Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import argparse
|
4 |
+
import sys
|
5 |
+
import time
|
6 |
+
import os
|
7 |
+
import random
|
8 |
+
from skyreelsinfer import TaskType
|
9 |
+
from skyreelsinfer.offload import OffloadConfig
|
10 |
+
from skyreelsinfer.skyreels_video_infer import SkyReelsVideoInfer
|
11 |
+
from diffusers.utils import export_to_video
|
12 |
+
from diffusers.utils import load_image
|
13 |
+
|
14 |
+
predictor = None
|
15 |
+
task_type = None
|
16 |
+
|
17 |
+
def init_predictor():
|
18 |
+
global predictor
|
19 |
+
predictor = SkyReelsVideoInfer(
|
20 |
+
task_type= TaskType.I2V
|
21 |
+
model_id="Skywork/SkyReels-V1-Hunyuan-I2V",
|
22 |
+
quant_model=True,
|
23 |
+
world_size=gpu_num,
|
24 |
+
is_offload=True,
|
25 |
+
offload_config=OffloadConfig(
|
26 |
+
high_cpu_memory=True,
|
27 |
+
parameters_level=True,
|
28 |
+
compiler_transformer=False,
|
29 |
+
)
|
30 |
+
)
|
31 |
+
|
32 |
+
@spaces.GPU(duration=90)
|
33 |
+
def generate_video(prompt, seed, image=None):
|
34 |
+
global task_type
|
35 |
+
print(f"image:{type(image)}")
|
36 |
+
if seed == -1:
|
37 |
+
random.seed(time.time())
|
38 |
+
seed = int(random.randrange(4294967294))
|
39 |
+
kwargs = {
|
40 |
+
"prompt": prompt,
|
41 |
+
"height": 512,
|
42 |
+
"width": 512,
|
43 |
+
"num_frames": 97,
|
44 |
+
"num_inference_steps": 30,
|
45 |
+
"seed": seed,
|
46 |
+
"guidance_scale": 6.0,
|
47 |
+
"embedded_guidance_scale": 1.0,
|
48 |
+
"negative_prompt": "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion",
|
49 |
+
"cfg_for": False,
|
50 |
+
}
|
51 |
+
assert image is not None, "please input image"
|
52 |
+
kwargs["image"] = load_image(image=image)
|
53 |
+
global predictor
|
54 |
+
output = predictor.inference(kwargs)
|
55 |
+
save_dir = f"./result/{task_type}"
|
56 |
+
os.makedirs(save_dir, exist_ok=True)
|
57 |
+
video_out_file = f"{save_dir}/{prompt[:100].replace('/','')}_{seed}.mp4"
|
58 |
+
print(f"generate video, local path: {video_out_file}")
|
59 |
+
export_to_video(output, video_out_file, fps=24)
|
60 |
+
return video_out_file, kwargs
|
61 |
+
|
62 |
+
def create_gradio_interface():
|
63 |
+
with gr.Blocks() as demo:
|
64 |
+
with gr.Row():
|
65 |
+
image = gr.Image(label="Upload Image", type="filepath")
|
66 |
+
prompt = gr.Textbox(label="Input Prompt")
|
67 |
+
seed = gr.Number(label="Random Seed", value=-1)
|
68 |
+
submit_button = gr.Button("Generate Video")
|
69 |
+
output_video = gr.Video(label="Generated Video")
|
70 |
+
output_params = gr.Textbox(label="Output Parameters")
|
71 |
+
submit_button.click(
|
72 |
+
fn=generate_video,
|
73 |
+
inputs=[prompt, seed, image],
|
74 |
+
outputs=[output_video, output_params],
|
75 |
+
)
|
76 |
+
return demo
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
init_predictor()
|
80 |
+
demo = create_gradio_interface()
|
81 |
+
demo.launch()
|