Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -4,27 +4,30 @@ import sys
|
|
4 |
import time
|
5 |
import os
|
6 |
import random
|
7 |
-
from PIL import Image
|
8 |
-
# os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
9 |
-
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
10 |
-
os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1")
|
11 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
13 |
|
14 |
-
#
|
|
|
15 |
|
16 |
-
global predictor
|
17 |
|
18 |
def init_predictor(task_type: str):
|
19 |
from skyreelsinfer import TaskType
|
20 |
from skyreelsinfer.offload import OffloadConfig
|
21 |
from skyreelsinfer.skyreels_video_infer import SkyReelsVideoInfer
|
22 |
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError
|
23 |
-
|
24 |
try:
|
25 |
predictor = SkyReelsVideoInfer(
|
26 |
task_type=TaskType.I2V if task_type == "i2v" else TaskType.T2V,
|
27 |
-
model_id="Skywork/skyreels-v1-Hunyuan-i2v",
|
28 |
quant_model=True,
|
29 |
is_offload=True,
|
30 |
offload_config=OffloadConfig(
|
@@ -35,23 +38,28 @@ def init_predictor(task_type: str):
|
|
35 |
)
|
36 |
return predictor
|
37 |
except (RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError) as e:
|
38 |
-
|
|
|
39 |
except Exception as e:
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
def generate_video(prompt,
|
46 |
from diffusers.utils import export_to_video
|
47 |
from diffusers.utils import load_image
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
53 |
random.seed(time.time())
|
54 |
seed = int(random.randrange(4294967294))
|
|
|
55 |
kwargs = {
|
56 |
"prompt": prompt,
|
57 |
"height": 256,
|
@@ -65,41 +73,62 @@ def generate_video(prompt, image, predictor):
|
|
65 |
"cfg_for": False,
|
66 |
}
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
os.makedirs(save_dir, exist_ok=True)
|
73 |
-
video_out_file = f"{
|
74 |
print(f"Generating video: {video_out_file}")
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
def display_image(file):
|
79 |
if file is not None:
|
80 |
return Image.open(file.name)
|
81 |
else:
|
82 |
return None
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import time
|
5 |
import os
|
6 |
import random
|
7 |
+
from PIL import Image
|
|
|
|
|
|
|
8 |
import torch
|
9 |
+
import asyncio # Import asyncio
|
10 |
+
|
11 |
+
# os.environ["CUDA_VISIBLE_DEVICES"] = "" # Uncomment if needed
|
12 |
+
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
13 |
+
os.putenv("HF_HUB_ENABLE_HF_TRANSFER", "1")
|
14 |
+
|
15 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
16 |
|
17 |
+
# Use gr.State to hold the predictor. Initialize it to None.
|
18 |
+
predictor_state = gr.State(None)
|
19 |
|
|
|
20 |
|
21 |
def init_predictor(task_type: str):
|
22 |
from skyreelsinfer import TaskType
|
23 |
from skyreelsinfer.offload import OffloadConfig
|
24 |
from skyreelsinfer.skyreels_video_infer import SkyReelsVideoInfer
|
25 |
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError
|
26 |
+
|
27 |
try:
|
28 |
predictor = SkyReelsVideoInfer(
|
29 |
task_type=TaskType.I2V if task_type == "i2v" else TaskType.T2V,
|
30 |
+
model_id="Skywork/skyreels-v1-Hunyuan-i2v", # Adjust model ID as needed
|
31 |
quant_model=True,
|
32 |
is_offload=True,
|
33 |
offload_config=OffloadConfig(
|
|
|
38 |
)
|
39 |
return predictor
|
40 |
except (RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError) as e:
|
41 |
+
print(f"Error: Model not found. Details: {e}")
|
42 |
+
return None
|
43 |
except Exception as e:
|
44 |
+
print(f"Error loading model: {e}")
|
45 |
+
return None
|
46 |
+
|
47 |
|
48 |
+
# Make generate_video async
|
49 |
+
async def generate_video(prompt, image_file, predictor):
|
50 |
from diffusers.utils import export_to_video
|
51 |
from diffusers.utils import load_image
|
52 |
+
|
53 |
+
if image_file is None:
|
54 |
+
return gr.Error("Error: For i2v, provide an image.")
|
55 |
+
if not isinstance(prompt, str) or not prompt.strip():
|
56 |
+
return gr.Error("Error: Please provide a prompt.")
|
57 |
+
if predictor is None:
|
58 |
+
return gr.Error("Error: Model not loaded.")
|
59 |
+
|
60 |
random.seed(time.time())
|
61 |
seed = int(random.randrange(4294967294))
|
62 |
+
|
63 |
kwargs = {
|
64 |
"prompt": prompt,
|
65 |
"height": 256,
|
|
|
73 |
"cfg_for": False,
|
74 |
}
|
75 |
|
76 |
+
try:
|
77 |
+
kwargs["image"] = load_image(image=image_file.name)
|
78 |
+
except Exception as e:
|
79 |
+
return gr.Error(f"image loading error: {e}")
|
80 |
+
|
81 |
+
try:
|
82 |
+
output = predictor.inference(kwargs)
|
83 |
+
frames = output
|
84 |
+
except Exception as e:
|
85 |
+
return gr.Error(f"Inference error: {e}")
|
86 |
+
|
87 |
+
save_dir = "./result/i2v" # Consistent directory
|
88 |
os.makedirs(save_dir, exist_ok=True)
|
89 |
+
video_out_file = os.path.join(save_dir, f"{prompt[:100]}_{int(seed)}.mp4")
|
90 |
print(f"Generating video: {video_out_file}")
|
91 |
+
|
92 |
+
try:
|
93 |
+
export_to_video(frames, video_out_file, fps=24)
|
94 |
+
except Exception as e:
|
95 |
+
return gr.Error(f"Video export error: {e}")
|
96 |
+
|
97 |
+
return video_out_file, predictor # Return updated predictor
|
98 |
+
|
99 |
+
|
100 |
def display_image(file):
|
101 |
if file is not None:
|
102 |
return Image.open(file.name)
|
103 |
else:
|
104 |
return None
|
105 |
+
|
106 |
+
async def load_model():
|
107 |
+
predictor = init_predictor('i2v')
|
108 |
+
return predictor
|
109 |
+
|
110 |
+
async def main():
|
111 |
+
with gr.Blocks() as demo:
|
112 |
+
image_file = gr.File(label="Image Prompt (Required)", file_types=["image"])
|
113 |
+
image_file_preview = gr.Image(label="Image Prompt Preview", interactive=False)
|
114 |
+
prompt_textbox = gr.Text(label="Prompt")
|
115 |
+
generate_button = gr.Button("Generate")
|
116 |
+
output_video = gr.Video(label="Output Video")
|
117 |
+
|
118 |
+
image_file.change(
|
119 |
+
display_image,
|
120 |
+
inputs=[image_file],
|
121 |
+
outputs=[image_file_preview]
|
122 |
+
)
|
123 |
+
|
124 |
+
generate_button.click(
|
125 |
+
fn=generate_video,
|
126 |
+
inputs=[prompt_textbox, image_file, predictor_state],
|
127 |
+
outputs=[output_video, predictor_state], # Output predictor_state
|
128 |
+
)
|
129 |
+
predictor_state.value = await load_model() # load and set predictor
|
130 |
+
|
131 |
+
await demo.launch()
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
asyncio.run(main())
|