示 paper 的属性",
|
67 |
+
["order", "index", "id", "title", "keywords", "author"]
|
68 |
)
|
69 |
# 选择是 top k 还是 top p
|
70 |
display_option = st.selectbox(
|
|
|
84 |
sampled_df, probabilities, paper_attributes = process_data(df, iteration, num_samples)
|
85 |
# print(display_attribute) # 字符串
|
86 |
hyperedges = build_hyperedges(probabilities, paper_attributes, display_attribute, top_k=top_k, top_p=top_p)
|
87 |
+
hypergraph = hnx.Hypergraph(hyperedges)
|
88 |
+
|
89 |
# print(hyperedges)
|
90 |
|
91 |
|
92 |
+
st.header("超图可视化")
|
93 |
|
94 |
+
draw_dual = st.toggle("对偶翻转", value=False, key="draw_dual")
|
95 |
+
euler_first = st.toggle("先看Euler Diagram", value=True, key="euler_first")
|
96 |
|
97 |
+
def euler_visualization(hypergraph):
|
98 |
+
st.subheader("Euler Diagram 可视化")
|
99 |
+
col1, col2, col3, col4 = st.columns(4)
|
100 |
+
with col1:
|
101 |
+
fill_edges = st.toggle("填充超边", value=True, key="fill_edges")
|
102 |
+
with col2:
|
103 |
+
toplexes = st.toggle("只保留未被包含的边(toplexes)", value=False, key="toplexes")
|
104 |
+
with col3:
|
105 |
+
with_edge_labels = st.toggle("不看边名", value=False, key="with_edge_labels")
|
106 |
+
|
107 |
+
|
108 |
+
col1, col2 = st.columns(2)
|
109 |
+
captions = ["论文聚类超图", "论文聚类对偶超图"]
|
110 |
+
|
111 |
+
if 'poses' not in st.session_state:
|
112 |
+
st.session_state.poses = [None, None]
|
113 |
+
if draw_dual:
|
114 |
+
hypergraph = hypergraph.dual()
|
115 |
+
captions = ["论文聚类对偶超图", "论文聚类超图"]
|
116 |
+
# st.session_state.poses = [st.session_state.poses[1], st.session_state.poses[0]]
|
117 |
+
|
118 |
+
with col1:
|
119 |
+
hypergraph_image, st.session_state.poses[0] = draw_hypergraph(hypergraph, draw_dual=False,
|
120 |
+
fill_edges=fill_edges, toplexes=toplexes,
|
121 |
+
with_edge_labels=with_edge_labels
|
122 |
+
# pos=st.session_state.poses[0]
|
123 |
+
,draw_width=draw_width, draw_height=draw_height
|
124 |
+
)
|
125 |
+
st.image(hypergraph_image, caption = captions[0], use_container_width=True)
|
126 |
+
|
127 |
+
with col2:
|
128 |
+
hypergraph_image, st.session_state.poses[1] = draw_hypergraph(hypergraph, draw_dual=True,
|
129 |
+
fill_edges=fill_edges, toplexes=toplexes,
|
130 |
+
with_edge_labels=with_edge_labels
|
131 |
+
# pos=st.session_state.poses[1]
|
132 |
+
,draw_width=draw_width, draw_height=draw_height
|
133 |
+
)
|
134 |
+
st.image(hypergraph_image, caption =captions[1], use_container_width=True)
|
135 |
+
|
136 |
+
def new_visualization(hypergraph):
|
137 |
+
st.subheader("新型可视化")
|
138 |
+
col1, col2 = st.columns(2)
|
139 |
+
with col1:
|
140 |
+
fig, ax = plt.subplots(figsize=(draw_width, draw_height))
|
141 |
+
hnx.draw_bipartite_using_euler(hypergraph)
|
142 |
+
st.image(pyplot_fig_to_buffer(plt.gcf()), caption="双列二分图可视化", use_container_width=True)
|
143 |
+
with col2:
|
144 |
+
fig, ax = plt.subplots(figsize=(draw_width, draw_height))
|
145 |
+
hnx.draw_incidence_upset(hypergraph)
|
146 |
+
st.image(pyplot_fig_to_buffer(plt.gcf()), caption="Incidence/UpSet 可视化", use_container_width=True)
|
147 |
+
|
148 |
+
if euler_first:
|
149 |
+
euler_visualization(hypergraph)
|
150 |
+
new_visualization(hypergraph)
|
151 |
+
else:
|
152 |
+
new_visualization(hypergraph)
|
153 |
+
euler_visualization(hypergraph)
|
154 |
+
|
155 |
+
st.header("高斯混合分布聚类结果")
|
156 |
+
