Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,41 +15,38 @@ HF_TOKEN = os.environ.get("HF_TOKEN") # You'll need to set this as a secret in
|
|
15 |
DATASET_NAME = "srishtiy/se-culture-dataset-results" # Change to your username/dataset-name
|
16 |
DATASET_CREATED = False
|
17 |
|
18 |
-
#
|
19 |
states_by_country = {
|
20 |
"India": [
|
21 |
-
"Andhra Pradesh", "Arunachal Pradesh", "Assam", "Bihar", "Chhattisgarh", "Goa",
|
22 |
-
"
|
23 |
-
"
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"Chandigarh", "Dadra and Nagar Haveli and Daman and Diu", "Delhi", "Jammu and Kashmir",
|
27 |
-
"Ladakh", "Lakshadweep", "Puducherry"
|
28 |
],
|
29 |
"Pakistan": [
|
30 |
-
"Balochistan", "Khyber Pakhtunkhwa", "Punjab", "Sindh", "Islamabad Capital Territory",
|
31 |
"Azad Jammu and Kashmir", "Gilgit-Baltistan"
|
32 |
],
|
33 |
"Bangladesh": [
|
34 |
"Barisal", "Chittagong", "Dhaka", "Khulna", "Mymensingh", "Rajshahi", "Rangpur", "Sylhet"
|
35 |
],
|
36 |
"Afghanistan": [
|
37 |
-
"Badakhshan", "Badghis", "Baghlan", "Balkh", "Bamyan", "Daykundi", "Farah", "Faryab",
|
38 |
-
"
|
39 |
-
"
|
40 |
-
"
|
41 |
],
|
42 |
"Bhutan": [
|
43 |
-
"Bumthang", "Chukha", "Dagana", "Gasa", "Haa", "Lhuentse", "Mongar", "Paro", "Pemagatshel",
|
44 |
-
"
|
45 |
-
"
|
46 |
],
|
47 |
"Nepal": [
|
48 |
"Bagmati", "Gandaki", "Karnali", "Koshi", "Lumbini", "Madhesh", "Sudurpashchim"
|
49 |
],
|
50 |
"Sri Lanka": [
|
51 |
-
"Central", "Eastern", "North Central", "Northern", "North Western", "Sabaragamuwa",
|
52 |
-
"Southern", "Uva", "Western"
|
53 |
]
|
54 |
}
|
55 |
|
@@ -72,12 +69,11 @@ def setup_hf_dataset():
|
|
72 |
elif not HF_TOKEN:
|
73 |
print("Warning: HF_TOKEN not set. Data will be stored locally only.")
|
74 |
|
75 |
-
def
|
76 |
-
"""Update
|
77 |
if country in states_by_country:
|
78 |
-
return gr.Dropdown
|
79 |
-
|
80 |
-
return gr.Dropdown.update(choices=[], value=None, visible=False)
|
81 |
|
82 |
def process_submission(input_img, text_answer, country, state, city, se_asia_relevance, culture_knowledge, native_caption, english_caption):
|
83 |
# Generate unique ID for this submission
|
@@ -104,7 +100,7 @@ def process_submission(input_img, text_answer, country, state, city, se_asia_rel
|
|
104 |
"image_filename": os.path.basename(image_path) if image_path else None,
|
105 |
"cultural_relevance": text_answer,
|
106 |
"country": country,
|
107 |
-
"
|
108 |
"city": city,
|
109 |
"se_asia_relevance": se_asia_relevance,
|
110 |
"cultural_knowledge_source": culture_knowledge,
|
@@ -145,101 +141,118 @@ def process_submission(input_img, text_answer, country, state, city, se_asia_rel
|
|
145 |
|
146 |
# Return values to display in the interface
|
147 |
location_info = f"Location: {city}, {state}, {country}" if state else f"Location: {city}, {country}"
|
148 |
-
return input_img, f"Your text response: {text_answer}", location_info, f"SE Asia relevance: {se_asia_relevance}", f"Cultural knowledge source: {culture_knowledge}", f"Native caption: {native_caption}", f"English caption: {english_caption}"
|
149 |
|
150 |
# Initialize the dataset
|
151 |
setup_hf_dataset()
|
152 |
|
153 |
-
with gr.Blocks(
|
154 |
gr.Markdown("# South Asian Image Data Collection")
|
155 |
gr.Markdown("Upload an image and answer questions about its cultural significance.")
