File size: 3,640 Bytes
0195cac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import numpy as np
import cv2
import math

def f(r, T=0.6, beta=0.1):
    return np.where(r < T, beta + (1 - beta) / T * r, 1)

# Get the bounding box of the mask
def get_bbox_from_mask(mask):
    h,w = mask.shape[0],mask.shape[1]

    if mask.sum() < 10:
        return 0,h,0,w
    rows = np.any(mask,axis=1)
    cols = np.any(mask,axis=0)
    y1,y2 = np.where(rows)[0][[0,-1]]
    x1,x2 = np.where(cols)[0][[0,-1]]
    return (y1,y2,x1,x2)

# Expand the bounding box
def expand_bbox(mask, yyxx, ratio, min_crop=0):
    y1,y2,x1,x2 = yyxx
    H,W = mask.shape[0], mask.shape[1]

    yyxx_area = (y2-y1+1) * (x2-x1+1)
    r1 = yyxx_area / (H * W)
    r2 = f(r1)
    ratio = math.sqrt(r2 / r1)

    xc, yc = 0.5 * (x1 + x2), 0.5 * (y1 + y2)
    h = ratio * (y2-y1+1)
    w = ratio * (x2-x1+1)
    h = max(h,min_crop)
    w = max(w,min_crop)

    x1 = int(xc - w * 0.5)
    x2 = int(xc + w * 0.5)
    y1 = int(yc - h * 0.5)
    y2 = int(yc + h * 0.5)

    x1 = max(0,x1)
    x2 = min(W,x2)
    y1 = max(0,y1)
    y2 = min(H,y2)
    return (y1,y2,x1,x2)

# Pad the image to a square shape
def pad_to_square(image, pad_value = 255, random = False):
    H,W = image.shape[0], image.shape[1]
    if H == W:
        return image

    padd = abs(H - W)
    if random:
        padd_1 = int(np.random.randint(0,padd))
    else:
        padd_1 = int(padd / 2)
    padd_2 = padd - padd_1

    if len(image.shape) == 2: 
        if H > W:
            pad_param = ((0, 0), (padd_1, padd_2))
        else:
            pad_param = ((padd_1, padd_2), (0, 0))
    elif len(image.shape) == 3: 
        if H > W:
            pad_param = ((0, 0), (padd_1, padd_2), (0, 0))
        else:
            pad_param = ((padd_1, padd_2), (0, 0), (0, 0))

    image = np.pad(image, pad_param, 'constant', constant_values=pad_value)

    return image

# Expand the image and mask
def expand_image_mask(image, mask, ratio=1.4):
    h,w = image.shape[0], image.shape[1]
    H,W = int(h * ratio), int(w * ratio) 
    h1 = int((H - h) // 2)
    h2 = H - h - h1
    w1 = int((W -w) // 2)
    w2 = W -w - w1

    pad_param_image = ((h1,h2),(w1,w2),(0,0))
    pad_param_mask = ((h1,h2),(w1,w2))
    image = np.pad(image, pad_param_image, 'constant', constant_values=255)
    mask = np.pad(mask, pad_param_mask, 'constant', constant_values=0)
    return image, mask

# Convert the bounding box to a square shape
def box2squre(image, box):
    H,W = image.shape[0], image.shape[1]
    y1,y2,x1,x2 = box
    cx = (x1 + x2) // 2
    cy = (y1 + y2) // 2
    h,w = y2-y1, x2-x1

    if h >= w:
        x1 = cx - h//2
        x2 = cx + h//2
    else:
        y1 = cy - w//2
        y2 = cy + w//2
    x1 = max(0,x1)
    x2 = min(W,x2)
    y1 = max(0,y1)
    y2 = min(H,y2)
    return (y1,y2,x1,x2)

# Crop the predicted image back to the original image
def crop_back( pred, tar_image,  extra_sizes, tar_box_yyxx_crop):
    H1, W1, H2, W2 = extra_sizes
    y1,y2,x1,x2 = tar_box_yyxx_crop    
    pred = cv2.resize(pred, (W2, H2))
    m = 2 # maigin_pixel

    if W1 == H1:
        if m != 0:
            tar_image[y1+m :y2-m, x1+m:x2-m, :] =  pred[m:-m, m:-m]
        else:
            tar_image[y1 :y2, x1:x2, :] =  pred[:, :]
        return tar_image

    if W1 < W2:
        pad1 = int((W2 - W1) / 2)
        pad2 = W2 - W1 - pad1
        pred = pred[:,pad1: -pad2, :]
    else:
        pad1 = int((H2 - H1) / 2)
        pad2 = H2 - H1 - pad1
        pred = pred[pad1: -pad2, :, :]

    gen_image = tar_image.copy()
    if m != 0:
        gen_image[y1+m :y2-m, x1+m:x2-m, :] =  pred[m:-m, m:-m]
    else:
        gen_image[y1 :y2, x1:x2, :] =  pred[:, :]
    
    return gen_image