File size: 9,119 Bytes
84e6f56
 
 
 
 
 
 
 
 
 
 
 
 
af7808d
84e6f56
af7808d
 
 
84e6f56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import sys
import cv2
import numpy as np
import torch
import gradio as gr
from PIL import Image, ImageFilter, ImageDraw
from huggingface_hub import snapshot_download
from diffusers import FluxFillPipeline, FluxPriorReduxPipeline
import math
from utils.utils import get_bbox_from_mask, expand_bbox, pad_to_square, box2squre, crop_back, expand_image_mask


hf_token = os.getenv("HF_TOKEN")

snapshot_download(repo_id="black-forest-labs/FLUX.1-Fill-dev", local_dir="./FLUX.1-Fill-dev", token=hf_token)
snapshot_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", local_dir="./FLUX.1-Redux-dev", token=hf_token)
snapshot_download(repo_id="WensongSong/Insert-Anything", local_dir="./insertanything_model", token=hf_token)


dtype = torch.bfloat16
size = (768, 768)

pipe = FluxFillPipeline.from_pretrained(
    "./FLUX.1-Fill-dev",
    torch_dtype=dtype
).to("cuda")

pipe.load_lora_weights(
    "./insertanything_model/20250321-082022_steps5000_pytorch_lora_weights.safetensors"
)


redux = FluxPriorReduxPipeline.from_pretrained("./FLUX.1-Redux-dev").to(dtype=dtype).to("cuda")



###   example  #####
ref_dir='./examples/ref_image'
ref_mask_dir='./examples/ref_mask'
image_dir='./examples/source_image'
image_mask_dir='./examples/source_mask'

ref_list=[os.path.join(ref_dir,file) for file in os.listdir(ref_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ]
ref_list.sort()

ref_mask_list=[os.path.join(ref_mask_dir,file) for file in os.listdir(ref_mask_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file]
ref_mask_list.sort()

image_list=[os.path.join(image_dir,file) for file in os.listdir(image_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ]
image_list.sort()

image_mask_list=[os.path.join(image_mask_dir,file) for file in os.listdir(image_mask_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file]
image_mask_list.sort()
###   example  #####




def run_local(base_image, base_mask, reference_image, ref_mask, seed, base_mask_option, ref_mask_option):

    if base_mask_option == "Draw Mask":
        tar_image = base_image["image"]
        tar_mask = base_image["mask"]
    else:
        tar_image = base_image["image"]
        tar_mask = base_mask

    if ref_mask_option == "Draw Mask":
        ref_image = reference_image["image"]
        ref_mask = reference_image["mask"]
    else:
        ref_image = reference_image["image"]
        ref_mask = ref_mask


    tar_image = tar_image.convert("RGB")
    tar_mask = tar_mask.convert("L")
    ref_image = ref_image.convert("RGB")
    ref_mask = ref_mask.convert("L")

    tar_image = np.asarray(tar_image)
    tar_mask = np.asarray(tar_mask)
    tar_mask = np.where(tar_mask > 128, 1, 0).astype(np.uint8)

    ref_image = np.asarray(ref_image)
    ref_mask = np.asarray(ref_mask)
    ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8)


    ref_box_yyxx = get_bbox_from_mask(ref_mask)
    ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
    masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3) 
    y1,y2,x1,x2 = ref_box_yyxx
    masked_ref_image = masked_ref_image[y1:y2,x1:x2,:] 
    ref_mask = ref_mask[y1:y2,x1:x2] 
    ratio = 1.3
    masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio) 


    masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False) 

    kernel = np.ones((7, 7), np.uint8)
    iterations = 2
    tar_mask = cv2.dilate(tar_mask, kernel, iterations=iterations)

    # zome in
    tar_box_yyxx = get_bbox_from_mask(tar_mask)
    tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=1.2)

    tar_box_yyxx_crop =  expand_bbox(tar_image, tar_box_yyxx, ratio=2)    #1.2 1.6
    tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box
    y1,y2,x1,x2 = tar_box_yyxx_crop


    old_tar_image = tar_image.copy()
    tar_image = tar_image[y1:y2,x1:x2,:]
    tar_mask = tar_mask[y1:y2,x1:x2]

    H1, W1 = tar_image.shape[0], tar_image.shape[1]
    # zome in


    tar_mask = pad_to_square(tar_mask, pad_value=0)
    tar_mask = cv2.resize(tar_mask, size)

    masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), size).astype(np.uint8)
    pipe_prior_output = redux(Image.fromarray(masked_ref_image))


    tar_image = pad_to_square(tar_image, pad_value=255)

