christopher
commited on
Commit
·
0424ce2
1
Parent(s):
21f3f8a
reverted query processor
Browse files- database/query_processor.py +22 -16
database/query_processor.py
CHANGED
@@ -29,28 +29,22 @@ class QueryProcessor:
|
|
29 |
|
30 |
# Query processing
|
31 |
query_embedding = self.embedding_model.encode(query).tolist()
|
32 |
-
logger.debug(f"Generated embedding for query: {query[:50]}...")
|
33 |
-
|
34 |
-
# Entity extraction
|
35 |
entities = self.nlp_model.extract_entities(query)
|
36 |
-
logger.debug(f"Extracted entities: {entities}")
|
37 |
|
38 |
# Database search
|
39 |
-
articles = await self.
|
40 |
query_embedding,
|
41 |
start_dt,
|
42 |
end_dt,
|
43 |
topic,
|
44 |
-
[ent[0] for ent in entities]
|
45 |
)
|
46 |
|
47 |
if not articles:
|
48 |
-
logger.info("No articles found matching criteria")
|
49 |
return {"message": "No articles found", "articles": []}
|
50 |
|
51 |
# Summary generation
|
52 |
summary_data = self._generate_summary(articles)
|
53 |
-
|
54 |
return {
|
55 |
"summary": summary_data["summary"],
|
56 |
"key_sentences": summary_data["key_sentences"],
|
@@ -70,22 +64,34 @@ class QueryProcessor:
|
|
70 |
logger.error(f"Invalid date format: {date_str}")
|
71 |
raise ValueError(f"Invalid date format. Expected YYYY-MM-DD, got {date_str}")
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
async def _execute_semantic_search(
|
74 |
self,
|
75 |
query_embedding: List[float],
|
76 |
start_date: Optional[dt],
|
77 |
end_date: Optional[dt],
|
78 |
topic: Optional[str],
|
79 |
-
entities: List[str]
|
80 |
) -> List[Dict[str, Any]]:
|
81 |
"""Execute search with proper error handling"""
|
82 |
try:
|
|
|
83 |
return await self.db_service.semantic_search(
|
84 |
query_embedding=query_embedding,
|
85 |
start_date=start_date,
|
86 |
end_date=end_date,
|
87 |
topic=topic,
|
88 |
-
entities=
|
89 |
)
|
90 |
except Exception as e:
|
91 |
logger.error(f"Semantic search failed: {str(e)}")
|
@@ -94,10 +100,11 @@ class QueryProcessor:
|
|
94 |
def _generate_summary(self, articles: List[Dict[str, Any]]) -> Dict[str, Any]:
|
95 |
"""Generate summary from articles with fallback handling"""
|
96 |
try:
|
97 |
-
|
98 |
sentences = []
|
99 |
-
|
100 |
-
|
|
|
101 |
sentences.extend(self.nlp_model.tokenize_sentences(content))
|
102 |
|
103 |
if not sentences:
|
@@ -107,17 +114,16 @@ class QueryProcessor:
|
|
107 |
"key_sentences": []
|
108 |
}
|
109 |
|
110 |
-
# Generate summary
|
111 |
embeddings = self.embedding_model.encode(sentences)
|
112 |
similarity_matrix = np.inner(embeddings, embeddings)
|
113 |
centrality_scores = degree_centrality_scores(similarity_matrix, threshold=None)
|
114 |
|
115 |
-
# Get top 10 most central sentences
|
116 |
top_indices = np.argsort(-centrality_scores)[:10]
|
117 |
key_sentences = [sentences[idx].strip() for idx in top_indices]
|
|
|
118 |
|
119 |
return {
|
120 |
-
"summary": self.summarization_model.summarize(
|
121 |
"key_sentences": key_sentences
|
122 |
}
|
123 |
|
|
|
29 |
|
30 |
# Query processing
|
31 |
query_embedding = self.embedding_model.encode(query).tolist()
|
|
|
|
|
|
|
32 |
entities = self.nlp_model.extract_entities(query)
|
|
|
33 |
|
34 |
# Database search
|
35 |
+
articles = await self._execute_search(
|
36 |
query_embedding,
|
37 |
start_dt,
|
38 |
end_dt,
|
39 |
topic,
|
40 |
+
[ent[0] for ent in entities]
|
41 |
)
|
42 |
|
43 |
if not articles:
|
|
|
44 |
return {"message": "No articles found", "articles": []}
|
45 |
|
46 |
# Summary generation
|
47 |
summary_data = self._generate_summary(articles)
|
|
|
48 |
return {
|
49 |
"summary": summary_data["summary"],
|
50 |
"key_sentences": summary_data["key_sentences"],
|
|
|
64 |
logger.error(f"Invalid date format: {date_str}")
|
65 |
raise ValueError(f"Invalid date format. Expected YYYY-MM-DD, got {date_str}")
|
66 |
|
67 |
+
def _extract_entities_safely(self, text: str) -> List[Tuple[str, str]]:
|
68 |
+
"""Robust entity extraction handling both strings and lists"""
|
69 |
+
try:
|
70 |
+
if isinstance(text, list):
|
71 |
+
logger.warning("Received list input for entity extraction, joining to string")
|
72 |
+
text = " ".join(text)
|
73 |
+
return self.nlp_model.extract_entities(text)
|
74 |
+
except Exception as e:
|
75 |
+
logger.error(f"Entity extraction failed: {str(e)}")
|
76 |
+
return []
|
77 |
+
|
78 |
async def _execute_semantic_search(
|
79 |
self,
|
80 |
query_embedding: List[float],
|
81 |
start_date: Optional[dt],
|
82 |
end_date: Optional[dt],
|
83 |
topic: Optional[str],
|
84 |
+
entities: List[Tuple[str, str]]
|
85 |
) -> List[Dict[str, Any]]:
|
86 |
"""Execute search with proper error handling"""
|
87 |
try:
|
88 |
+
entity_texts = [ent[0] for ent in entities]
|
89 |
return await self.db_service.semantic_search(
|
90 |
query_embedding=query_embedding,
|
91 |
start_date=start_date,
|
92 |
end_date=end_date,
|
93 |
topic=topic,
|
94 |
+
entities=entity_texts
|
95 |
)
|
96 |
except Exception as e:
|
97 |
logger.error(f"Semantic search failed: {str(e)}")
|
|
|
100 |
def _generate_summary(self, articles: List[Dict[str, Any]]) -> Dict[str, Any]:
|
101 |
"""Generate summary from articles with fallback handling"""
|
102 |
try:
|
103 |
+
contents = [article["content"] for article in articles]
|
104 |
sentences = []
|
105 |
+
|
106 |
+
for content in contents:
|
107 |
+
if content:
|
108 |
sentences.extend(self.nlp_model.tokenize_sentences(content))
|
109 |
|
110 |
if not sentences:
|
|
|
114 |
"key_sentences": []
|
115 |
}
|
116 |
|
|
|
117 |
embeddings = self.embedding_model.encode(sentences)
|
118 |
similarity_matrix = np.inner(embeddings, embeddings)
|
119 |
centrality_scores = degree_centrality_scores(similarity_matrix, threshold=None)
|
120 |
|
|
|
121 |
top_indices = np.argsort(-centrality_scores)[:10]
|
122 |
key_sentences = [sentences[idx].strip() for idx in top_indices]
|
123 |
+
combined_text = ' '.join(key_sentences)
|
124 |
|
125 |
return {
|
126 |
+
"summary": self.summarization_model.summarize(combined_text),
|
127 |
"key_sentences": key_sentences
|
128 |
}
|
129 |
|