|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import torch |
|
import safetensors.torch as st |
|
from diffusers import DiffusionPipeline |
|
|
|
model_id = "./ckpts/snckrsgen.safetensors" |
|
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, use_safe_tensors=True) |
|
pipe.to("cuda") |
|
|
|
|
|
def generate_image(prompt): |
|
|
|
images = pipe(prompt=prompt) |
|
return images[0] |
|
|
|
|
|
inputs = gr.inputs.Textbox(lines=5, label="Enter text to generate image:") |
|
outputs = gr.outputs.Image(label="Generated Image") |
|
|
|
title = "ShoeGen: Generate an Image of a Shoe" |
|
description = "Enter a text description of a shoe to generate an image of the shoe." |
|
examples = [["A red shoe with white laces and black sole."], ["A blue sneaker with a white stripe."], ["A brown boot with a buckle."]] |
|
|
|
gr.Interface( |
|
fn=generate_image, |
|
inputs=inputs, |
|
outputs=outputs, |
|
title=title, |
|
description=description, |
|
examples=examples |
|
).launch() |
|
|