    H2, W2 = tar_image.shape[0], tar_image.shape[1]

    tar_image = cv2.resize(tar_image, size)
    diptych_ref_tar = np.concatenate([masked_ref_image, tar_image], axis=1)


    tar_mask = np.stack([tar_mask,tar_mask,tar_mask],-1)
    mask_black = np.ones_like(tar_image) * 0
    mask_diptych = np.concatenate([mask_black, tar_mask], axis=1)


    diptych_ref_tar = Image.fromarray(diptych_ref_tar)
    mask_diptych[mask_diptych == 1] = 255
    mask_diptych = Image.fromarray(mask_diptych)



    generator = torch.Generator("cuda").manual_seed(seed)
    edited_image = pipe(
        image=diptych_ref_tar,
        mask_image=mask_diptych,
        height=mask_diptych.size[1],
        width=mask_diptych.size[0],
        max_sequence_length=512,
        generator=generator,
        **pipe_prior_output, 
    ).images[0]



    width, height = edited_image.size
    left = width // 2
    right = width
    top = 0
    bottom = height
    edited_image = edited_image.crop((left, top, right, bottom))


    edited_image = np.array(edited_image)
    edited_image = crop_back(edited_image, old_tar_image, np.array([H1, W1, H2, W2]), np.array(tar_box_yyxx_crop)) 
    edited_image = Image.fromarray(edited_image)


    return [edited_image]

def update_ui(option):
    if option == "Draw Mask":
        return gr.update(visible=False), gr.update(visible=True)
    else:
        return gr.update(visible=True), gr.update(visible=False)


with gr.Blocks() as demo:


    gr.Markdown("#  Play with InsertAnything to Insert your Target Objects! ")
    gr.Markdown("# Upload / Draw Images for the Background (up) and Reference Object (down)")
    gr.Markdown("### Draw mask on the background or just upload the mask.")
    gr.Markdown("### Only select one of these two methods. Don't forget to click the corresponding button!!")

    with gr.Row():
        with gr.Column():
            with gr.Row():
                base_image = gr.Image(label="Background Image", source="upload", tool="sketch", type="pil",
                                        brush_color='#FFFFFF', mask_opacity=0.5)

                base_mask = gr.Image(label="Background Mask", source="upload", type="pil")

            with gr.Row():
                base_mask_option = gr.Radio(["Draw Mask", "Upload with Mask"], label="Background Mask Input Option", value="Upload with Mask")

            with gr.Row():
                ref_image = gr.Image(label="Reference Image", source="upload", tool="sketch", type="pil", 
                                    brush_color='#FFFFFF', mask_opacity=0.5)
                                    
                ref_mask = gr.Image(label="Reference Mask", source="upload", type="pil")

            with gr.Row():
                ref_mask_option = gr.Radio(["Draw Mask", "Upload with Mask"], label="Reference Mask Input Option", value="Upload with Mask")

            baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", height=512, columns=1)
            with gr.Accordion("Advanced Option", open=True):
                seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=666)
                gr.Markdown("### Guidelines")
                gr.Markdown(" Users can try using different seeds. For example, seeds like 42 and 123456 may produce different effects.")

    run_local_button = gr.Button(value="Run")


    # #### example #####
    num_examples = len(image_list)
    for i in range(num_examples):
        with gr.Row():
            if i == 0:
                gr.Examples([image_list[i]], inputs=[base_image], label="Examples - Background Image", examples_per_page=1)
                gr.Examples([image_mask_list[i]], inputs=[base_mask], label="Examples - Background Mask", examples_per_page=1)
                gr.Examples([ref_list[i]], inputs=[ref_image], label="Examples - Reference Object", examples_per_page=1)
                gr.Examples([ref_mask_list[i]], inputs=[ref_mask], label="Examples - Reference Mask", examples_per_page=1)
            else:
                gr.Examples([image_list[i]], inputs=[base_image], examples_per_page=1, label="")
                gr.Examples([image_mask_list[i]], inputs=[base_mask], examples_per_page=1, label="")
                gr.Examples([ref_list[i]], inputs=[ref_image], examples_per_page=1, label="")
                gr.Examples([ref_mask_list[i]], inputs=[ref_mask], examples_per_page=1, label="")
        if i < num_examples - 1:
            with gr.Row():
                gr.HTML("<hr>")
    # #### example #####
        
    run_local_button.click(fn=run_local, 
                           inputs=[base_image, base_mask, ref_image, ref_mask, seed, base_mask_option, ref_mask_option], 
                           outputs=[baseline_gallery]
                        )
demo.launch()