Spaces:
Paused
Paused
File size: 22,494 Bytes
7a6cd8f e972c48 7a6cd8f e972c48 7a6cd8f e972c48 7a6cd8f e972c48 7a6cd8f e972c48 40b1047 7a6cd8f 40b1047 7a6cd8f 40b1047 7a6cd8f 40b1047 7a6cd8f e972c48 7a6cd8f e972c48 7a6cd8f 40b1047 7a6cd8f 40b1047 7a6cd8f e972c48 7a6cd8f e972c48 7a6cd8f e972c48 7a6cd8f e972c48 7a6cd8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
import functools
import gc
import os
import time
from dataclasses import dataclass
import torch
from diffusers.pipelines import DiffusionPipeline
from torchao.dtypes.affine_quantized_tensor import AffineQuantizedTensor
@dataclass
class OffloadConfig:
# high_cpu_memory: Whether to use pinned memory for offload optimization. This can effectively prevent increased model offload latency caused by memory swapping.
high_cpu_memory: bool = True
# parameters_level: Whether to enable parameter-level offload. This further reduces VRAM requirements but may result in increased latency.
parameters_level: bool = False
# compiler_transformer: Whether to enable compilation optimization for the transformer.
compiler_transformer: bool = False
compiler_cache: str = "/tmp/compile_cache"
class HfHook:
def __init__(self):
device_id = os.environ.get("LOCAL_RANK", 0)
self.execution_device = f"cuda:{device_id}"
def detach_hook(self, module):
pass
class Offload:
def __init__(self) -> None:
self.active_models = []
self.active_models_ids = []
self.active_subcaches = {}
self.models = {}
self.verboseLevel = 0
self.models_to_quantize = []
self.pinned_modules_data = {}
self.blocks_of_modules = {}
self.blocks_of_modules_sizes = {}
self.compile = False
self.device_mem_capacity = torch.cuda.get_device_properties(0).total_memory
self.last_reserved_mem_check = 0
self.loaded_blocks = {}
self.prev_blocks_names = {}
self.next_blocks_names = {}
device_id = os.environ.get("LOCAL_RANK", 0)
self.device_id = f"cuda:{device_id}"
self.default_stream = torch.cuda.default_stream(self.device_id) # torch.cuda.current_stream()
self.transfer_stream = torch.cuda.Stream()
self.async_transfers = False
self.last_run_model = None
@classmethod
def offload(cls, pipeline: DiffusionPipeline, config: OffloadConfig = OffloadConfig()):
"""
Enable offloading for multiple models in the pipeline, supporting video generation inference on user-level GPUs.
pipe: the pipeline object
config: offload strategy configuration
"""
self = cls()
self.pinned_modules_data = {}
if config.parameters_level:
model_budgets = {
"transformer": 600 * 1024 * 1024,
"text_encoder": 3 * 1024 * 1024 * 1024,
"text_encoder_2": 3 * 1024 * 1024 * 1024,
}
self.async_transfers = True
else:
model_budgets = {}
device_id = os.getenv("LOCAL_RANK", 0)
torch.set_default_device(f"cuda:{device_id}")
pipeline.hf_device_map = torch.device(f"cuda:{device_id}")
pipe_or_dict_of_modules = pipeline.components
if config.compiler_transformer:
pipeline.transformer.to("cuda")
models = {
k: v
for k, v in pipe_or_dict_of_modules.items()
if isinstance(v, torch.nn.Module) and not (config.compiler_transformer and k == "transformer")
}
print_info = {k: type(v) for k, v in models.items()}
print(f"offload models: {print_info}")
if config.compiler_transformer:
pipeline.text_encoder.to("cpu")
pipeline.text_encoder_2.to("cpu")
torch.cuda.empty_cache()
pipeline.transformer.to("cuda")
pipeline.vae.to("cuda")
def move_text_encoder_to_gpu(pipe):
torch.cuda.empty_cache()
pipe.text_encoder.to("cuda")
pipe.text_encoder_2.to("cuda")
def move_text_encoder_to_cpu(pipe):
pipe.text_encoder.to("cpu")
pipe.text_encoder_2.to("cpu")
torch.cuda.empty_cache()
setattr(pipeline, "text_encoder_to_cpu", functools.partial(move_text_encoder_to_cpu, pipeline))
setattr(pipeline, "text_encoder_to_gpu", functools.partial(move_text_encoder_to_gpu, pipeline))
for k, module in pipe_or_dict_of_modules.items():
if isinstance(module, torch.nn.Module):
for submodule_name, submodule in module.named_modules():
if not hasattr(submodule, "_hf_hook"):
setattr(submodule, "_hf_hook", HfHook())
return self
sizeofbfloat16 = torch.bfloat16.itemsize
modelPinned = config.high_cpu_memory
# Pin in RAM models
# Calculate the VRAM requirements of the computational modules to determine whether parameters-level offload is necessary.