fig_gmm = visualize_gmm(sampled_df, iteration)
|
157 |
+
st.plotly_chart(fig_gmm, use_container_width=True)
|
158 |
|
159 |
# 显示采样论文的详细信息
|
160 |
st.header("采样论文详细信息")
|
161 |
+
st.dataframe(sampled_df[["index", "title", "keywords", "rating_avg", "confidence_avg", "site"]
|
162 |
+
]
|
163 |
+
# .style.highlight_max(axis=0)
|
164 |
+
)
|
165 |
|
166 |
# 增加第二种可视化方式
|
167 |
+
# st.header("论文评分分布")
|
168 |
+
# fig_bar = visualize_ratings(sampled_df)
|
169 |
+
# st.plotly_chart(fig_bar, use_container_width=True)
|
170 |
|
171 |
|
172 |
|
|
|
192 |
|
193 |
|
194 |
|
195 |
+
# if __name__ == "__main__":
|
196 |
+
# # 设置页面布局
|
197 |
+
# st.set_page_config(layout="wide")
|
198 |
+
# # 运行主函数
|
199 |
+
main()
|
{pages → my_pages}/page2.py
RENAMED
@@ -2,4 +2,6 @@ import streamlit as st
|
|
2 |
|
3 |
def main():
|
4 |
st.title("第二个子应用")
|
5 |
-
st.write("这里是第二个子应用的内容。")
|
|
|
|
|
|
2 |
|
3 |
def main():
|
4 |
st.title("第二个子应用")
|
5 |
+
st.write("这里是第二个子应用的内容。")
|
6 |
+
|
7 |
+
main()
|
{pages → my_pages}/page3.py
RENAMED
@@ -2,4 +2,6 @@ import streamlit as st
|
|
2 |
|
3 |
def main():
|
4 |
st.title("第三个子应用")
|
5 |
-
st.write("这里是第三个子应用的内容。")
|
|
|
|
|
|
2 |
|
3 |
def main():
|
4 |
st.title("第三个子应用")
|
5 |
+
st.write("这里是第三个子应用的内容。")
|
6 |
+
|
7 |
+
main()
|
pages/__pycache__/page1.cpython-311.pyc
DELETED
Binary file (6.44 kB)
|
|
pages/__pycache__/page2.cpython-311.pyc
DELETED
Binary file (602 Bytes)
|
|
pages/__pycache__/page3.cpython-311.pyc
DELETED
Binary file (602 Bytes)
|
|
utils/__pycache__/data_processor.cpython-311.pyc
CHANGED
Binary files a/utils/__pycache__/data_processor.cpython-311.pyc and b/utils/__pycache__/data_processor.cpython-311.pyc differ
|
|
utils/__pycache__/hypergraph_drawer.cpython-311.pyc
CHANGED
Binary files a/utils/__pycache__/hypergraph_drawer.cpython-311.pyc and b/utils/__pycache__/hypergraph_drawer.cpython-311.pyc differ
|
|
utils/data_processor.py
CHANGED
@@ -9,7 +9,7 @@ def load_data():
|
|
9 |
|
10 |
def process_data(df, iteration, num_samples):
|
11 |
# 随机采样论文
|
12 |
-
sampled_df = df.sample(n=num_samples, random_state=iteration)
|
13 |
|
14 |
# 计算每个论文属于各个 cluster 的概率
|
15 |
probabilities = []
|
@@ -20,6 +20,8 @@ def process_data(df, iteration, num_samples):
|
|
20 |
probabilities.append(prob_list)
|
21 |
paper_attributes.append(
|
22 |
{
|
|
|
|
|
23 |
"id": row["id"],
|
24 |
"title": row["title"],
|
25 |
"keywords": row["keywords"],
|
@@ -40,8 +42,9 @@ def build_hyperedges(
|
|
40 |
# 构建超图边
|
41 |
hyperedges: Dict[str, List[str]] = {}
|
42 |
for idx, (prob, paper_attr) in enumerate(zip(probabilities, paper_attributes)):
|
43 |
-
if display_attribute_name == "index":
|
44 |
-
display_attribute = f"Paper {idx}"
|
|
|
45 |
else:
|
46 |
display_attribute: str = paper_attr[display_attribute_name]
|
47 |
if top_k is not None:
|
@@ -50,10 +53,10 @@ def build_hyperedges(
|
|
50 |
# 累加起来,直到第一次大于等于 p
|
51 |
selected_indices = []
|
52 |
cumulative_prob = 0.0
|
53 |
-
for i, p in enumerate(prob):
|
54 |
selected_indices.append(i)
|
55 |
cumulative_prob += p
|
56 |
-
if cumulative_prob
|
57 |
break
|
58 |
|
59 |
|
|
|
9 |
|
10 |
def process_data(df, iteration, num_samples):
|
11 |
# 随机采样论文
|
12 |
+
sampled_df = df.sample(n=num_samples, random_state=iteration).reset_index()
|
13 |
|
14 |
# 计算每个论文属于各个 cluster 的概率
|
15 |
