Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,10 @@
|
|
1 |
-
import spaces
|
2 |
import gradio as gr
|
3 |
-
import sys
|
4 |
-
import time
|
5 |
import os
|
|
|
6 |
import random
|
7 |
|
8 |
-
sys.path.append(".") # Correct path for Hugging Face Space
|
9 |
-
from skyreelsinfer import TaskType
|
10 |
-
from skyreelsinfer.offload import OffloadConfig
|
11 |
-
from skyreelsinfer.skyreels_video_infer import SkyReelsVideoInfer
|
12 |
-
from diffusers.utils import export_to_video
|
13 |
-
from diffusers.utils import load_image
|
14 |
-
import torch
|
15 |
-
from huggingface_hub import HfApi
|
16 |
-
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError
|
17 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
18 |
|
19 |
-
# --- Model Loading ---
|
20 |
-
predictor = None
|
21 |
-
|
22 |
def get_transformer_model_id(task_type: str) -> str:
|
23 |
if task_type == "i2v":
|
24 |
return "Skywork/skyreels-v1-Hunyuan-i2v"
|
@@ -26,7 +12,13 @@ def get_transformer_model_id(task_type: str) -> str:
|
|
26 |
return "Skywork/skyreels-v1-Hunyuan-t2v"
|
27 |
|
28 |
def init_predictor(task_type: str):
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
try:
|
31 |
predictor = SkyReelsVideoInfer(
|
32 |
task_type=TaskType.I2V if task_type == "i2v" else TaskType.T2V,
|
@@ -36,25 +28,27 @@ def init_predictor(task_type: str):
|
|
36 |
offload_config=OffloadConfig(
|
37 |
high_cpu_memory=True,
|
38 |
parameters_level=True,
|
39 |
-
# compiler_transformer=False, # Keep this consistent
|
40 |
),
|
41 |
-
use_multiprocessing=False,
|
42 |
)
|
43 |
-
return "Model loaded successfully!"
|
44 |
|
45 |
except (RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError) as e:
|
46 |
-
|
47 |
except Exception as e:
|
48 |
-
return f"Error loading model: {e}"
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
53 |
|
54 |
if task_type == "i2v" and not isinstance(image, str):
|
55 |
-
return "Error: For i2v, provide
|
56 |
if not isinstance(prompt, str) or not isinstance(seed, (int, float)):
|
57 |
-
return "Error: Invalid
|
58 |
|
59 |
if seed == -1:
|
60 |
random.seed(time.time())
|
@@ -62,68 +56,70 @@ def generate_video(prompt, seed, image=None, task_type=None):
|
|
62 |
|
63 |
kwargs = {
|
64 |
"prompt": prompt,
|
65 |
-
"height": 256,
|
66 |
-
"width": 256,
|
67 |
-
"num_frames":
|
68 |
-
"num_inference_steps":
|
69 |
"seed": int(seed),
|
70 |
-
"guidance_scale":
|
71 |
"embedded_guidance_scale": 1.0,
|
72 |
-
"negative_prompt": "bad quality",
|
73 |
"cfg_for": False,
|
74 |
}
|
75 |
|
76 |
if task_type == "i2v":
|
77 |
if image is None or not os.path.exists(image):
|
78 |
-
return "Error: Image not
|
79 |
try:
|
80 |
kwargs["image"] = load_image(image=image)
|
81 |
except Exception as e:
|
82 |
-
|
83 |
|
84 |
try:
|
85 |
if predictor is None:
|
86 |
-
return "Error: Model not
|
|
|
|
|
|
|
87 |
|
88 |
-
output = predictor.inference(**kwargs)
|
89 |
save_dir = f"./result/{task_type}"
|
90 |
os.makedirs(save_dir, exist_ok=True)
|
91 |
-
video_out_file = f"{save_dir}/{prompt[:100]
|
92 |
-
print(f"Generating video
|
93 |
-
export_to_video(
|
94 |
-
return
|
95 |
|
96 |
except Exception as e:
|
97 |
-
return f"Error
|
98 |
|
99 |
# --- Gradio Interface ---
|
100 |
with gr.Blocks() as demo:
|
101 |
with gr.Row():
|
102 |
task_type_dropdown = gr.Dropdown(
|
103 |
-
choices=["i2v", "t2v"], label="Task
|
104 |
)
|
105 |
load_model_button = gr.Button("Load Model")
|
106 |
-
model_status = gr.Textbox(label="
|
107 |
with gr.Row():
|
108 |
with gr.Column():
|
109 |
-
prompt = gr.Textbox(label="
|
110 |
-
seed = gr.Number(label="
|
111 |
-
image = gr.Image(label="
|
112 |
-
submit_button = gr.Button("Generate
|
113 |
with gr.Column():
|
114 |
-
output_video = gr.Video(label="
|
115 |
-
output_params = gr.Textbox(label="
|
116 |
|
117 |
load_model_button.click(
|
118 |
fn=init_predictor,
|
119 |
inputs=[task_type_dropdown],
|
120 |
-
outputs=[model_status]
|
121 |
)
|
122 |
|
123 |
submit_button.click(
|
124 |
fn=generate_video,
|
125 |
-
inputs=[prompt, seed, image, task_type_dropdown],
|
126 |
outputs=[output_video, output_params],
|
127 |
)
|
128 |
|
129 |
-
demo.launch()
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import os
