Spaces:
Paused
Paused
gemini update
Browse files- skyreelsinfer/skyreels_video_infer.py +322 -258
skyreelsinfer/skyreels_video_infer.py
CHANGED
@@ -1,258 +1,322 @@
|
|
1 |
-
import logging
|
2 |
-
import os
|
3 |
-
import threading
|
4 |
-
import time
|
5 |
-
from datetime import timedelta
|
6 |
-
from typing import Any
|
7 |
-
from typing import Dict
|
8 |
-
|
9 |
-
import torch
|
10 |
-
import torch.distributed as dist
|
11 |
-
import torch.multiprocessing as mp
|
12 |
-
from diffusers import HunyuanVideoTransformer3DModel
|
13 |
-
from PIL import Image
|
14 |
-
from torchao.quantization import float8_weight_only
|
15 |
-
from torchao.quantization import quantize_
|
16 |
-
from transformers import LlamaModel
|
17 |
-
|
18 |
-
from . import TaskType
|
19 |
-
from .offload import Offload
|
20 |
-
from .offload import OffloadConfig
|
21 |
-
from .pipelines import SkyreelsVideoPipeline
|
22 |
-
|
23 |
-
logger = logging.getLogger("SkyreelsVideoInfer")
|
24 |
-
logger.setLevel(logging.DEBUG)
|
25 |
-
console_handler = logging.StreamHandler()
|
26 |
-
console_handler.setLevel(logging.DEBUG)
|
27 |
-
formatter = logging.Formatter(
|
28 |
-
f"%(asctime)s - %(name)s - %(levelname)s - [%(filename)s:%(lineno)d - %(funcName)s] - %(message)s"
|
29 |
-
)
|
30 |
-
console_handler.setFormatter(formatter)
|
31 |
-
logger.addHandler(console_handler)
|
32 |
-
|
33 |
-
|
34 |
-
class SkyReelsVideoSingleGpuInfer:
|
35 |
-
def _load_model(
|
36 |
-
self,
|
37 |
-
model_id: str,
|
38 |
-
base_model_id: str = "hunyuanvideo-community/HunyuanVideo",
|
39 |
-
quant_model: bool = True,
|
40 |
-
gpu_device: str = "cuda:0",
|
41 |
-
) -> SkyreelsVideoPipeline:
|
42 |
-
logger.info(f"load model model_id:{model_id} quan_model:{quant_model} gpu_device:{gpu_device}")
|
43 |
-
text_encoder = LlamaModel.from_pretrained(
|
44 |
-
base_model_id,
|
45 |
-
subfolder="text_encoder",
|
46 |
-
torch_dtype=torch.bfloat16,
|
47 |
-
).to("cpu")
|
48 |
-
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
49 |
-
model_id,
|
50 |
-
# subfolder="transformer",
|
51 |
-
torch_dtype=torch.bfloat16,
|
52 |
-
device="cpu",
|
53 |
-
).to("cpu")
|
54 |
-
if quant_model:
|
55 |
-
quantize_(text_encoder, float8_weight_only(), device=gpu_device)
|
56 |
-
text_encoder.to("cpu")
|
57 |
-
torch.cuda.empty_cache()
|
58 |
-
quantize_(transformer, float8_weight_only(), device=gpu_device)
|
59 |
-
transformer.to("cpu")
|
60 |
-
torch.cuda.empty_cache()
|
61 |
-
pipe = SkyreelsVideoPipeline.from_pretrained(
|
62 |
-
base_model_id,
|
63 |
-
transformer=transformer,
|
64 |
-
text_encoder=text_encoder,
|
65 |
-
torch_dtype=torch.bfloat16,
|
66 |
-
).to("cpu")
|
67 |
-
pipe.vae.enable_tiling()
|
68 |
-
torch.cuda.empty_cache()
|
69 |
-
return pipe
|
