File size: 15,949 Bytes
a80ecb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import { ChatOpenAI } from '@langchain/openai';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import {
  ChatPromptTemplate,
  MessagesPlaceholder,
  PromptTemplate,
} from '@langchain/core/prompts';
import {
  RunnableLambda,
  RunnableMap,
  RunnableSequence,
} from '@langchain/core/runnables';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import LineListOutputParser from '../lib/outputParsers/listLineOutputParser';
import LineOutputParser from '../lib/outputParsers/lineOutputParser';
import { getDocumentsFromLinks } from '../utils/documents';
import { Document } from 'langchain/document';
import { searchSearxng } from '../lib/searxng';
import path from 'path';
import fs from 'fs';
import computeSimilarity from '../utils/computeSimilarity';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import { StreamEvent } from '@langchain/core/tracers/log_stream';
import { IterableReadableStream } from '@langchain/core/utils/stream';

export interface MetaSearchAgentType {
  searchAndAnswer: (
    message: string,
    history: BaseMessage[],
    llm: BaseChatModel,
    embeddings: Embeddings,
    optimizationMode: 'speed' | 'balanced' | 'quality',
    fileIds: string[],
  ) => Promise<eventEmitter>;
}

interface Config {
  searchWeb: boolean;
  rerank: boolean;
  summarizer: boolean;
  rerankThreshold: number;
  queryGeneratorPrompt: string;
  responsePrompt: string;
  activeEngines: string[];
}

type BasicChainInput = {
  chat_history: BaseMessage[];
  query: string;
};

class MetaSearchAgent implements MetaSearchAgentType {
  private config: Config;
  private strParser = new StringOutputParser();

  constructor(config: Config) {
    this.config = config;
  }

  private async createSearchRetrieverChain(llm: BaseChatModel) {
    (llm as unknown as ChatOpenAI).temperature = 0;

    return RunnableSequence.from([
      PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
      llm,
      this.strParser,
      RunnableLambda.from(async (input: string) => {
        const linksOutputParser = new LineListOutputParser({
          key: 'links',
        });

        const questionOutputParser = new LineOutputParser({
          key: 'question',
        });

        const links = await linksOutputParser.parse(input);
        let question = this.config.summarizer
          ? await questionOutputParser.parse(input)
          : input;

        if (question === 'not_needed') {
          return { query: '', docs: [] };
        }

        if (links.length > 0) {
          if (question.length === 0) {
            question = 'summarize';
          }

          let docs = [];

          const linkDocs = await getDocumentsFromLinks({ links });

          const docGroups: Document[] = [];

          linkDocs.map((doc) => {
            const URLDocExists = docGroups.find(
              (d) =>
                d.metadata.url === doc.metadata.url &&
                d.metadata.totalDocs < 10,
            );

            if (!URLDocExists) {
              docGroups.push({
                ...doc,
                metadata: {
                  ...doc.metadata,
                  totalDocs: 1,
                },
              });
            }

            const docIndex = docGroups.findIndex(
              (d) =>
                d.metadata.url === doc.metadata.url &&
                d.metadata.totalDocs < 10,
            );

            if (docIndex !== -1) {
              docGroups[docIndex].pageContent =
                docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
              docGroups[docIndex].metadata.totalDocs += 1;
            }
          });

          await Promise.all(
            docGroups.map(async (doc) => {
              const res = await llm.invoke(`
            You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the 
            text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
            If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
            
            - **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
            - **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
            - **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.

            The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.

            <example>
            1. \`<text>
            Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers. 
            It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications 
            by using containers.
            </text>

            <query>
            What is Docker and how does it work?
            </query>

            Response:
            Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application 
            deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in 
            any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
            \`
            2. \`<text>
            The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
            relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
            on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
            Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
            General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
            realm, including astronomy.
            </text>

            <query>
            summarize
            </query>

            Response:
            The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
            relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
            relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
            1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
            \`
            </example>

            Everything below is the actual data you will be working with. Good luck!

            <query>
            ${question}
            </query>

            <text>
            ${doc.pageContent}
            </text>

            Make sure to answer the query in the summary.
          `);

              const document = new Document({
                pageContent: res.content as string,
                metadata: {
                  title: doc.metadata.title,
                  url: doc.metadata.url,
                },
              });

              docs.push(document);
            }),
          );

          return { query: question, docs: docs };
        } else {
          const res = await searchSearxng(question, {
            language: 'en',
            engines: this.config.activeEngines,
          });

          const documents = res.results.map(
            (result) =>
              new Document({
                pageContent:
                  result.content ||
                  (this.config.activeEngines.includes('youtube')
                    ? result.title
                    : '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
                metadata: {
                  title: result.title,
                  url: result.url,
                  ...(result.img_src && { img_src: result.img_src }),
                },
              }),
          );

          return { query: question, docs: documents };
        }
      }),
    ]);
  }

  private async createAnsweringChain(
    llm: BaseChatModel,
    fileIds: string[],
    embeddings: Embeddings,
    optimizationMode: 'speed' | 'balanced' | 'quality',
  ) {
    return RunnableSequence.from([
      RunnableMap.from({
        query: (input: BasicChainInput) => input.query,
        chat_history: (input: BasicChainInput) => input.chat_history,
        date: () => new Date().toISOString(),
        context: RunnableLambda.from(async (input: BasicChainInput) => {
          const processedHistory = formatChatHistoryAsString(
            input.chat_history,
          );

          let docs: Document[] | null = null;
          let query = input.query;

          if (this.config.searchWeb) {
            const searchRetrieverChain =
              await this.createSearchRetrieverChain(llm);

            const searchRetrieverResult = await searchRetrieverChain.invoke({
              chat_history: processedHistory,
              query,
            });