for model_name, curr_model in models.items():
curr_model.to("cpu").eval()
pinned_parameters_data = {}
current_model_size = 0
print(f"{model_name} move to pinned memory:{modelPinned}")
for p in curr_model.parameters():
if isinstance(p, AffineQuantizedTensor):
if not modelPinned and p.tensor_impl.scale.dtype == torch.float32:
p.tensor_impl.scale = p.tensor_impl.scale.to(torch.bfloat16)
current_model_size += torch.numel(p.tensor_impl.scale) * sizeofbfloat16
current_model_size += torch.numel(p.tensor_impl.float8_data) * sizeofbfloat16 / 2
if modelPinned:
p.tensor_impl.float8_data = p.tensor_impl.float8_data.pin_memory()
p.tensor_impl.scale = p.tensor_impl.scale.pin_memory()
pinned_parameters_data[p] = [p.tensor_impl.float8_data, p.tensor_impl.scale]
else:
p.data = p.data.to(torch.bfloat16) if p.data.dtype == torch.float32 else p.data.to(p.data.dtype)
current_model_size += torch.numel(p.data) * p.data.element_size()
if modelPinned:
p.data = p.data.pin_memory()
pinned_parameters_data[p] = p.data
for buffer in curr_model.buffers():
buffer.data = (
buffer.data.to(torch.bfloat16)
if buffer.data.dtype == torch.float32
else buffer.data.to(buffer.data.dtype)
)
current_model_size += torch.numel(buffer.data) * buffer.data.element_size()
if modelPinned:
buffer.data = buffer.data.pin_memory()
if model_name not in self.models:
self.models[model_name] = curr_model
curr_model_budget = model_budgets.get(model_name, 0)
if curr_model_budget > 0 and curr_model_budget > current_model_size:
model_budgets[model_name] = 0
if modelPinned:
pinned_buffers_data = {b: b.data for b in curr_model.buffers()}
pinned_parameters_data.update(pinned_buffers_data)
self.pinned_modules_data[model_name] = pinned_parameters_data
gc.collect()
torch.cuda.empty_cache()
# if config.compiler_transformer:
# module = pipeline.transformer
# print("wrap transformer forward")
# # gpu model wrap
# for submodule_name, submodule in module.named_modules():
# if not hasattr(submodule, "_hf_hook"):
# setattr(submodule, "_hf_hook", HfHook())
#
# forward_method = getattr(module, "forward")
#
# def wrap_unload_all(*args, **kwargs):
# self.unload_all("transformer")
# return forward_method(*args, **kwargs)
#
# setattr(module, "forward", functools.update_wrapper(wrap_unload_all, forward_method))
# wrap forward methods
for model_name, curr_model in models.items():
current_budget = model_budgets.get(model_name, 0)
current_size = 0
self.loaded_blocks[model_name] = None
cur_blocks_prefix, prev_blocks_name, cur_blocks_name, cur_blocks_seq = None, None, None, -1
for submodule_name, submodule in curr_model.named_modules():
# create a fake accelerate parameter so that the _execution_device property returns always "cuda"
if not hasattr(submodule, "_hf_hook"):
setattr(submodule, "_hf_hook", HfHook())
if not submodule_name:
continue
# usr parameters-level offload
if current_budget > 0:
if isinstance(submodule, (torch.nn.ModuleList, torch.nn.Sequential)):
if cur_blocks_prefix == None:
cur_blocks_prefix = submodule_name + "."