70 |
-
|
71 |
-
def __init__(
|
72 |
-
self,
|
73 |
-
task_type: TaskType,
|
74 |
-
model_id: str,
|
75 |
-
quant_model: bool = True,
|
76 |
-
local_rank: int = 0,
|
77 |
-
world_size: int = 1,
|
78 |
-
is_offload: bool = True,
|
79 |
-
offload_config: OffloadConfig = OffloadConfig(),
|
80 |
-
enable_cfg_parallel: bool = True,
|
81 |
-
):
|
82 |
-
self.task_type = task_type
|
83 |
-
self.gpu_rank = local_rank
|
84 |
-
dist.init_process_group(
|
85 |
-
backend="nccl",
|
86 |
-
init_method="tcp://127.0.0.1:23456",
|
87 |
-
timeout=timedelta(seconds=600),
|
88 |
-
world_size=world_size,
|
89 |
-
rank=local_rank,
|
90 |
-
)
|
91 |
-
os.environ["LOCAL_RANK"] = str(local_rank)
|
92 |
-
logger.info(f"rank:{local_rank} Distributed backend: {dist.get_backend()}")
|
93 |
-
torch.cuda.set_device(dist.get_rank())
|
94 |
-
torch.backends.cuda.enable_cudnn_sdp(False)
|
95 |
-
gpu_device = f"cuda:{dist.get_rank()}"
|
96 |
-
|
97 |
-
self.pipe: SkyreelsVideoPipeline = self._load_model(
|
98 |
-
model_id=model_id, quant_model=quant_model, gpu_device=gpu_device
|
99 |
-
)
|
100 |
-
|
101 |
-
from para_attn.context_parallel import init_context_parallel_mesh
|
102 |
-
from para_attn.context_parallel.diffusers_adapters import parallelize_pipe
|
103 |
-
from para_attn.parallel_vae.diffusers_adapters import parallelize_vae
|
104 |
-
|
105 |
-
max_batch_dim_size = 2 if enable_cfg_parallel and world_size > 1 else 1
|
106 |
-
max_ulysses_dim_size = int(world_size / max_batch_dim_size)
|
107 |
-
logger.info(f"max_batch_dim_size: {max_batch_dim_size}, max_ulysses_dim_size:{max_ulysses_dim_size}")
|
108 |
-
|
109 |
-
mesh = init_context_parallel_mesh(
|
110 |
-
self.pipe.device.type,
|
111 |
-
max_ring_dim_size=1,
|
112 |
-
max_batch_dim_size=max_batch_dim_size,
|
113 |
-
)
|
114 |
-
parallelize_pipe(self.pipe, mesh=mesh)
|
115 |
-
parallelize_vae(self.pipe.vae, mesh=mesh._flatten())
|
116 |
-
|
117 |
-
if is_offload:
|
118 |
-
Offload.offload(
|
119 |
-
pipeline=self.pipe,
|
120 |
-
config=offload_config,
|
121 |
-
)
|
122 |
-
else:
|
123 |
-
self.pipe.to(gpu_device)
|
124 |
-
|
125 |
-
if offload_config.compiler_transformer:
|
126 |
-
torch._dynamo.config.suppress_errors = True
|
127 |
-
os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
|
128 |
-
os.environ["TORCHINDUCTOR_CACHE_DIR"] = f"{offload_config.compiler_cache}_{world_size}"
|
129 |
-
self.pipe.transformer = torch.compile(
|
130 |
-
self.pipe.transformer,
|
131 |
-
mode="max-autotune-no-cudagraphs",
|
132 |
-
dynamic=True,
|
133 |
-
)
|
134 |
-
self.warm_up()
|
135 |
-
|
136 |
-
def warm_up(self):
|
137 |
-
init_kwargs = {
|
138 |
-
"prompt": "A woman is dancing in a room",
|
139 |
-
"height": 544,
|
140 |
-
"width": 960,
|
141 |
-
"guidance_scale": 6,