|
156 |
|
157 |
with gr.Row():
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
country_dropdown.change(
|
217 |
-
fn=
|
218 |
inputs=country_dropdown,
|
219 |
outputs=state_dropdown
|
220 |
)
|
221 |
|
222 |
-
submit_btn = gr.Button("Submit")
|
223 |
-
|
224 |
-
with gr.Row():
|
225 |
-
with gr.Column():
|
226 |
-
output_img = gr.Image(label="Submitted Image")
|
227 |
-
text_response = gr.Text(label="Text Response")
|
228 |
-
location_info = gr.Text(label="Location Information")
|
229 |
-
relevance_output = gr.Text(label="South Asia Cultural Relevance")
|
230 |
-
knowledge_source = gr.Text(label="Cultural Knowledge Source")
|
231 |
-
native_caption_output = gr.Text(label="Native Language Caption")
|
232 |
-
english_caption_output = gr.Text(label="English Caption")
|
233 |
-
|
234 |
submit_btn.click(
|
235 |
fn=process_submission,
|
236 |
inputs=[
|
237 |
-
input_img,
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
],
|
240 |
outputs=[
|
241 |
-
output_img,
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
243 |
]
|
244 |
)
|
245 |
|
|
|
15 |
DATASET_NAME = "srishtiy/se-culture-dataset-results" # Change to your username/dataset-name
|
16 |
DATASET_CREATED = False
|
17 |
|
18 |
+
# States by country dictionary
|
19 |
states_by_country = {
|
20 |
"India": [
|
21 |
+
"Andhra Pradesh", "Arunachal Pradesh", "Assam", "Bihar", "Chhattisgarh", "Goa", "Gujarat", "Haryana",
|
22 |
+
"Himachal Pradesh", "Jharkhand", "Karnataka", "Kerala", "Madhya Pradesh", "Maharashtra", "Manipur",
|
23 |
+
"Meghalaya", "Mizoram", "Nagaland", "Odisha", "Punjab", "Rajasthan", "Sikkim", "Tamil Nadu", "Telangana",
|
24 |
+
"Tripura", "Uttar Pradesh", "Uttarakhand", "West Bengal", "Andaman and Nicobar Islands", "Chandigarh",
|
25 |
+
"Dadra and Nagar Haveli and Daman and Diu", "Delhi", "Jammu and Kashmir", "Ladakh", "Lakshadweep", "Puducherry"
|
|
|
|
|
26 |
],
|
27 |
"Pakistan": [
|
28 |
+
"Balochistan", "Khyber Pakhtunkhwa", "Punjab", "Sindh", "Islamabad Capital Territory",
|
29 |
"Azad Jammu and Kashmir", "Gilgit-Baltistan"
|
30 |
],
|
31 |
"Bangladesh": [
|
32 |
"Barisal", "Chittagong", "Dhaka", "Khulna", "Mymensingh", "Rajshahi", "Rangpur", "Sylhet"
|
33 |
],
|
34 |
"Afghanistan": [
|
35 |
+
"Badakhshan", "Badghis", "Baghlan", "Balkh", "Bamyan", "Daykundi", "Farah", "Faryab", "Ghazni", "Ghor",
|
36 |
+
"Helmand", "Herat", "Jowzjan", "Kabul", "Kandahar", "Kapisa", "Khost", "Kunar", "Kunduz", "Laghman",
|
37 |
+
"Logar", "Nangarhar", "Nimruz", "Nuristan", "Paktia", "Paktika", "Panjshir", "Parwan", "Samangan",
|
38 |
+
"Sar-e Pol", "Takhar", "Uruzgan", "Wardak", "Zabul"
|
