File size: 1,916 Bytes
12863e1 2cf6be0 fb01197 05d3d42 987f112 2cf6be0 4095388 fb01197 92ecdcd fb01197 92ecdcd 4095388 6b0d828 2cf6be0 12863e1 4095388 987f112 0bbe8f6 987f112 2cf6be0 fa0ee64 fb01197 92ecdcd f0f8ecd 262e1d3 987f112 92ecdcd ad9ba71 92ecdcd 2cf6be0 fa0ee64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import spaces
import gradio as gr
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
import rembg
from io import BytesIO
import PIL.Image as Image
import cv2
import numpy
model_id = "dataautogpt3/OpenDalleV1.1"
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(model_id,
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16")
pipe.to("cuda")
# Function to generate an image from text using diffusion
@spaces.GPU
def generate_image(prompt, neg_prompt):
prompt += "no background, side view, minimalist shot"
image_bytes = pipe(prompt, negative_prompt=neg_prompt)
print(image_bytes)
pil_image = Image.open(BytesIO(image_bytes))
opencvImage = cv2.cvtColor(numpy.array(pil_image), cv2.COLOR_RGB2BGR)
cv2_image = rembg.remove(opencvImage)
return pil_image, cv2_image
_TITLE = "Shoe Generator"
with gr.Blocks(_TITLE) as ShoeGen:
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Enter a discription of a shoe")
neg_prompt = gr.Textbox(label="Enter a negative prompt", value="low quality, watermark, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, body out of frame, blurry, bad anatomy, blurred, watermark, grainy, signature, cut off, draft, closed eyes, text, logo")
button_gen = gr.Button("Generate Image")
with gr.Column():
image = gr.Image(label="Generated Image")
image2 = gr.Image(label="Generated Image without background", show_download_button=True)
button_gen.click(generate_image, inputs=[prompt], outputs=[image, image2])
ShoeGen.launch()
|