probabilities = []
|
|
|
20 |
probabilities.append(prob_list)
|
21 |
paper_attributes.append(
|
22 |
{
|
23 |
+
"order": idx,
|
24 |
+
"index": row['index'],
|
25 |
"id": row["id"],
|
26 |
"title": row["title"],
|
27 |
"keywords": row["keywords"],
|
|
|
42 |
# 构建超图边
|
43 |
hyperedges: Dict[str, List[str]] = {}
|
44 |
for idx, (prob, paper_attr) in enumerate(zip(probabilities, paper_attributes)):
|
45 |
+
if display_attribute_name == "index" or display_attribute_name == "order":
|
46 |
+
# display_attribute = f"Paper {idx}"
|
47 |
+
display_attribute = f"Paper {paper_attr[display_attribute_name]}"
|
48 |
else:
|
49 |
display_attribute: str = paper_attr[display_attribute_name]
|
50 |
if top_k is not None:
|
|
|
53 |
# 累加起来,直到第一次大于等于 p
|
54 |
selected_indices = []
|
55 |
cumulative_prob = 0.0
|
56 |
+
for i, p in enumerate(np.sort(prob)[::-1]):
|
57 |
selected_indices.append(i)
|
58 |
cumulative_prob += p
|
59 |
+
if cumulative_prob > top_p+1e-4:
|
60 |
break
|
61 |
|
62 |
|
utils/hypergraph_drawer.py
CHANGED
@@ -1,20 +1,53 @@
|
|
|
|
|
|
1 |
import hypernetx as hnx
|
2 |
import matplotlib.pyplot as plt
|
3 |
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
|
4 |
from io import BytesIO
|
5 |
|
6 |
-
def
|
7 |
-
|
8 |
-
H = hnx.Hypergraph(hyperedges)
|
9 |
-
|
10 |
-
# 绘制超图
|
11 |
-
fig, ax = plt.subplots(figsize=(12, 8))
|
12 |
-
hnx.draw(H, ax=ax)
|
13 |
-
|
14 |
-
# 将超图保存为图像
|
15 |
canvas = FigureCanvas(fig)
|
16 |
buffer = BytesIO()
|
17 |
canvas.print_png(buffer)
|
18 |
buffer.seek(0)
|
|
|
|
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from turtle import title
|
2 |
+
from typing import Dict
|
3 |
import hypernetx as hnx
|
4 |
import matplotlib.pyplot as plt
|
5 |
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
|
6 |
from io import BytesIO
|
7 |
|
8 |
+
def pyplot_fig_to_buffer(fig):
|
9 |
+
"""Draw the figure using Pyplot and return the image buffer."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
canvas = FigureCanvas(fig)
|
11 |
buffer = BytesIO()
|
12 |
canvas.print_png(buffer)
|
13 |
buffer.seek(0)
|
14 |
+
return buffer
|
15 |
+
|
16 |
|
17 |
+
def draw_hypergraph(
|
18 |
+
H:hnx.Hypergraph=None,
|
19 |
+
hyperedges:Dict = None,
|
20 |
+
draw_dual:bool=False,
|
21 |
+
toplexes:bool=False,
|
22 |
+
fill_edges:bool=True,
|
23 |
+
with_edge_labels:bool=True,
|
24 |
+
with_node_labels:bool=True,
|
25 |
+
title:str=None,
|
26 |
+
pos = None
|
27 |
+
,draw_width:int = 6, draw_height:int = 6
|
28 |
+
):
|
29 |
+
# 构建超图
|
30 |
+
if H is None and hyperedges is None:
|
31 |
+
raise ValueError("Either H or hyperedges must be provided.")
|
32 |
+
if H is None:
|
33 |
+
H = hnx.Hypergraph(hyperedges)
|
34 |
+
|
35 |
+
if draw_dual:
|
36 |
+
H = H.dual()
|
37 |
+
if toplexes:
|
38 |
+
H = H.toplexes(return_hyp=True)
|
39 |
+
|
40 |
+
# 绘制超图
|
41 |
+
fig, ax = plt.subplots(figsize=(draw_width, draw_height))
|
42 |
+
if title is not None:
|
43 |
+
ax.set_title(title)
|
44 |
+
pos = hnx.draw(H, ax=ax, fill_edges=fill_edges,
|
45 |
+
with_edge_labels=with_edge_labels,
|
46 |
+
with_node_labels=with_node_labels,
|
47 |
+
node_label_alpha=0.0,
|
48 |
+
edge_label_alpha=0.0, pos=pos,
|
49 |
+
return_pos=True)
|
50 |
+
# hnx.draw(H, ax=ax)
|
51 |
+
|
52 |
+
# 将超图保存为图像
|
53 |
+
return pyplot_fig_to_buffer(fig), pos
|