39 |
],
|
40 |
"Bhutan": [
|
41 |
+
"Bumthang", "Chukha", "Dagana", "Gasa", "Haa", "Lhuentse", "Mongar", "Paro", "Pemagatshel", "Punakha",
|
42 |
+
"Samdrup Jongkhar", "Samtse", "Sarpang", "Thimphu", "Trashigang", "Trashiyangtse", "Trongsa", "Tsirang",
|
43 |
+
"Wangdue Phodrang", "Zhemgang"
|
44 |
],
|
45 |
"Nepal": [
|
46 |
"Bagmati", "Gandaki", "Karnali", "Koshi", "Lumbini", "Madhesh", "Sudurpashchim"
|
47 |
],
|
48 |
"Sri Lanka": [
|
49 |
+
"Central", "Eastern", "North Central", "Northern", "North Western", "Sabaragamuwa", "Southern", "Uva", "Western"
|
|
|
50 |
]
|
51 |
}
|
52 |
|
|
|
69 |
elif not HF_TOKEN:
|
70 |
print("Warning: HF_TOKEN not set. Data will be stored locally only.")
|
71 |
|
72 |
+
def update_state_dropdown(country):
|
73 |
+
"""Update state dropdown based on selected country"""
|
74 |
if country in states_by_country:
|
75 |
+
return gr.Dropdown(choices=states_by_country[country], label=f"State/Province in {country}:", interactive=True)
|
76 |
+
return gr.Dropdown(choices=[], label="State/Province:", interactive=True)
|
|
|
77 |
|
78 |
def process_submission(input_img, text_answer, country, state, city, se_asia_relevance, culture_knowledge, native_caption, english_caption):
|
79 |
# Generate unique ID for this submission
|
|
|
100 |
"image_filename": os.path.basename(image_path) if image_path else None,
|
101 |
"cultural_relevance": text_answer,
|
102 |
"country": country,
|
103 |
+
"state": state,
|
104 |
"city": city,
|
105 |
"se_asia_relevance": se_asia_relevance,
|
106 |
"cultural_knowledge_source": culture_knowledge,
|
|
|
141 |
|
142 |
# Return values to display in the interface
|
143 |
location_info = f"Location: {city}, {state}, {country}" if state else f"Location: {city}, {country}"
|
144 |
+
return input_img, f"Your text response: {text_answer}", f"Selected location: {location_info}", f"SE Asia relevance: {se_asia_relevance}", f"Cultural knowledge source: {culture_knowledge}", f"Native caption: {native_caption}", f"English caption: {english_caption}"
|
145 |
|
146 |
# Initialize the dataset
|
147 |
setup_hf_dataset()
|
148 |
|
149 |
+
with gr.Blocks() as gradio_app:
|
150 |
gr.Markdown("# South Asian Image Data Collection")
|
151 |
gr.Markdown("Upload an image and answer questions about its cultural significance.")
|
152 |
|
153 |
with gr.Row():
|
154 |
+
input_img = gr.Image(label="Upload an image", sources=['upload', 'webcam'], type="pil")
|
155 |
+
|
156 |
+
with gr.Row():
|
157 |
+
text_answer = gr.Textbox(label="The image portrays culturally-relevant information in:", placeholder="what culture does this image represent?")
