|
import os.path |
|
|
|
import time |
|
import datetime |
|
from pytz import timezone |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
import gradio as gr |
|
import spaces |
|
|
|
from x_transformer import * |
|
import tqdm |
|
|
|
import TMIDIX |
|
from midi_to_colab_audio import midi_to_colab_audio |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
in_space = os.getenv("SYSTEM") == "spaces" |
|
|
|
|
|
|
|
@spaces.GPU |
|
def GenerateMIDI(num_tok, idrums, iinstr): |
|
print('=' * 70) |
|
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
start_time = time.time() |
|
|
|
print('-' * 70) |
|
print('Req num tok:', num_tok) |
|
print('Req instr:', iinstr) |
|
print('Drums:', idrums) |
|
print('-' * 70) |
|
|
|
if idrums: |
|
drums = 3074 |
|
else: |
|
drums = 3073 |
|
|
|
instruments_list = ["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", 'Drums', |
|
"Choir", "Organ"] |
|
first_note_instrument_number = instruments_list.index(iinstr) |
|
|
|
start_tokens = [3087, drums, 3075 + first_note_instrument_number] |
|
|
|
print('Selected Improv sequence:') |
|
print(start_tokens) |
|
print('-' * 70) |
|
|
|
output_signature = 'Allegro Music Transformer' |
|
output_file_name = 'Allegro-Music-Transformer-Music-Composition' |
|
track_name = 'Project Los Angeles' |
|
list_of_MIDI_patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0] |
|
number_of_ticks_per_quarter = 500 |
|
text_encoding = 'ISO-8859-1' |
|
|
|
output_header = [number_of_ticks_per_quarter, |
|
[['track_name', 0, bytes(output_signature, text_encoding)]]] |
|
|
|
patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]], |
|
['patch_change', 0, 1, list_of_MIDI_patches[1]], |
|
['patch_change', 0, 2, list_of_MIDI_patches[2]], |
|
['patch_change', 0, 3, list_of_MIDI_patches[3]], |
|
['patch_change', 0, 4, list_of_MIDI_patches[4]], |
|
['patch_change', 0, 5, list_of_MIDI_patches[5]], |
|
['patch_change', 0, 6, list_of_MIDI_patches[6]], |
|
['patch_change', 0, 7, list_of_MIDI_patches[7]], |
|
['patch_change', 0, 8, list_of_MIDI_patches[8]], |
|
['patch_change', 0, 9, list_of_MIDI_patches[9]], |
|
['patch_change', 0, 10, list_of_MIDI_patches[10]], |
|
['patch_change', 0, 11, list_of_MIDI_patches[11]], |
|
['patch_change', 0, 12, list_of_MIDI_patches[12]], |
|
['patch_change', 0, 13, list_of_MIDI_patches[13]], |
|
['patch_change', 0, 14, list_of_MIDI_patches[14]], |
|
['patch_change', 0, 15, list_of_MIDI_patches[15]], |
|
['track_name', 0, bytes(track_name, text_encoding)]] |
|
|
|
output = output_header + [patch_list] |
|
|
|
print('Loading model...') |
|
|
|
SEQ_LEN = 2048 |
|
|
|
|
|
|
|
model = TransformerWrapper( |
|
num_tokens=3088, |
|
max_seq_len=SEQ_LEN, |
|
attn_layers=Decoder(dim=1024, depth=32, heads=8, attn_flash=True) |
|
) |
|
|
|
model = AutoregressiveWrapper(model) |
|
|
|
model = torch.nn.DataParallel(model) |
|
|
|
model.cuda() |
|
print('=' * 70) |
|
|
|
print('Loading model checkpoint...') |
|
|
|
model.load_state_dict( |
|
torch.load('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.pth', |
|
map_location='cuda')) |
|
print('=' * 70) |
|
|
|
model.eval() |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
outy = start_tokens |
|
|
|
ctime = 0 |
|
dur = 0 |
|
vel = 90 |
|
pitch = 0 |
|
channel = 0 |
|
|
|
for i in range(max(1, min(1024, num_tok))): |
|
|
|
inp = torch.LongTensor([outy]).cuda() |
