christopher
commited on
Commit
·
e67b064
1
Parent(s):
c8d57fb
Added safe processing in query processor
Browse files- database/query_processor.py +98 -40
database/query_processor.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import datetime
|
2 |
-
from typing import List, Dict, Any, Optional
|
3 |
import numpy as np
|
4 |
from models.LexRank import degree_centrality_scores
|
5 |
import logging
|
|
|
6 |
|
7 |
logger = logging.getLogger(__name__)
|
8 |
|
@@ -21,62 +22,119 @@ class QueryProcessor:
|
|
21 |
end_date: Optional[str] = None
|
22 |
) -> Dict[str, Any]:
|
23 |
try:
|
24 |
-
#
|
25 |
-
start_dt =
|
26 |
-
end_dt =
|
27 |
|
28 |
# Get query embedding
|
29 |
query_embedding = self.embedding_model.encode(query).tolist()
|
30 |
-
logger.debug(f"
|
31 |
|
32 |
-
# Extract entities
|
33 |
-
entities = self.
|
34 |
logger.debug(f"Extracted entities: {entities}")
|
35 |
|
36 |
-
# Semantic search
|
37 |
-
articles = await self.
|
38 |
-
query_embedding
|
39 |
-
|
40 |
-
|
41 |
-
topic
|
42 |
-
entities
|
43 |
)
|
44 |
|
45 |
if not articles:
|
46 |
-
logger.info("No articles found matching
|
47 |
-
return {"
|
|
|
|
|
|
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
contents = [article["content"] for article in articles]
|
51 |
sentences = []
|
|
|
52 |
for content in contents:
|
53 |
-
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
# Generate summary
|
58 |
-
if sentences:
|
59 |
-
embeddings = self.embedding_model.encode(sentences)
|
60 |
-
similarity_matrix = np.inner(embeddings, embeddings)
|
61 |
-
centrality_scores = degree_centrality_scores(similarity_matrix, threshold=None)
|
62 |
-
|
63 |
-
top_indices = np.argsort(-centrality_scores)[0:10]
|
64 |
-
key_sentences = [sentences[idx].strip() for idx in top_indices]
|
65 |
-
combined_text = ' '.join(key_sentences)
|
66 |
-
|
67 |
-
summary = self.summarization_model.summarize(combined_text)
|
68 |
-
logger.debug(f"Generated summary with {len(key_sentences)} key sentences")
|
69 |
-
else:
|
70 |
-
key_sentences = []
|
71 |
-
summary = "No content available for summarization"
|
72 |
logger.warning("No sentences available for summarization")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
return {
|
75 |
-
"summary":
|
76 |
-
"
|
77 |
-
"entities": entities # Include extracted entities in response
|
78 |
}
|
79 |
|
80 |
except Exception as e:
|
81 |
-
logger.error(f"
|
82 |
-
return {
|
|
|
|
|
|
|
|
1 |
import datetime
|
2 |
+
from typing import List, Dict, Any, Optional, Tuple
|
3 |
import numpy as np
|
4 |
from models.LexRank import degree_centrality_scores
|
5 |
import logging
|
6 |
+
from datetime import datetime as dt
|
7 |
|
8 |
logger = logging.getLogger(__name__)
|
9 |
|
|
|
22 |
end_date: Optional[str] = None
|
23 |
) -> Dict[str, Any]:
|
24 |
try:
|
25 |
+
# Validate and parse dates
|
26 |
+
start_dt = self._parse_date(start_date) if start_date else None
|
27 |
+
end_dt = self._parse_date(end_date) if end_date else None
|
28 |
|
29 |
# Get query embedding
|
30 |
query_embedding = self.embedding_model.encode(query).tolist()
|
31 |
+
logger.debug(f"Query embedding generated for: {query[:50]}...")