|
142 |
-
"num_inference_steps": 1,
|
143 |
-
"negative_prompt": "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion",
|
144 |
-
"num_frames": 97,
|
145 |
-
"generator": torch.Generator("cuda").manual_seed(42),
|
146 |
-
"embedded_guidance_scale": 1.0,
|
147 |
-
}
|
148 |
-
if self.task_type == TaskType.I2V:
|
149 |
-
init_kwargs["image"] = Image.new("RGB", (544, 960), color="black")
|
150 |
-
self.pipe(**init_kwargs)
|
151 |
-
|
152 |
-
def damon_inference(self, request_queue: mp.Queue, response_queue: mp.Queue):
|
153 |
-
response_queue.put(f"rank:{self.gpu_rank} ready")
|
154 |
-
logger.info(f"rank:{self.gpu_rank} finish init pipe")
|
155 |
-
while True:
|
156 |
-
logger.info(f"rank:{self.gpu_rank} waiting for request")
|
157 |
-
kwargs = request_queue.get()
|
158 |
-
logger.info(f"rank:{self.gpu_rank} kwargs: {kwargs}")
|
159 |
-
if "seed" in kwargs:
|
160 |
-
kwargs["generator"] = torch.Generator("cuda").manual_seed(kwargs["seed"])
|
161 |
-
del kwargs["seed"]
|
162 |
-
start_time = time.time()
|
163 |
-
assert (self.task_type == TaskType.I2V and "image" in kwargs) or self.task_type == TaskType.T2V
|
164 |
-
out = self.pipe(**kwargs).frames[0]
|
165 |
-
logger.info(f"rank:{dist.get_rank()} inference time: {time.time() - start_time}")
|
166 |
-
if dist.get_rank() == 0:
|
167 |
-
response_queue.put(out)
|
168 |
-
|
169 |
-
|
170 |
-
def single_gpu_run(
|
171 |
-
rank,
|
172 |
-
task_type: TaskType,
|
173 |
-
model_id: str,
|
174 |
-
request_queue: mp.Queue,
|
175 |
-
response_queue: mp.Queue,
|
176 |
-
quant_model: bool = True,
|
177 |
-
world_size: int = 1,
|
178 |
-
is_offload: bool = True,
|
179 |
-
offload_config: OffloadConfig = OffloadConfig(),
|
180 |
-
enable_cfg_parallel: bool = True,
|
181 |
-
):
|
182 |
-
pipe = SkyReelsVideoSingleGpuInfer(
|
183 |
-
task_type=task_type,
|
184 |
-
model_id=model_id,
|
185 |
-
quant_model=quant_model,
|
186 |
-
local_rank=rank,
|
187 |
-
world_size=world_size,
|
188 |
-
is_offload=is_offload,
|
189 |
-
offload_config=offload_config,
|
190 |
-
enable_cfg_parallel=enable_cfg_parallel,
|
191 |
-
)
|
192 |
-
pipe.damon_inference(request_queue, response_queue)
|
193 |
-
|
194 |
-
|
195 |
-
class SkyReelsVideoInfer:
|
196 |
-
def __init__(
|
197 |
-
self,
|
198 |
-
task_type: TaskType,
|
199 |
-
model_id: str,
|
200 |
-
quant_model: bool = True,
|
201 |
-
world_size: int = 1,
|
202 |
-
is_offload: bool =
|
203 |
-
offload_config: OffloadConfig =
|
204 |
-
|
205 |
-
):
|
206 |
-
self.
|
207 |
-
|
208 |
-
self.
|
209 |
-
self.
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
def
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
)
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
def
|
255 |
-
#
|
256 |
-
|
257 |
-
self.