|
3 |
+
import time
|
4 |
import random
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
7 |
|
|
|
|
|
|
|
8 |
def get_transformer_model_id(task_type: str) -> str:
|
9 |
if task_type == "i2v":
|
10 |
return "Skywork/skyreels-v1-Hunyuan-i2v"
|
|
|
12 |
return "Skywork/skyreels-v1-Hunyuan-t2v"
|
13 |
|
14 |
def init_predictor(task_type: str):
|
15 |
+
# ALL IMPORTS NOW INSIDE THIS FUNCTION
|
16 |
+
import torch
|
17 |
+
from skyreelsinfer import TaskType
|
18 |
+
from skyreelsinfer.offload import OffloadConfig
|
19 |
+
from skyreelsinfer.skyreels_video_infer import SkyReelsVideoInfer
|
20 |
+
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError
|
21 |
+
|
22 |
try:
|
23 |
predictor = SkyReelsVideoInfer(
|
24 |
task_type=TaskType.I2V if task_type == "i2v" else TaskType.T2V,
|
|
|
28 |
offload_config=OffloadConfig(
|
29 |
high_cpu_memory=True,
|
30 |
parameters_level=True,
|
|
|
31 |
),
|
32 |
+
use_multiprocessing=False,
|
33 |
)
|
34 |
+
return "Model loaded successfully!", predictor # Return predictor
|
35 |
|
36 |
except (RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError) as e:
|
37 |
+
return f"Error: Model not found. Details: {e}", None
|
38 |
except Exception as e:
|
39 |
+
return f"Error loading model: {e}", None
|
40 |
+
|
41 |
|
42 |
+
def generate_video(prompt, seed, image, task_type, predictor): # predictor as argument
|
43 |
+
# IMPORTS INSIDE THIS FUNCTION TOO
|
44 |
+
from diffusers.utils import export_to_video
|
45 |
+
from diffusers.utils import load_image
|
46 |
+
import os
|
47 |
|
48 |
if task_type == "i2v" and not isinstance(image, str):
|
49 |
+
return "Error: For i2v, provide image path.", "{}"
|
50 |
if not isinstance(prompt, str) or not isinstance(seed, (int, float)):
|
51 |
+
return "Error: Invalid inputs.", "{}"
|
52 |
|
53 |
if seed == -1:
|
54 |
random.seed(time.time())
|
|
|
56 |
|
57 |
kwargs = {
|
58 |
"prompt": prompt,
|
59 |
+
"height": 256,
|
60 |
+
"width": 256,
|
61 |
+
"num_frames": 24,
|
62 |
+
"num_inference_steps": 30,
|
63 |
"seed": int(seed),
|
64 |
+
"guidance_scale": 7.0,
|
65 |
"embedded_guidance_scale": 1.0,
|
66 |
+
"negative_prompt": "bad quality, blur",
|
67 |
"cfg_for": False,
|
68 |
}
|
69 |
|
70 |
if task_type == "i2v":
|
71 |
if image is None or not os.path.exists(image):
|
72 |
+
return "Error: Image not found.", "{}"
|
73 |
try:
|
74 |
kwargs["image"] = load_image(image=image)
|
75 |
except Exception as e:
|
76 |
+
return f"Error loading image: {e}", "{}"
|
77 |
|
78 |
try:
|
79 |
if predictor is None:
|
80 |
+
return "Error: Model not init.", "{}"
|
81 |
+
|
82 |
+
output = predictor.inference(kwargs)
|
83 |
+
frames = output
|
84 |
|
|
|
85 |
save_dir = f"./result/{task_type}"
|
86 |
os.makedirs(save_dir, exist_ok=True)
|
87 |
+
video_out_file = f"{save_dir}/{prompt[:100]}_{int(seed)}.mp4"
|
88 |
+
print(f"Generating video: {video_out_file}")
|
89 |
+
export_to_video(frames, video_out_file, fps=24)
|
90 |
+
return video_out_file, str(kwargs)
|
91 |
|
92 |
except Exception as e:
|
93 |
+
return f"Error: {e}", "{}"
|
94 |
|
95 |
# --- Gradio Interface ---
|
96 |
with gr.Blocks() as demo:
|
97 |
with gr.Row():
|
98 |
task_type_dropdown = gr.Dropdown(
|
99 |
+
choices=["i2v", "t2v"], label="Task", value="t2v"
|
100 |
)
|
101 |
load_model_button = gr.Button("Load Model")
|
102 |
+
model_status = gr.Textbox(label="Status")
|
103 |
with gr.Row():
|
104 |
with gr.Column():
|
105 |
+
prompt = gr.Textbox(label="Prompt")
|
106 |
+
seed = gr.Number(label="Seed", value=-1)
|
107 |
+
image = gr.Image(label="Image (i2v)", type="filepath")
|
108 |
+
submit_button = gr.Button("Generate")
|
109 |
with gr.Column():
|
110 |
+
output_video = gr.Video(label="Video")
|
111 |
+
output_params = gr.Textbox(label="Params")
|
112 |
|
113 |
load_model_button.click(
|
114 |
fn=init_predictor,
|
115 |
inputs=[task_type_dropdown],
|
116 |
+
outputs=[model_status, "state"], # Output to a hidden state
|
117 |
)
|
118 |
|
119 |
submit_button.click(
|
120 |
fn=generate_video,
|
121 |
+
inputs=[prompt, seed, image, task_type_dropdown, "state"], # Input from state
|
122 |
outputs=[output_video, output_params],
|
123 |
)
|
124 |
|
125 |
+
demo.launch()
|