File size: 4,615 Bytes
a80ecb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import express from 'express';
import logger from '../utils/logger';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import { ChatOpenAI } from '@langchain/openai';
import {
  getAvailableChatModelProviders,
  getAvailableEmbeddingModelProviders,
} from '../lib/providers';
import { searchHandlers } from '../websocket/messageHandler';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { MetaSearchAgentType } from '../search/metaSearchAgent';

const router = express.Router();

interface chatModel {
  provider: string;
  model: string;
  customOpenAIBaseURL?: string;
  customOpenAIKey?: string;
}

interface embeddingModel {
  provider: string;
  model: string;
}

interface ChatRequestBody {
  optimizationMode: 'speed' | 'balanced';
  focusMode: string;
  chatModel?: chatModel;
  embeddingModel?: embeddingModel;
  query: string;
  history: Array<[string, string]>;
}

router.post('/', async (req, res) => {
  try {
    const body: ChatRequestBody = req.body;

    if (!body.focusMode || !body.query) {
      return res.status(400).json({ message: 'Missing focus mode or query' });
    }

    body.history = body.history || [];
    body.optimizationMode = body.optimizationMode || 'balanced';

    const history: BaseMessage[] = body.history.map((msg) => {
      if (msg[0] === 'human') {
        return new HumanMessage({
          content: msg[1],
        });
      } else {
        return new AIMessage({
          content: msg[1],
        });
      }
    });

    const [chatModelProviders, embeddingModelProviders] = await Promise.all([
      getAvailableChatModelProviders(),
      getAvailableEmbeddingModelProviders(),
    ]);

    const chatModelProvider =
      body.chatModel?.provider || Object.keys(chatModelProviders)[0];
    const chatModel =
      body.chatModel?.model ||
      Object.keys(chatModelProviders[chatModelProvider])[0];

    const embeddingModelProvider =
      body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0];
    const embeddingModel =
      body.embeddingModel?.model ||
      Object.keys(embeddingModelProviders[embeddingModelProvider])[0];

    let llm: BaseChatModel | undefined;
    let embeddings: Embeddings | undefined;

    if (body.chatModel?.provider === 'custom_openai') {
      if (
        !body.chatModel?.customOpenAIBaseURL ||
        !body.chatModel?.customOpenAIKey
      ) {
        return res
          .status(400)
          .json({ message: 'Missing custom OpenAI base URL or key' });
      }

      llm = new ChatOpenAI({
        modelName: body.chatModel.model,
        openAIApiKey: body.chatModel.customOpenAIKey,
        temperature: 0.7,
        configuration: {
          baseURL: body.chatModel.customOpenAIBaseURL,
        },
      }) as unknown as BaseChatModel;
    } else if (
      chatModelProviders[chatModelProvider] &&
      chatModelProviders[chatModelProvider][chatModel]
    ) {
      llm = chatModelProviders[chatModelProvider][chatModel]
        .model as unknown as BaseChatModel | undefined;
    }

    if (
      embeddingModelProviders[embeddingModelProvider] &&
      embeddingModelProviders[embeddingModelProvider][embeddingModel]
    ) {
      embeddings = embeddingModelProviders[embeddingModelProvider][
        embeddingModel
      ].model as Embeddings | undefined;
    }

    if (!llm || !embeddings) {
      return res.status(400).json({ message: 'Invalid model selected' });
    }

    const searchHandler: MetaSearchAgentType = searchHandlers[body.focusMode];

    if (!searchHandler) {
      return res.status(400).json({ message: 'Invalid focus mode' });
    }

    const emitter = await searchHandler.searchAndAnswer(
      body.query,
      history,
      llm,
      embeddings,
      body.optimizationMode,
      [],
    );

    let message = '';
    let sources = [];

    emitter.on('data', (data) => {
      const parsedData = JSON.parse(data);
      if (parsedData.type === 'response') {
        message += parsedData.data;
      } else if (parsedData.type === 'sources') {
        sources = parsedData.data;
      }
    });

    emitter.on('end', () => {
      res.status(200).json({ message, sources });
    });

    emitter.on('error', (data) => {
      const parsedData = JSON.parse(data);
      res.status(500).json({ message: parsedData.data });
    });
  } catch (err: any) {
    logger.error(`Error in getting search results: ${err.message}`);
    res.status(500).json({ message: 'An error has occurred.' });
  }
});

export default router;