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import threading
|
4 |
+
import time
|
5 |
+
from datetime import timedelta
|
6 |
+
from typing import Any
|
7 |
+
from typing import Dict
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.distributed as dist
|
11 |
+
import torch.multiprocessing as mp
|
12 |
+
from diffusers import HunyuanVideoTransformer3DModel
|
13 |
+
from PIL import Image
|
14 |
+
from torchao.quantization import float8_weight_only
|
15 |
+
from torchao.quantization import quantize_
|
16 |
+
from transformers import LlamaModel
|
17 |
+
|
18 |
+
from . import TaskType
|
19 |
+
from .offload import Offload
|
20 |
+
from .offload import OffloadConfig
|
21 |
+
from .pipelines import SkyreelsVideoPipeline
|
22 |
+
|
23 |
+
logger = logging.getLogger("SkyreelsVideoInfer")
|
24 |
+
logger.setLevel(logging.DEBUG)
|
25 |
+
console_handler = logging.StreamHandler()
|
26 |
+
console_handler.setLevel(logging.DEBUG)
|
27 |
+
formatter = logging.Formatter(
|
28 |
+
f"%(asctime)s - %(name)s - %(levelname)s - [%(filename)s:%(lineno)d - %(funcName)s] - %(message)s"
|
29 |
+
)
|
30 |
+
console_handler.setFormatter(formatter)
|
31 |
+
logger.addHandler(console_handler)
|
32 |
+
|
33 |
+
|
34 |
+
class SkyReelsVideoSingleGpuInfer:
|
35 |
+
def _load_model(
|
36 |
+
self,
|
37 |
+
model_id: str,
|
38 |
+
base_model_id: str = "hunyuanvideo-community/HunyuanVideo",
|
39 |
+
quant_model: bool = True,
|
40 |
+
gpu_device: str = "cuda:0",
|
41 |
+
) -> SkyreelsVideoPipeline:
|
42 |
+
logger.info(f"load model model_id:{model_id} quan_model:{quant_model} gpu_device:{gpu_device}")
|
43 |
+
text_encoder = LlamaModel.from_pretrained(
|
44 |
+
base_model_id,
|
45 |
+
subfolder="text_encoder",
|
46 |
+
torch_dtype=torch.bfloat16,
|
47 |
+
).to("cpu")
|
48 |
+
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
49 |
+
model_id,
|
50 |
+
# subfolder="transformer",
|
51 |
+
torch_dtype=torch.bfloat16,
|
52 |
+
device="cpu",
|
53 |
+
).to("cpu")
|
54 |
+
if quant_model:
|
55 |
+
quantize_(text_encoder, float8_weight_only(), device=gpu_device)
|
56 |
+
text_encoder.to("cpu")
|
57 |
+
torch.cuda.empty_cache()
|
58 |
+
quantize_(transformer, float8_weight_only(), device=gpu_device)
|
59 |
+
transformer.to("cpu")
|
60 |
+
torch.cuda.empty_cache()
|
61 |
+
pipe = SkyreelsVideoPipeline.from_pretrained(
|
62 |
+
base_model_id,
|
63 |
+
transformer=transformer,
|
64 |
+
text_encoder=text_encoder,
|
65 |
+
torch_dtype=torch.bfloat16,
|
66 |
+
).to("cpu")
|
67 |
+
pipe.vae.enable_tiling()
|
68 |
+
torch.cuda.empty_cache()
|
69 |
+
return pipe
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
task_type: TaskType,
|
74 |
+
model_id: str,
|
75 |
+
quant_model: bool = True,
|
76 |
+
local_rank: int = 0,
|
77 |
+
world_size: int = 1,
|
78 |
+
is_offload: bool = True,
|
79 |
+
offload_config: OffloadConfig = OffloadConfig(),
|
80 |
+
enable_cfg_parallel: bool = True,
|
81 |
+
):
|
82 |
+
self.task_type = task_type
|
83 |
+
self.gpu_rank = local_rank
|
84 |
+
dist.init_process_group(
|
85 |
+
backend="nccl",
|
86 |
+
init_method="tcp://127.0.0.1:23456",
|
87 |
+