|
32 |
|
33 |
+
# Extract entities safely
|
34 |
+
entities = self._extract_entities_safely(query)
|
35 |
logger.debug(f"Extracted entities: {entities}")
|
36 |
|
37 |
+
# Semantic search
|
38 |
+
articles = await self._execute_semantic_search(
|
39 |
+
query_embedding,
|
40 |
+
start_dt,
|
41 |
+
end_dt,
|
42 |
+
topic,
|
43 |
+
entities
|
44 |
)
|
45 |
|
46 |
if not articles:
|
47 |
+
logger.info("No articles found matching criteria")
|
48 |
+
return {"message": "No articles found", "articles": []}
|
49 |
+
|
50 |
+
# Process results and generate summary
|
51 |
+
summary_result = self._generate_summary(articles)
|
52 |
|
53 |
+
return {
|
54 |
+
"summary": summary_result["summary"],
|
55 |
+
"key_sentences": summary_result["key_sentences"],
|
56 |
+
"articles": articles,
|
57 |
+
"entities": entities
|
58 |
+
}
|
59 |
+
|
60 |
+
except Exception as e:
|
61 |
+
logger.error(f"Processing failed: {str(e)}", exc_info=True)
|
62 |
+
return {"error": str(e)}
|
63 |
+
|
64 |
+
def _parse_date(self, date_str: str) -> dt:
|
65 |
+
"""Safe date parsing with validation"""
|
66 |
+
try:
|
67 |
+
return dt.strptime(date_str, "%Y-%m-%d")
|
68 |
+
except ValueError as e:
|
69 |
+
logger.error(f"Invalid date format: {date_str}")
|
70 |
+
raise ValueError(f"Invalid date format. Expected YYYY-MM-DD, got {date_str}")
|
71 |
+
|
72 |
+
def _extract_entities_safely(self, text: str) -> List[Tuple[str, str]]:
|
73 |
+
"""Robust entity extraction handling both strings and lists"""
|
74 |
+
try:
|
75 |
+
if isinstance(text, list):
|
76 |
+
logger.warning("Received list input for entity extraction, joining to string")
|
77 |
+
text = " ".join(text)
|
78 |
+
return self.nlp_model.extract_entities(text)
|
79 |
+
except Exception as e:
|
80 |
+
logger.error(f"Entity extraction failed: {str(e)}")
|
81 |
+
return []
|
82 |
+
|
83 |
+
async def _execute_semantic_search(
|
84 |
+
self,
|
85 |
+
query_embedding: List[float],
|
86 |
+
start_date: Optional[dt],
|
87 |
+
end_date: Optional[dt],
|
88 |
+
topic: Optional[str],
|
89 |
+
entities: List[Tuple[str, str]]
|
90 |
+
) -> List[Dict[str, Any]]:
|
91 |
+
"""Execute search with proper error handling"""
|
92 |
+
try:
|
93 |
+
entity_texts = [ent[0] for ent in entities]
|
94 |
+
return await self.db_service.semantic_search(
|
95 |
+
query_embedding=query_embedding,
|
96 |
+
start_date=start_date,
|
97 |
+
end_date=end_date,
|
98 |
+
topic=topic,
|
99 |
+
entities=entity_texts
|
100 |
+
)
|
101 |
+
except Exception as e:
|
102 |
+
logger.error(f"Semantic search failed: {str(e)}")
|
103 |
+
raise
|
104 |
+
|
105 |
+
def _generate_summary(self, articles: List[Dict[str, Any]]) -> Dict[str, Any]:
|
106 |
+
"""Generate summary from articles with fallback handling"""
|
107 |
+
try:
|
108 |
contents = [article["content"] for article in articles]
|
109 |
sentences = []
|
110 |
+
|
111 |
for content in contents:
|
112 |
+
if content:
|
113 |
+
sentences.extend(self.nlp_model.tokenize_sentences(content))
|
114 |
|
115 |
+
if not sentences:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
logger.warning("No sentences available for summarization")
|
117 |
+
return {
|
118 |
+
"summary": "No content available for summarization",
|
119 |
+
"key_sentences": []
|
120 |
+
}
|
121 |
+
|
122 |
+
embeddings = self.embedding_model.encode(sentences)
|
123 |
+
similarity_matrix = np.inner(embeddings, embeddings)
|
124 |
+
centrality_scores = degree_centrality_scores(similarity_matrix, threshold=None)
|
125 |
+
|
126 |
+
top_indices = np.argsort(-centrality_scores)[:10]
|
127 |
+
key_sentences = [sentences[idx].strip() for idx in top_indices]
|
128 |
+
combined_text = ' '.join(key_sentences)
|
129 |
|
130 |
return {
|
131 |
+
"summary": self.summarization_model.summarize(combined_text),
|
132 |
+
"key_sentences": key_sentences
|
|
|
133 |
}
|
134 |
|
135 |
except Exception as e:
|
136 |
+
logger.error(f"Summary generation failed: {str(e)}")
|
137 |
+
return {
|
138 |
+
"summary": "Summary generation failed",
|
139 |
+
"key_sentences": []
|
140 |
+
}
|