else:
if not submodule_name.startswith(cur_blocks_prefix):
cur_blocks_prefix = submodule_name + "."
cur_blocks_name, cur_blocks_seq = None, -1
else:
if cur_blocks_prefix is not None:
if submodule_name.startswith(cur_blocks_prefix):
num = int(submodule_name[len(cur_blocks_prefix) :].split(".")[0])
if num != cur_blocks_seq and (cur_blocks_name == None or current_size > current_budget):
prev_blocks_name = cur_blocks_name
cur_blocks_name = cur_blocks_prefix + str(num)
cur_blocks_seq = num
else:
cur_blocks_prefix = None
prev_blocks_name = None
cur_blocks_name = None
cur_blocks_seq = -1
if hasattr(submodule, "forward"):
submodule_forward = getattr(submodule, "forward")
if not callable(submodule_forward):
print("***")
continue
if len(submodule_name.split(".")) == 1:
self.hook_me(submodule, curr_model, model_name, submodule_name, submodule_forward)
else:
self.hook_me_light(
submodule, model_name, cur_blocks_name, submodule_forward, context=submodule_name
)
current_size = self.add_module_to_blocks(model_name, cur_blocks_name, submodule, prev_blocks_name)
gc.collect()
torch.cuda.empty_cache()
return self
def add_module_to_blocks(self, model_name, blocks_name, submodule, prev_block_name):
entry_name = model_name if blocks_name is None else model_name + "/" + blocks_name
if entry_name in self.blocks_of_modules:
blocks_params = self.blocks_of_modules[entry_name]
blocks_params_size = self.blocks_of_modules_sizes[entry_name]
else:
blocks_params = []
self.blocks_of_modules[entry_name] = blocks_params
blocks_params_size = 0
if blocks_name != None:
prev_entry_name = None if prev_block_name == None else model_name + "/" + prev_block_name
self.prev_blocks_names[entry_name] = prev_entry_name
if not prev_block_name == None:
self.next_blocks_names[prev_entry_name] = entry_name
for p in submodule.parameters(recurse=False):
blocks_params.append(p)
if isinstance(p, AffineQuantizedTensor):
blocks_params_size += p.tensor_impl.float8_data.nbytes
blocks_params_size += p.tensor_impl.scale.nbytes
else:
blocks_params_size += p.data.nbytes
for p in submodule.buffers(recurse=False):
blocks_params.append(p)
blocks_params_size += p.data.nbytes
self.blocks_of_modules_sizes[entry_name] = blocks_params_size
return blocks_params_size
def can_model_be_cotenant(self, model_name):
cotenants_map = {
"text_encoder": ["vae", "text_encoder_2"],
"text_encoder_2": ["vae", "text_encoder"],
}
potential_cotenants = cotenants_map.get(model_name, None)
if potential_cotenants is None:
return False
for existing_cotenant in self.active_models_ids:
if existing_cotenant not in potential_cotenants:
return False
return True
@torch.compiler.disable()
def gpu_load_blocks(self, model_name, blocks_name, async_load=False):
if blocks_name != None:
self.loaded_blocks[model_name] = blocks_name
def cpu_to_gpu(stream_to_use, blocks_params, record_for_stream=None):
with torch.cuda.stream(stream_to_use):
for p in blocks_params:
if isinstance(p, AffineQuantizedTensor):
p.tensor_impl.float8_data = p.tensor_impl.float8_data.cuda(
non_blocking=True, device=self.device_id
)
p.tensor_impl.scale = p.tensor_impl.scale.cuda(non_blocking=True, device=self.device_id)
else:
p.data = p.data.cuda(non_blocking=True, device=self.device_id)
if record_for_stream != None:
if isinstance(p, AffineQuantizedTensor):
