|
import math |
|
import os |
|
from glob import glob |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from einops import rearrange, repeat |
|
from fire import Fire |
|
import tyro |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
from torchvision.transforms import ToTensor |
|
from mediapy import write_video |
|
import rembg |
|
from kiui.op import recenter |
|
from safetensors.torch import load_file as load_safetensors |
|
from typing import Any |
|
|
|
from scripts.util.detection.nsfw_and_watermark_dectection import DeepFloydDataFiltering |
|
from sgm.inference.helpers import embed_watermark |
|
from sgm.util import default, instantiate_from_config |
|
|
|
|
|
def get_unique_embedder_keys_from_conditioner(conditioner): |
|
return list(set([x.input_key for x in conditioner.embedders])) |
|
|
|
|
|
def get_batch(keys, value_dict, N, T, device): |
|
batch = {} |
|
batch_uc = {} |
|
|
|
for key in keys: |
|
if key == "fps_id": |
|
batch[key] = ( |
|
torch.tensor([value_dict["fps_id"]]) |
|
.to(device) |
|
.repeat(int(math.prod(N))) |
|
) |
|
elif key == "motion_bucket_id": |
|
batch[key] = ( |
|
torch.tensor([value_dict["motion_bucket_id"]]) |
|
.to(device) |
|
.repeat(int(math.prod(N))) |
|
) |
|
elif key == "cond_aug": |
|
batch[key] = repeat( |
|
torch.tensor([value_dict["cond_aug"]]).to(device), |
|
"1 -> b", |
|
b=math.prod(N), |
|
) |
|
elif key == "cond_frames": |
|
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0]) |
|
elif key == "cond_frames_without_noise": |
|
batch[key] = repeat( |
|
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0] |
|
) |
|
else: |
|
batch[key] = value_dict[key] |
|
|
|
if T is not None: |
|
batch["num_video_frames"] = T |
|
|
|
for key in batch.keys(): |
|
if key not in batch_uc and isinstance(batch[key], torch.Tensor): |
|
batch_uc[key] = torch.clone(batch[key]) |
|
return batch, batch_uc |
|
|
|
|
|
def load_model( |
|
config: str, |
|
device: str, |
|
num_frames: int, |
|
num_steps: int, |
|
ckpt_path: Optional[str] = None, |
|
min_cfg: Optional[float] = None, |
|
max_cfg: Optional[float] = None, |
|
sigma_max: Optional[float] = None, |
|
): |
|
config = OmegaConf.load(config) |
|
|
|
config.model.params.sampler_config.params.num_steps = num_steps |
|
config.model.params.sampler_config.params.guider_config.params.num_frames = ( |
|
num_frames |
|
) |
|
if max_cfg is not None: |
|
config.model.params.sampler_config.params.guider_config.params.max_scale = ( |
|
max_cfg |
|
) |
|
if min_cfg is not None: |
|
config.model.params.sampler_config.params.guider_config.params.min_scale = ( |
|
min_cfg |
|
) |
|
if sigma_max is not None: |
|
print("Overriding sigma_max to ", sigma_max) |
|
config.model.params.sampler_config.params.discretization_config.params.sigma_max = ( |
|
sigma_max |
|
) |
|
|
|
config.model.params.from_scratch = False |
|
|
|
if ckpt_path is not None: |
|
config.model.params.ckpt_path = str(ckpt_path) |
|
if device == "cuda": |
|
with torch.device(device): |
|
model = instantiate_from_config(config.model).to(device).eval() |
|
else: |
|
model = instantiate_from_config(config.model).to(device).eval() |
|
|
|
return model, None |
|
|
|
|
|
def sample_one( |
|
input_path: str = "assets/test_image.png", |
|
checkpoint_path: Optional[str] = None, |
|
num_frames: Optional[int] = None, |
|
num_steps: Optional[int] = None, |
|
fps_id: int = 1, |
|
motion_bucket_id: int = 300, |
|
cond_aug: float = 0.02, |
|
seed: int = 23, |
|
decoding_t: int = 24, |
|
device: str = "cuda", |
|
output_folder: Optional[str] = None, |
|
noise: torch.Tensor = None, |
|
save: bool = False, |
|
cached_model: Any = None, |
|
border_ratio: float = 0.3, |
|
min_guidance_scale: float = 3.5, |
|
max_guidance_scale: float = 3.5, |
|
sigma_max: float = None, |
|
ignore_alpha: bool = False, |
|
): |
|
model_config = "scripts/pub/configs/V3D_512.yaml" |
|
num_frames = OmegaConf.load( |
|
model_config |
|
).model.params.sampler_config.params.guider_config.params.num_frames |
|
print("Detected num_frames:", num_frames) |
|
num_steps = default(num_steps, 25) |
|
output_folder = default(output_folder, f"outputs/V3D_512") |
|
decoding_t = min(decoding_t, num_frames) |
|
|
|
sd = load_safetensors("./ckpts/svd_xt.safetensors") |
|
clip_model_config = OmegaConf.load("configs/embedder/clip_image.yaml") |
|
clip_model = instantiate_from_config(clip_model_config).eval() |
|
clip_sd = dict() |
|
for k, v in sd.items(): |
|
if "conditioner.embedders.0" in k: |
|
clip_sd[k.replace("conditioner.embedders.0.", "")] = v |
|
clip_model.load_state_dict(clip_sd) |
|