|
158 |
+
|
159 |
+
with gr.Row():
|
160 |
+
country_dropdown = gr.Dropdown(
|
161 |
+
choices=["India", "Pakistan", "Bangladesh", "Afghanistan", "Bhutan", "Nepal", "Sri Lanka"],
|
162 |
+
label="Country where the image was taken:",
|
163 |
+
interactive=True
|
164 |
+
)
|
165 |
+
|
166 |
+
with gr.Row():
|
167 |
+
state_dropdown = gr.Dropdown(
|
168 |
+
choices=[],
|
169 |
+
label="State/Province:",
|
170 |
+
interactive=True
|
171 |
+
)
|
172 |
+
|
173 |
+
with gr.Row():
|
174 |
+
city_textbox = gr.Textbox(label="City where the image was taken:", placeholder="Enter city name")
|
175 |
+
|
176 |
+
with gr.Row():
|
177 |
+
se_asia_relevance = gr.Radio(
|
178 |
+
choices=[
|
179 |
+
"Yes. Unique to South Asia",
|
180 |
+
"Yes, people will likely think of South Asia when seeing the picture, but it may have low degree of similarity to other cultures.",
|
181 |
+
"Maybe, this culture did not originate from South Asia, but it's quite dominant in South Asia",
|
182 |
+
"Not really. It has some affiliation to South Asia, but actually does not represent South Asia or has stronger affiliation to cultures outside South Asia",
|
183 |
+
"No. Totally unrelated to South Asia"
|
184 |
+
],
|
185 |
+
label="Is the image culturally relevant in South Asia?"
|
186 |
+
)
|
187 |
+
|
188 |
+
with gr.Row():
|
189 |
+
culture_knowledge = gr.Radio(
|
190 |
+
choices=[
|
191 |
+
"I'm from this country/culture",
|
192 |
+
"I checked online resources (e.g., Wikipedia, articles, blogs)"
|
193 |
+
],
|
194 |
+
label="How do you know about this culture?",
|
195 |
+
info="Please do not consult LLMs (e.g., GPT-4o, Claude, Command-R, etc.)"
|
196 |
+
)
|
197 |
+
|
198 |
+
with gr.Row():
|
199 |
+
native_caption = gr.Textbox(label="Caption in Native Language:", placeholder="Enter caption in the native language of the culture depicted")
|
200 |
+
|
201 |
+
with gr.Row():
|
202 |
+
english_caption = gr.Textbox(label="English Caption:", placeholder="Enter caption in English")
|
203 |
+
|
204 |
+
with gr.Row():
|
205 |
+
submit_btn = gr.Button("Submit")
|
206 |
+
|
207 |
+
with gr.Row():
|
208 |
+
output_img = gr.Image(label="Submitted Image")
|
209 |
+
|
210 |
+
with gr.Row():
|
211 |
+
output_text = gr.Text(label="Text Response")
|
212 |
+
|
213 |
+
with gr.Row():
|
214 |
+
output_location = gr.Text(label="Location Information")
|
215 |
|
216 |
+
with gr.Row():
|
217 |
+
output_relevance = gr.Text(label="South Asia Cultural Relevance")
|
218 |
+
|
219 |
+
with gr.Row():
|
220 |
+
output_knowledge = gr.Text(label="Cultural Knowledge Source")
|
221 |
+
|
222 |
+
with gr.Row():
|
223 |
+
output_native = gr.Text(label="Native Language Caption")
|
224 |
+
|
225 |
+
with gr.Row():
|
226 |
+
output_english = gr.Text(label="English Caption")
|
227 |
+
|
228 |
+
# Set up event handlers
|
229 |
country_dropdown.change(
|
230 |
+
fn=update_state_dropdown,
|
231 |
inputs=country_dropdown,
|
232 |
outputs=state_dropdown
|
233 |
)
|
234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
submit_btn.click(
|
236 |
fn=process_submission,
|
237 |
inputs=[
|
238 |
+
input_img,
|
239 |
+
text_answer,
|
240 |
+
country_dropdown,
|
241 |
+
state_dropdown,
|
242 |
+
city_textbox,
|
243 |
+
se_asia_relevance,
|
244 |
+
culture_knowledge,
|
245 |
+
native_caption,
|
246 |
+
english_caption
|
247 |
],
|
248 |
outputs=[
|
249 |
+
output_img,
|
250 |
+
output_text,
|
251 |
+
output_location,
|
252 |
+
output_relevance,
|
253 |
+
output_knowledge,
|
254 |
+
output_native,
|
255 |
+
output_english
|
256 |
]
|
257 |
)
|
258 |
|