|
|
|
with torch.amp.autocast(device_type='cuda', dtype=torch.float16): |
|
out = model.module.generate(inp, |
|
1, |
|
temperature=0.9, |
|
return_prime=False, |
|
verbose=False) |
|
|
|
out0 = out[0].tolist() |
|
outy.extend(out0) |
|
|
|
ss1 = out0[0] |
|
|
|
if 0 < ss1 < 256: |
|
ctime += ss1 * 8 |
|
|
|
if 256 <= ss1 < 1280: |
|
dur = ((ss1 - 256) // 8) * 32 |
|
vel = (((ss1 - 256) % 8) + 1) * 15 |
|
|
|
if 1280 <= ss1 < 2816: |
|
channel = (ss1 - 1280) // 128 |
|
pitch = (ss1 - 1280) % 128 |
|
|
|
if channel != 9: |
|
pat = list_of_MIDI_patches[channel] |
|
else: |
|
pat = 128 |
|
|
|
event = ['note', ctime, dur, channel, pitch, vel, pat] |
|
|
|
output[-1].append(event) |
|
|
|
midi_data = TMIDIX.score2midi(output, text_encoding) |
|
|
|
with open(f"Allegro-Music-Transformer-Composition.mid", 'wb') as f: |
|
f.write(midi_data) |
|
|
|
output_plot = TMIDIX.plot_ms_SONG(output[2], plot_title='Allegro-Music-Transformer-Composition', return_plt=True) |
|
|
|
audio = midi_to_colab_audio('Allegro-Music-Transformer-Composition.mid', |
|
soundfont_path="SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2", |
|
sample_rate=16000, |
|
volume_scale=10, |
|
output_for_gradio=True |
|
) |
|
|
|
print('Sample INTs', outy[:16]) |
|
print('-' * 70) |
|
print('Last generated MIDI event', output[2][-1]) |
|
print('-' * 70) |
|
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('-' * 70) |
|
print('Req execution time:', (time.time() - start_time), 'sec') |
|
|
|
return output_plot, "Allegro-Music-Transformer-Composition.mid", (16000, audio) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
PDT = timezone('US/Pacific') |
|
|
|
print('=' * 70) |
|
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('=' * 70) |
|
|
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Allegro Music Transformer</h1>") |
|
gr.Markdown( |
|
"\n\n" |
|
"Full-attention multi-instrumental music transformer featuring asymmetrical encoding with octo-velocity, and chords counters tokens, optimized for speed and performance\n\n" |
|
"Check out [Allegro Music Transformer](https://github.com/asigalov61/Allegro-Music-Transformer) on GitHub!\n\n" |
|
"Special thanks go out to [SkyTNT](https://github.com/SkyTNT/midi-model) for fantastic FluidSynth Synthesizer and MIDI Visualizer code\n\n" |
|
"[Open In Colab]" |
|
"(https://colab.research.google.com/github/asigalov61/Allegro-Music-Transformer/blob/main/Allegro_Music_Transformer_Composer.ipynb)" |
|
" for faster execution and endless generation" |
|
) |
|
|
|
input_instrument = gr.Radio( |
|
["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", "Choir", "Organ"], |
|
value="Piano", label="Lead Instrument Controls", info="Desired lead instrument") |
|
input_drums = gr.Checkbox(label="Add Drums", value=False, info="Add drums to the composition") |
|
input_num_tokens = gr.Slider(16, 1024, value=512, label="Number of Tokens", info="Number of tokens to generate") |
|
|
|
run_btn = gr.Button("generate", variant="primary") |
|
|
|
output_plot = gr.Plot(label='output plot') |
|
output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio") |
|
output_midi = gr.File(label="output midi", file_types=[".mid"]) |
|
run_event = run_btn.click(GenerateMIDI, [input_num_tokens, input_drums, input_instrument], |
|
[output_plot, output_midi, output_audio]) |
|
app.queue().launch() |