p.tensor_impl.float8_data.record_stream(record_for_stream)
p.tensor_impl.scale.record_stream(record_for_stream)
else:
p.data.record_stream(record_for_stream)
entry_name = model_name if blocks_name is None else model_name + "/" + blocks_name
if self.verboseLevel >= 2:
model = self.models[model_name]
model_name = model._get_name()
print(f"Loading model {entry_name} ({model_name}) in GPU")
if self.async_transfers and blocks_name != None:
first = self.prev_blocks_names[entry_name] == None
next_blocks_entry = self.next_blocks_names[entry_name] if entry_name in self.next_blocks_names else None
if first:
cpu_to_gpu(torch.cuda.current_stream(), self.blocks_of_modules[entry_name])
torch.cuda.synchronize()
if next_blocks_entry != None:
cpu_to_gpu(self.transfer_stream, self.blocks_of_modules[next_blocks_entry])
else:
cpu_to_gpu(self.default_stream, self.blocks_of_modules[entry_name])
torch.cuda.synchronize()
@torch.compiler.disable()
def gpu_unload_blocks(self, model_name, blocks_name):
if blocks_name != None:
self.loaded_blocks[model_name] = None
blocks_name = model_name if blocks_name is None else model_name + "/" + blocks_name
if self.verboseLevel >= 2:
model = self.models[model_name]
model_name = model._get_name()
print(f"Unloading model {blocks_name} ({model_name}) from GPU")
blocks_params = self.blocks_of_modules[blocks_name]
if model_name in self.pinned_modules_data:
pinned_parameters_data = self.pinned_modules_data[model_name]
for p in blocks_params:
if isinstance(p, AffineQuantizedTensor):
data = pinned_parameters_data[p]
p.tensor_impl.float8_data = data[0]
p.tensor_impl.scale = data[1]
else:
p.data = pinned_parameters_data[p]
else:
for p in blocks_params:
if isinstance(p, AffineQuantizedTensor):
p.tensor_impl.float8_data = p.tensor_impl.float8_data.cpu()
p.tensor_impl.scale = p.tensor_impl.scale.cpu()
else:
p.data = p.data.cpu()
@torch.compiler.disable()
def gpu_load(self, model_name):
model = self.models[model_name]
self.active_models.append(model)
self.active_models_ids.append(model_name)
self.gpu_load_blocks(model_name, None)
# torch.cuda.current_stream().synchronize()
@torch.compiler.disable()
def unload_all(self, model_name: str):
if len(self.active_models_ids) == 0 and self.last_run_model == model_name:
self.last_run_model = model_name
return
for model_name in self.active_models_ids:
self.gpu_unload_blocks(model_name, None)
loaded_block = self.loaded_blocks[model_name]
if loaded_block != None:
self.gpu_unload_blocks(model_name, loaded_block)
self.loaded_blocks[model_name] = None
self.active_models = []
self.active_models_ids = []
self.active_subcaches = []
torch.cuda.empty_cache()
gc.collect()
self.last_reserved_mem_check = time.time()
self.last_run_model = model_name
def move_args_to_gpu(self, *args, **kwargs):
new_args = []
new_kwargs = {}
for arg in args:
if torch.is_tensor(arg):
if arg.dtype == torch.float32:
arg = arg.to(torch.bfloat16).cuda(non_blocking=True, device=self.device_id)
else:
arg = arg.cuda(non_blocking=True, device=self.device_id)
new_args.append(arg)
for k in kwargs:
arg = kwargs[k]
if torch.is_tensor(arg):
if arg.dtype == torch.float32:
arg = arg.to(torch.bfloat16).cuda(non_blocking=True, device=self.device_id)
else:
arg = arg.cuda(non_blocking=True, device=self.device_id)
new_kwargs[k] = arg