            query = searchRetrieverResult.query;
            docs = searchRetrieverResult.docs;
          }

          const sortedDocs = await this.rerankDocs(
            query,
            docs ?? [],
            fileIds,
            embeddings,
            optimizationMode,
          );

          return sortedDocs;
        })
          .withConfig({
            runName: 'FinalSourceRetriever',
          })
          .pipe(this.processDocs),
      }),
      ChatPromptTemplate.fromMessages([
        ['system', this.config.responsePrompt],
        new MessagesPlaceholder('chat_history'),
        ['user', '{query}'],
      ]),
      llm,
      this.strParser,
    ]).withConfig({
      runName: 'FinalResponseGenerator',
    });
  }

  private async rerankDocs(
    query: string,
    docs: Document[],
    fileIds: string[],
    embeddings: Embeddings,
    optimizationMode: 'speed' | 'balanced' | 'quality',
  ) {
    if (docs.length === 0 && fileIds.length === 0) {
      return docs;
    }

    const filesData = fileIds
      .map((file) => {
        const filePath = path.join(process.cwd(), 'uploads', file);

        const contentPath = filePath + '-extracted.json';
        const embeddingsPath = filePath + '-embeddings.json';

        const content = JSON.parse(fs.readFileSync(contentPath, 'utf8'));
        const embeddings = JSON.parse(fs.readFileSync(embeddingsPath, 'utf8'));

        const fileSimilaritySearchObject = content.contents.map(
          (c: string, i) => {
            return {
              fileName: content.title,
              content: c,
              embeddings: embeddings.embeddings[i],
            };
          },
        );

        return fileSimilaritySearchObject;
      })
      .flat();

    if (query.toLocaleLowerCase() === 'summarize') {
      return docs.slice(0, 15);
    }

    const docsWithContent = docs.filter(
      (doc) => doc.pageContent && doc.pageContent.length > 0,
    );

    if (optimizationMode === 'speed' || this.config.rerank === false) {
      if (filesData.length > 0) {
        const [queryEmbedding] = await Promise.all([
          embeddings.embedQuery(query),
        ]);

        const fileDocs = filesData.map((fileData) => {
          return new Document({
            pageContent: fileData.content,
            metadata: {
              title: fileData.fileName,
              url: `File`,
            },
          });
        });

        const similarity = filesData.map((fileData, i) => {
          const sim = computeSimilarity(queryEmbedding, fileData.embeddings);

          return {
            index: i,
            similarity: sim,
          };
        });

        let sortedDocs = similarity
          .filter(
            (sim) => sim.similarity > (this.config.rerankThreshold ?? 0.3),
          )
          .sort((a, b) => b.similarity - a.similarity)
          .slice(0, 15)
          .map((sim) => fileDocs[sim.index]);

        sortedDocs =
          docsWithContent.length > 0 ? sortedDocs.slice(0, 8) : sortedDocs;

        return [
          ...sortedDocs,
          ...docsWithContent.slice(0, 15 - sortedDocs.length),
        ];
      } else {
        return docsWithContent.slice(0, 15);
      }
    } else if (optimizationMode === 'balanced') {
      const [docEmbeddings, queryEmbedding] = await Promise.all([
        embeddings.embedDocuments(
          docsWithContent.map((doc) => doc.pageContent),
        ),
        embeddings.embedQuery(query),
      ]);

      docsWithContent.push(
        ...filesData.map((fileData) => {
          return new Document({
            pageContent: fileData.content,
            metadata: {
              title: fileData.fileName,
              url: `File`,
            },
          });
        }),
      );

      docEmbeddings.push(...filesData.map((fileData) => fileData.embeddings));

      const similarity = docEmbeddings.map((docEmbedding, i) => {
        const sim = computeSimilarity(queryEmbedding, docEmbedding);

        return {
          index: i,
          similarity: sim,
        };
      });

      const sortedDocs = similarity
        .filter((sim) => sim.similarity > (this.config.rerankThreshold ?? 0.3))
        .sort((a, b) => b.similarity - a.similarity)
        .slice(0, 15)
        .map((sim) => docsWithContent[sim.index]);

      return sortedDocs;
    }
  }

  private processDocs(docs: Document[]) {
    return docs
      .map(
        (_, index) =>
          `${index + 1}. ${docs[index].metadata.title} ${docs[index].pageContent}`,
      )
      .join('\n');
  }

  private async handleStream(
    stream: IterableReadableStream<StreamEvent>,
    emitter: eventEmitter,
  ) {
    for await (const event of stream) {
      if (
        event.event === 'on_chain_end' &&
        event.name === 'FinalSourceRetriever'
      ) {
        ``;
        emitter.emit(
          'data',
          JSON.stringify({ type: 'sources', data: event.data.output }),
        );
      }
      if (
        event.event === 'on_chain_stream' &&
        event.name === 'FinalResponseGenerator'
      ) {
        emitter.emit(
          'data',
          JSON.stringify({ type: 'response', data: event.data.chunk }),
        );
      }
      if (
        event.event === 'on_chain_end' &&
        event.name === 'FinalResponseGenerator'
      ) {
        emitter.emit('end');
      }
    }
  }

  async searchAndAnswer(
    message: string,
    history: BaseMessage[],
    llm: BaseChatModel,
    embeddings: Embeddings,
    optimizationMode: 'speed' | 'balanced' | 'quality',
    fileIds: string[],
  ) {
    const emitter = new eventEmitter();

    const answeringChain = await this.createAnsweringChain(
      llm,
      fileIds,
      embeddings,
      optimizationMode,
    );

    const stream = answeringChain.streamEvents(
      {
        chat_history: history,
        query: message,
      },
      {
        version: 'v1',
      },
    );

    this.handleStream(stream, emitter);

    return emitter;
  }
}

export default MetaSearchAgent;