clip_model = clip_model.to(device) |
|
|
|
ae_model_config = OmegaConf.load("configs/ae/video.yaml") |
|
ae_model = instantiate_from_config(ae_model_config).eval() |
|
encoder_sd = dict() |
|
for k, v in sd.items(): |
|
if "first_stage_model" in k: |
|
encoder_sd[k.replace("first_stage_model.", "")] = v |
|
ae_model.load_state_dict(encoder_sd) |
|
ae_model = ae_model.to(device) |
|
|
|
if cached_model is None: |
|
model, filter = load_model( |
|
model_config, |
|
device, |
|
num_frames, |
|
num_steps, |
|
ckpt_path=checkpoint_path, |
|
min_cfg=min_guidance_scale, |
|
max_cfg=max_guidance_scale, |
|
sigma_max=sigma_max, |
|
) |
|
else: |
|
model = cached_model |
|
torch.manual_seed(seed) |
|
|
|
need_return = True |
|
path = Path(input_path) |
|
if path.is_file(): |
|
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]): |
|
all_img_paths = [input_path] |
|
else: |
|
raise ValueError("Path is not valid image file.") |
|
elif path.is_dir(): |
|
all_img_paths = sorted( |
|
[ |
|
f |
|
for f in path.iterdir() |
|
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"] |
|
] |
|
) |
|
need_return = False |
|
if len(all_img_paths) == 0: |
|
raise ValueError("Folder does not contain any images.") |
|
else: |
|
raise ValueError |
|
|
|
for input_path in all_img_paths: |
|
with Image.open(input_path) as image: |
|
|
|
|
|
w, h = image.size |
|
|
|
if border_ratio > 0: |
|
if image.mode != "RGBA" or ignore_alpha: |
|
image = image.convert("RGB") |
|
image = np.asarray(image) |
|
carved_image = rembg.remove(image) |
|
else: |
|
image = np.asarray(image) |
|
carved_image = image |
|
mask = carved_image[..., -1] > 0 |
|
image = recenter(carved_image, mask, border_ratio=border_ratio) |
|
image = image.astype(np.float32) / 255.0 |
|
if image.shape[-1] == 4: |
|
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) |
|
image = Image.fromarray((image * 255).astype(np.uint8)) |
|
else: |
|
print("Ignore border ratio") |
|
image = image.resize((512, 512)) |
|
|
|
image = ToTensor()(image) |
|
image = image * 2.0 - 1.0 |
|
|
|
image = image.unsqueeze(0).to(device) |
|
H, W = image.shape[2:] |
|
assert image.shape[1] == 3 |
|
F = 8 |
|
C = 4 |
|
shape = (num_frames, C, H // F, W // F) |
|
|
|
value_dict = {} |
|
value_dict["motion_bucket_id"] = motion_bucket_id |
|
value_dict["fps_id"] = fps_id |
|
value_dict["cond_aug"] = cond_aug |
|
value_dict["cond_frames_without_noise"] = clip_model(image) |
|
value_dict["cond_frames"] = ae_model.encode(image) |
|
value_dict["cond_frames"] += cond_aug * torch.randn_like( |
|
value_dict["cond_frames"] |
|
) |
|
value_dict["cond_aug"] = cond_aug |
|
|
|
with torch.no_grad(): |
|
with torch.autocast(device): |
|
batch, batch_uc = get_batch( |
|
get_unique_embedder_keys_from_conditioner(model.conditioner), |
|
value_dict, |
|
[1, num_frames], |
|
T=num_frames, |
|
device=device, |
|
) |
|
c, uc = model.conditioner.get_unconditional_conditioning( |
|
batch, |
|
batch_uc=batch_uc, |
|
force_uc_zero_embeddings=[ |
|
"cond_frames", |
|
"cond_frames_without_noise", |
|
], |
|
) |
|
|
|
for k in ["crossattn", "concat"]: |
|
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames) |
|
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames) |
|
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames) |
|
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames) |
|
|
|
randn = torch.randn(shape, device=device) if noise is None else noise |
|
randn = randn.to(device) |
|
|
|
additional_model_inputs = {} |
|
additional_model_inputs["image_only_indicator"] = torch.zeros( |
|
2, num_frames |
|
).to(device) |
|
additional_model_inputs["num_video_frames"] = batch["num_video_frames"] |
|
|
|
def denoiser(input, sigma, c): |
|
return model.denoiser( |
|
model.model, input, sigma, c, **additional_model_inputs |
|
) |
|
|
|
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc) |
|
model.en_and_decode_n_samples_a_time = decoding_t |
|
samples_x = model.decode_first_stage(samples_z) |
|
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) |
|
|
|
os.makedirs(output_folder, exist_ok=True) |
|
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) |
|
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
frames = ( |
|
(rearrange(samples, "t c h w -> t h w c") * 255) |
|
.cpu() |
|
.numpy() |
|
.astype(np.uint8) |
|
) |
|
|
|
if save: |
|
write_video(video_path, frames, fps=3) |
|
|
|
images = [] |
|
for frame in frames: |
|
images.append(Image.fromarray(frame)) |
|
|
|
if need_return: |
|
return images, model |
|
|
|
|
|
if __name__ == "__main__": |
|
tyro.cli(sample_one) |
|
|