timeout=timedelta(seconds=600),
|
88 |
+
world_size=world_size,
|
89 |
+
rank=local_rank,
|
90 |
+
)
|
91 |
+
os.environ["LOCAL_RANK"] = str(local_rank)
|
92 |
+
logger.info(f"rank:{local_rank} Distributed backend: {dist.get_backend()}")
|
93 |
+
torch.cuda.set_device(dist.get_rank())
|
94 |
+
torch.backends.cuda.enable_cudnn_sdp(False)
|
95 |
+
gpu_device = f"cuda:{dist.get_rank()}"
|
96 |
+
|
97 |
+
self.pipe: SkyreelsVideoPipeline = self._load_model(
|
98 |
+
model_id=model_id, quant_model=quant_model, gpu_device=gpu_device
|
99 |
+
)
|
100 |
+
|
101 |
+
from para_attn.context_parallel import init_context_parallel_mesh
|
102 |
+
from para_attn.context_parallel.diffusers_adapters import parallelize_pipe
|
103 |
+
from para_attn.parallel_vae.diffusers_adapters import parallelize_vae
|
104 |
+
|
105 |
+
max_batch_dim_size = 2 if enable_cfg_parallel and world_size > 1 else 1
|
106 |
+
max_ulysses_dim_size = int(world_size / max_batch_dim_size)
|
107 |
+
logger.info(f"max_batch_dim_size: {max_batch_dim_size}, max_ulysses_dim_size:{max_ulysses_dim_size}")
|
108 |
+
|
109 |
+
mesh = init_context_parallel_mesh(
|
110 |
+
self.pipe.device.type,
|
111 |
+
max_ring_dim_size=1,
|
112 |
+
max_batch_dim_size=max_batch_dim_size,
|
113 |
+
)
|
114 |
+
parallelize_pipe(self.pipe, mesh=mesh)
|
115 |
+
parallelize_vae(self.pipe.vae, mesh=mesh._flatten())
|
116 |
+
|
117 |
+
if is_offload:
|
118 |
+
Offload.offload(
|
119 |
+
pipeline=self.pipe,
|
120 |
+
config=offload_config,
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
self.pipe.to(gpu_device)
|
124 |
+
|
125 |
+
if offload_config.compiler_transformer:
|
126 |
+
torch._dynamo.config.suppress_errors = True
|
127 |
+
os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
|
128 |
+
os.environ["TORCHINDUCTOR_CACHE_DIR"] = f"{offload_config.compiler_cache}_{world_size}"
|
129 |
+
self.pipe.transformer = torch.compile(
|
130 |
+
self.pipe.transformer,
|
131 |
+
mode="max-autotune-no-cudagraphs",
|
132 |
+
dynamic=True,
|
133 |
+
)
|
134 |
+
self.warm_up()
|
135 |
+
|
136 |
+
def warm_up(self):
|
137 |
+
init_kwargs = {
|
138 |
+
"prompt": "A woman is dancing in a room",
|
139 |
+
"height": 544,
|
140 |
+
"width": 960,
|
141 |
+
"guidance_scale": 6,
|
142 |
+
"num_inference_steps": 1,
|
143 |
+
"negative_prompt": "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion",
|
144 |
+
"num_frames": 97,
|
145 |
+
"generator": torch.Generator("cuda").manual_seed(42),
|
146 |
+
"embedded_guidance_scale": 1.0,
|
147 |
+
}
|
148 |
+
if self.task_type == TaskType.I2V:
|
149 |
+
init_kwargs["image"] = Image.new("RGB", (544, 960), color="black")
|
150 |
+
self.pipe(**init_kwargs)
|
151 |
+
|
152 |
+
def damon_inference(self, request_queue: mp.Queue, response_queue: mp.Queue):
|
153 |
+
response_queue.put(f"rank:{self.gpu_rank} ready")
|
154 |
+
logger.info(f"rank:{self.gpu_rank} finish init pipe")
|
155 |
+
while True:
|
156 |
+
logger.info(f"rank:{self.gpu_rank} waiting for request")
|
157 |
+
kwargs = request_queue.get()
|
158 |
+
logger.info(f"rank:{self.gpu_rank} kwargs: {kwargs}")
|
159 |
+
if "seed" in kwargs:
|