return new_args, new_kwargs
def ready_to_check_mem(self):
if self.compile:
return
cur_clock = time.time()
# can't check at each call if we can empty the cuda cache as quering the reserved memory value is a time consuming operation
if (cur_clock - self.last_reserved_mem_check) < 0.200:
return False
self.last_reserved_mem_check = cur_clock
return True
def empty_cache_if_needed(self):
mem_reserved = torch.cuda.memory_reserved()
mem_threshold = 0.9 * self.device_mem_capacity
if mem_reserved >= mem_threshold:
mem_allocated = torch.cuda.memory_allocated()
if mem_allocated <= 0.70 * mem_reserved:
torch.cuda.empty_cache()
tm = time.time()
if self.verboseLevel >= 2:
print(f"Empty Cuda cache at {tm}")
def any_param_or_buffer(self, target_module: torch.nn.Module):
for _ in target_module.parameters(recurse=False):
return True
for _ in target_module.buffers(recurse=False):
return True
return False
def hook_me_light(self, target_module, model_name, blocks_name, previous_method, context):
anyParam = self.any_param_or_buffer(target_module)
def check_empty_cuda_cache(module, *args, **kwargs):
if self.ready_to_check_mem():
self.empty_cache_if_needed()
return previous_method(*args, **kwargs)
def load_module_blocks(module, *args, **kwargs):
if blocks_name == None:
if self.ready_to_check_mem():
self.empty_cache_if_needed()
else:
loaded_block = self.loaded_blocks[model_name]
if loaded_block == None or loaded_block != blocks_name:
if loaded_block != None:
self.gpu_unload_blocks(model_name, loaded_block)
if self.ready_to_check_mem():
self.empty_cache_if_needed()
self.loaded_blocks[model_name] = blocks_name
self.gpu_load_blocks(model_name, blocks_name)
return previous_method(*args, **kwargs)
if hasattr(target_module, "_mm_id"):
orig_model_name = getattr(target_module, "_mm_id")
if self.verboseLevel >= 2:
print(
f"Model '{model_name}' shares module '{target_module._get_name()}' with module '{orig_model_name}' "
)
assert not anyParam
return
setattr(target_module, "_mm_id", model_name)
if blocks_name != None and anyParam:
setattr(
target_module,
"forward",
functools.update_wrapper(functools.partial(load_module_blocks, target_module), previous_method),
)
# print(f"new cache:{blocks_name}")
else:
setattr(
target_module,
"forward",
functools.update_wrapper(functools.partial(check_empty_cuda_cache, target_module), previous_method),
)
def hook_me(self, target_module, model, model_name, module_id, previous_method):
def check_change_module(module, *args, **kwargs):
performEmptyCacheTest = False
if not model_name in self.active_models_ids:
new_model_name = getattr(module, "_mm_id")
if not self.can_model_be_cotenant(new_model_name):
self.unload_all(model_name)
performEmptyCacheTest = False
self.gpu_load(new_model_name)
args, kwargs = self.move_args_to_gpu(*args, **kwargs)
if performEmptyCacheTest:
self.empty_cache_if_needed()
return previous_method(*args, **kwargs)
if hasattr(target_module, "_mm_id"):
return
setattr(target_module, "_mm_id", model_name)
setattr(
target_module,
"forward",
functools.update_wrapper(functools.partial(check_change_module, target_module), previous_method),
)
if not self.verboseLevel >= 1:
return
if module_id == None or module_id == "":
model_name = model._get_name()
print(f"Hooked in model '{model_name}' ({model_name})") |