import os import sys import cv2 import numpy as np import torch import gradio as gr from PIL import Image, ImageFilter, ImageDraw from huggingface_hub import snapshot_download from diffusers import FluxFillPipeline, FluxPriorReduxPipeline import math from utils.utils import get_bbox_from_mask, expand_bbox, pad_to_square, box2squre, crop_back, expand_image_mask hf_token = os.getenv("HF_TOKEN") snapshot_download(repo_id="black-forest-labs/FLUX.1-Fill-dev", local_dir="./FLUX.1-Fill-dev", token=hf_token) snapshot_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", local_dir="./FLUX.1-Redux-dev", token=hf_token) snapshot_download(repo_id="WensongSong/Insert-Anything", local_dir="./insertanything_model", token=hf_token) dtype = torch.bfloat16 size = (768, 768) pipe = FluxFillPipeline.from_pretrained( "./FLUX.1-Fill-dev", torch_dtype=dtype ).to("cuda") pipe.load_lora_weights( "./insertanything_model/20250321-082022_steps5000_pytorch_lora_weights.safetensors" ) redux = FluxPriorReduxPipeline.from_pretrained("./FLUX.1-Redux-dev").to(dtype=dtype).to("cuda") ### example ##### ref_dir='./examples/ref_image' ref_mask_dir='./examples/ref_mask' image_dir='./examples/source_image' image_mask_dir='./examples/source_mask' ref_list=[os.path.join(ref_dir,file) for file in os.listdir(ref_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ] ref_list.sort() ref_mask_list=[os.path.join(ref_mask_dir,file) for file in os.listdir(ref_mask_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file] ref_mask_list.sort() image_list=[os.path.join(image_dir,file) for file in os.listdir(image_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ] image_list.sort() image_mask_list=[os.path.join(image_mask_dir,file) for file in os.listdir(image_mask_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file] image_mask_list.sort() ### example ##### def run_local(base_image, base_mask, reference_image, ref_mask, seed, base_mask_option, ref_mask_option): if base_mask_option == "Draw Mask": tar_image = base_image["image"] tar_mask = base_image["mask"] else: tar_image = base_image["image"] tar_mask = base_mask if ref_mask_option == "Draw Mask": ref_image = reference_image["image"] ref_mask = reference_image["mask"] else: ref_image = reference_image["image"] ref_mask = ref_mask tar_image = tar_image.convert("RGB") tar_mask = tar_mask.convert("L") ref_image = ref_image.convert("RGB") ref_mask = ref_mask.convert("L") tar_image = np.asarray(tar_image) tar_mask = np.asarray(tar_mask) tar_mask = np.where(tar_mask > 128, 1, 0).astype(np.uint8) ref_image = np.asarray(ref_image) ref_mask = np.asarray(ref_mask) ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8) ref_box_yyxx = get_bbox_from_mask(ref_mask) ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1) masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3) y1,y2,x1,x2 = ref_box_yyxx masked_ref_image = masked_ref_image[y1:y2,x1:x2,:] ref_mask = ref_mask[y1:y2,x1:x2] ratio = 1.3 masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio) masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False) kernel = np.ones((7, 7), np.uint8) iterations = 2 tar_mask = cv2.dilate(tar_mask, kernel, iterations=iterations) # zome in tar_box_yyxx = get_bbox_from_mask(tar_mask) tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=1.2) tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=2) #1.2 1.6 tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box y1,y2,x1,x2 = tar_box_yyxx_crop old_tar_image = tar_image.copy() tar_image = tar_image[y1:y2,x1:x2,:] tar_mask = tar_mask[y1:y2,x1:x2] H1, W1 = tar_image.shape[0], tar_image.shape[1] # zome in tar_mask = pad_to_square(tar_mask, pad_value=0) tar_mask = cv2.resize(tar_mask, size) masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), size).astype(np.uint8) pipe_prior_output = redux(Image.fromarray(masked_ref_image)) tar_image = pad_to_square(tar_image, pad_value=255) H2, W2 = tar_image.shape[0], tar_image.shape[1] tar_image = cv2.resize(tar_image, size) diptych_ref_tar = np.concatenate([masked_ref_image, tar_image], axis=1) tar_mask = np.stack([tar_mask,tar_mask,tar_mask],-1) mask_black = np.ones_like(tar_image) * 0 mask_diptych = np.concatenate([mask_black, tar_mask], axis=1) diptych_ref_tar = Image.fromarray(diptych_ref_tar) mask_diptych[mask_diptych == 1] = 255 mask_diptych = Image.fromarray(mask_diptych) generator = torch.Generator("cuda").manual_seed(seed) edited_image = pipe( image=diptych_ref_tar, mask_image=mask_diptych, height=mask_diptych.size[1], width=mask_diptych.size[0], max_sequence_length=512, generator=generator, **pipe_prior_output, ).images[0] width, height = edited_image.size left = width // 2 right = width top = 0 bottom = height edited_image = edited_image.crop((left, top, right, bottom)) edited_image = np.array(edited_image) edited_image = crop_back(edited_image, old_tar_image, np.array([H1, W1, H2, W2]), np.array(tar_box_yyxx_crop)) edited_image = Image.fromarray(edited_image) return [edited_image] def update_ui(option): if option == "Draw Mask": return gr.update(visible=False), gr.update(visible=True) else: return gr.update(visible=True), gr.update(visible=False) with gr.Blocks() as demo: gr.Markdown("# Play with InsertAnything to Insert your Target Objects! ") gr.Markdown("# Upload / Draw Images for the Background (up) and Reference Object (down)") gr.Markdown("### Draw mask on the background or just upload the mask.") gr.Markdown("### Only select one of these two methods. Don't forget to click the corresponding button!!") with gr.Row(): with gr.Column(): with gr.Row(): base_image = gr.Image(label="Background Image", source="upload", tool="sketch", type="pil", brush_color='#FFFFFF', mask_opacity=0.5) base_mask = gr.Image(label="Background Mask", source="upload", type="pil") with gr.Row(): base_mask_option = gr.Radio(["Draw Mask", "Upload with Mask"], label="Background Mask Input Option", value="Upload with Mask") with gr.Row(): ref_image = gr.Image(label="Reference Image", source="upload", tool="sketch", type="pil", brush_color='#FFFFFF', mask_opacity=0.5) ref_mask = gr.Image(label="Reference Mask", source="upload", type="pil") with gr.Row(): ref_mask_option = gr.Radio(["Draw Mask", "Upload with Mask"], label="Reference Mask Input Option", value="Upload with Mask") baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", height=512, columns=1) with gr.Accordion("Advanced Option", open=True): seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=666) gr.Markdown("### Guidelines") gr.Markdown(" Users can try using different seeds. For example, seeds like 42 and 123456 may produce different effects.") run_local_button = gr.Button(value="Run") # #### example ##### num_examples = len(image_list) for i in range(num_examples): with gr.Row(): if i == 0: gr.Examples([image_list[i]], inputs=[base_image], label="Examples - Background Image", examples_per_page=1) gr.Examples([image_mask_list[i]], inputs=[base_mask], label="Examples - Background Mask", examples_per_page=1) gr.Examples([ref_list[i]], inputs=[ref_image], label="Examples - Reference Object", examples_per_page=1) gr.Examples([ref_mask_list[i]], inputs=[ref_mask], label="Examples - Reference Mask", examples_per_page=1) else: gr.Examples([image_list[i]], inputs=[base_image], examples_per_page=1, label="") gr.Examples([image_mask_list[i]], inputs=[base_mask], examples_per_page=1, label="") gr.Examples([ref_list[i]], inputs=[ref_image], examples_per_page=1, label="") gr.Examples([ref_mask_list[i]], inputs=[ref_mask], examples_per_page=1, label="") if i < num_examples - 1: with gr.Row(): gr.HTML("