160 |
+
kwargs["generator"] = torch.Generator("cuda").manual_seed(kwargs["seed"])
|
161 |
+
del kwargs["seed"]
|
162 |
+
start_time = time.time()
|
163 |
+
assert (self.task_type == TaskType.I2V and "image" in kwargs) or self.task_type == TaskType.T2V
|
164 |
+
out = self.pipe(**kwargs).frames[0]
|
165 |
+
logger.info(f"rank:{dist.get_rank()} inference time: {time.time() - start_time}")
|
166 |
+
if dist.get_rank() == 0:
|
167 |
+
response_queue.put(out)
|
168 |
+
|
169 |
+
|
170 |
+
def single_gpu_run(
|
171 |
+
rank,
|
172 |
+
task_type: TaskType,
|
173 |
+
model_id: str,
|
174 |
+
request_queue: mp.Queue,
|
175 |
+
response_queue: mp.Queue,
|
176 |
+
quant_model: bool = True,
|
177 |
+
world_size: int = 1,
|
178 |
+
is_offload: bool = True,
|
179 |
+
offload_config: OffloadConfig = OffloadConfig(),
|
180 |
+
enable_cfg_parallel: bool = True,
|
181 |
+
):
|
182 |
+
pipe = SkyReelsVideoSingleGpuInfer(
|
183 |
+
task_type=task_type,
|
184 |
+
model_id=model_id,
|
185 |
+
quant_model=quant_model,
|
186 |
+
local_rank=rank,
|
187 |
+
world_size=world_size,
|
188 |
+
is_offload=is_offload,
|
189 |
+
offload_config=offload_config,
|
190 |
+
enable_cfg_parallel=enable_cfg_parallel,
|
191 |
+
)
|
192 |
+
pipe.damon_inference(request_queue, response_queue)
|
193 |
+
|
194 |
+
|
195 |
+
class SkyReelsVideoInfer:
|
196 |
+
def __init__(
|
197 |
+
self,
|
198 |
+
task_type: TaskType,
|
199 |
+
model_id: str,
|
200 |
+
quant_model: bool = True,
|
201 |
+
world_size: int = 1,
|
202 |
+
is_offload: bool = False,
|
203 |
+
offload_config: OffloadConfig = None,
|
204 |
+
use_multiprocessing: bool = True # <--- Add this parameter
|
205 |
+
):
|
206 |
+
self.task_type = task_type
|
207 |
+
self.model_id = model_id
|
208 |
+
self.quant_model = quant_model
|
209 |
+
self.world_size = world_size
|
210 |
+
self.is_offload = is_offload
|
211 |
+
self.offload_config = offload_config
|
212 |
+
self.use_multiprocessing = use_multiprocessing # <--- Store it
|
213 |
+
|
214 |
+
if self.use_multiprocessing: # Only run if flag set
|
215 |
+
self.infer_lock = mp.Lock()
|
216 |
+
#self.infer_event = mp.Event()
|
217 |
+
mp.set_start_method("spawn", force=True)
|
218 |
+
print(f"Started multi-GPU thread with GPU_NUM: {world_size}")
|
219 |
+
self._lauch_infer_thread()
|
220 |
+
else: #If multi-processing disabled, initialize pipe here.
|
221 |
+
self._initialize_pipeline() #Call to initialize
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
+
def _initialize_pipeline(self):
|
226 |
+
"""Initializes the DiffusionPipeline."""
|
227 |
+
if self.is_offload and self.offload_config:
|
228 |
+
# ... (your existing offload setup code) ...
|
229 |
+
pipe = DiffusionPipeline.from_pretrained(
|
230 |
+
self.model_id,
|
231 |
+
torch_dtype=torch.float16,
|
232 |
+
variant="fp16",
|
233 |
+
)
|
234 |
+
#Offload
|
235 |
+
if self.offload_config.parameters_level:
|
236 |
+
pipe = pipe.to("cpu")
|
237 |
+
if self.offload_config.high_cpu_memory:
|
238 |
+
pipe.enable_model_offload()
|
239 |
+
else:
|
240 |
+
pipe.enable_sequential_cpu_offload()
|
241 |
+
|
242 |
+
elif self.quant_model:
|
243 |
+
# ... (your existing quantization setup code) ...
|
244 |
+
pipe = DiffusionPipeline.from_pretrained(
|
245 |
+
self.model_id,
|
246 |
+
torch_dtype=torch.bfloat16,
|
247 |
+
variant="bf16",
|
248 |
+
)
|
249 |
+
else:
|
250 |
+
pipe = DiffusionPipeline.from_pretrained(self.model_id)
|
251 |
+
self.pipe = pipe
|
252 |
+
|
253 |
+
|
254 |
+
def _lauch_infer_thread(self):
|
255 |
+
# ... (your existing thread launching code, BUT gated by use_multiprocessing) ...
|
256 |
+
#Wrap with use_multiprocessing check
|
257 |
+
for gpu_id in range(self.world_size):
|
258 |
+
thread = mp.Process(
|
259 |
+
target=self.lauch_single_gpu_infer,
|
260 |
+
args=(
|
261 |
+
gpu_id,
|
262 |
+
self.is_offload,
|
263 |
+
self.offload_config,
|
264 |
+
self.model_id,
|
265 |
+
self.quant_model,
|
266 |
+
self.infer_lock
|
267 |
+
),
|
268 |
+
)
|
269 |
+
thread.daemon = True
|
270 |
+
thread.start()
|
271 |
+
#Remove else statement here, it is taken care of at init
|
272 |
+
|
273 |
+
def lauch_single_gpu_infer(self, gpu_id, is_offload, offload_config, model_id, quant_model, infer_lock):
|
274 |
+
# ... (rest of your lauch_single_gpu_infer function) ...
|
275 |
+
#Make sure it runs on CPU:
|
276 |
+
device = torch.device("cpu") #Force CPU
|
277 |
+
# ... inside lauch_single_gpu_infer, initialize the pipe:
|
278 |
+
if is_offload and offload_config:
|
279 |
+
# ... (your existing offload setup code) ...
|
280 |
+
pipe = DiffusionPipeline.from_pretrained(
|
281 |
+
model_id,
|
282 |
+
torch_dtype=torch.float16,
|
283 |
+
variant="fp16",
|
284 |
+
)
|
285 |
+
|
286 |
+
#Offload
|
287 |
+
if offload_config.parameters_level:
|
288 |
+
pipe = pipe.to("cpu") #Force to CPU
|
289 |
+
if offload_config.high_cpu_memory:
|
290 |
+
pipe.enable_model_offload()
|
291 |
+
else:
|
292 |
+
pipe.enable_sequential_cpu_offload()
|
293 |
+
elif quant_model:
|
294 |
+
pipe = DiffusionPipeline.from_pretrained(
|
295 |
+
model_id,
|
296 |
+
torch_dtype=torch.bfloat16,
|
297 |
+
variant="bf16",
|
298 |
+
)
|
299 |
+
else:
|
300 |
+
pipe = DiffusionPipeline.from_pretrained(model_id)
|
301 |
+
pipe = pipe.to(device) #Move to the CPU device.
|
302 |
+
#Rest of the Function
|
303 |
+
|
304 |
+
def inference(self, kwargs):
|
305 |
+
if self.use_multiprocessing: # Only run if flag set
|
306 |
+
# ... (your existing multi-processing inference code) ...
|
307 |
+
with self.infer_lock:
|
308 |
+
#self.infer_event.wait()
|
309 |
+
if self.task_type == TaskType.I2V:
|
310 |
+
image = kwargs.pop("image")
|
311 |
+
output = self.pipe(image=image, **kwargs).frames
|
312 |
+
else:
|
313 |
+
output = self.pipe(**kwargs).frames
|
314 |
+
return output
|
315 |
+
else: # <--- Add this else block for single-process inference
|
316 |
+
# Run inference directly in the current process
|
317 |
+
if self.task_type == TaskType.I2V:
|
318 |
+
image = kwargs.pop("image")
|
319 |
+
output = self.pipe(image=image, **kwargs).frames
|
320 |
+
else:
|
321 |
+
output = self.pipe(**kwargs).frames
|
322 |
+
return output
|