Spaces:
Running
Running
Studio
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,83 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForQuestionAnswering
|
3 |
+
import torch
|
4 |
|
5 |
+
# -------------------------------
|
6 |
+
# Модель суммаризации
|
7 |
+
# -------------------------------
|
8 |
+
sum_tokenizer = AutoTokenizer.from_pretrained("LaciaStudio/Lacia_sum_small_v1")
|
9 |
+
sum_model = AutoModelForSeq2SeqLM.from_pretrained("LaciaStudio/Lacia_sum_small_v1")
|
10 |
|
11 |
+
def summarize_document(file):
|
12 |
+
if file is None:
|
13 |
+
return "Файл не загружен."
|
14 |
+
# Открываем файл и читаем его содержимое
|
15 |
+
with open(file, "r", encoding="utf-8") as f:
|
16 |
+
text = f.read()
|
17 |
+
input_text = "summarize: " + text
|
18 |
+
inputs = sum_tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
|
19 |
+
summary_ids = sum_model.generate(inputs["input_ids"], max_length=150, num_beams=4, early_stopping=True)
|
20 |
+
summary = sum_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
21 |
+
return summary
|
22 |
|
23 |
+
# -------------------------------
|
24 |
+
# Модель вопросов-ответов (Q&A)
|
25 |
+
# -------------------------------
|
26 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
+
qa_tokenizer = AutoTokenizer.from_pretrained("LaciaStudio/Kaleidoscope_large_v1")
|
28 |
+
qa_model = AutoModelForQuestionAnswering.from_pretrained("LaciaStudio/Kaleidoscope_large_v1")
|
29 |
+
qa_model.to(device)
|
|
|
|
|
30 |
|
31 |
+
def answer_question(context, question):
|
32 |
+
inputs = qa_tokenizer(question, context, return_tensors="pt", truncation=True, max_length=384)
|
33 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
34 |
+
outputs = qa_model(**inputs)
|
35 |
+
start_index = torch.argmax(outputs.start_logits)
|
36 |
+
end_index = torch.argmax(outputs.end_logits)
|
37 |
+
answer_tokens = inputs["input_ids"][0][start_index:end_index + 1]
|
38 |
+
answer = qa_tokenizer.decode(answer_tokens, skip_special_tokens=True)
|
39 |
+
return answer
|
40 |
|
41 |
+
def answer_question_file(file, question):
|
42 |
+
if file is None:
|
43 |
+
return "Файл не загружен."
|
44 |
+
with open(file, "r", encoding="utf-8") as f:
|
45 |
+
context = f.read()
|
46 |
+
return answer_question(context, question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
def answer_question_text(context, question):
|
49 |
+
return answer_question(context, question)
|
50 |
|
51 |
+
# -------------------------------
|
52 |
+
# Интерфейс Gradio
|
53 |
+
# -------------------------------
|
54 |
+
with gr.Blocks() as demo:
|
55 |
+
gr.Markdown("# Интерфейс для суммаризации и вопросов-ответов")
|
56 |
+
with gr.Row():
|
57 |
+
# Левая колонка – суммаризация
|
58 |
+
with gr.Column():
|
59 |
+
gr.Markdown("## Суммаризация документа")
|
60 |
+
file_input_sum = gr.File(label="Прикрепить файл для суммаризации", file_count="single", type="file")
|
61 |
+
summarize_button = gr.Button("Суммаризировать")
|
62 |
+
summary_output = gr.Textbox(label="Суммаризация", lines=10)
|
63 |
+
summarize_button.click(fn=summarize_document, inputs=file_input_sum, outputs=summary_output)
|
64 |
+
|
65 |
+
# Правая колонка – Q&A с двумя вкладками
|
66 |
+
with gr.Column():
|
67 |
+
gr.Markdown("## Вопрос-ответ по документу")
|
68 |
+
with gr.Tabs():
|
69 |
+
with gr.Tab("Загрузить файл"):
|
70 |
+
file_input_qa = gr.File(label="Прикрепить файл с документом", file_count="single", type="file")
|
71 |
+
question_input_file = gr.Textbox(label="Введите вопрос", placeholder="Ваш вопрос здесь")
|
72 |
+
answer_button_file = gr.Button("Получить ответ")
|
73 |
+
answer_output_file = gr.Textbox(label="Ответ", lines=5)
|
74 |
+
answer_button_file.click(fn=answer_question_file, inputs=[file_input_qa, question_input_file], outputs=answer_output_file)
|
75 |
+
with gr.Tab("Ввести текст"):
|
76 |
+
context_input = gr.Textbox(label="Введите текст документа", lines=10, placeholder="Текст документа здесь")
|
77 |
+
question_input_text = gr.Textbox(label="Введите вопрос", placeholder="Ваш вопрос здесь")
|
78 |
+
answer_button_text = gr.Button("Получить ответ")
|
79 |
+
answer_output_text = gr.Textbox(label="Ответ", lines=5)
|
80 |
+
answer_button_text.click(fn=answer_question_text, inputs=[context_input, question_input_text], outputs=answer_output_text)
|
81 |
+
|
82 |
if __name__ == "__main__":
|
83 |
demo.launch()
|