Update README.md
Browse files
README.md
CHANGED
@@ -32,7 +32,7 @@ This model is trained to identify SQL injection attacks, which are a type of cod
|
|
32 |
|
33 |
## Uses
|
34 |
|
35 |
-
###
|
36 |
|
37 |
To use the SQL Injection Classifier model, you can follow the code snippet below. This example demonstrates how to predict whether a given SQL query is normal or an injection attack.
|
38 |
|
@@ -95,44 +95,67 @@ This model was trained on a dataset of SQL queries and may exhibit certain limit
|
|
95 |
|
96 |
Users (both direct and downstream) should be aware of the potential risks of relying on the model in security-sensitive applications. Additional domain-specific testing and validation are recommended before deployment.
|
97 |
|
98 |
-
## How to Get Started with the Model
|
99 |
|
100 |
```python
|
|
|
|
|
|
|
|
|
101 |
from unsloth import FastLanguageModel
|
102 |
from transformers import AutoTokenizer
|
103 |
|
104 |
-
#
|
|
|
|
|
105 |
model_name = "shukdevdatta123/sql_injection_classifier_DeepSeek_R1_fine_tuned_model"
|
106 |
-
hf_token = "your hf tokens"
|
107 |
-
|
108 |
-
model, tokenizer = FastLanguageModel.from_pretrained(
|
109 |
-
model_name=model_name,
|
110 |
-
load_in_4bit=True,
|
111 |
-
token=hf_token,
|
112 |
-
)
|
113 |
-
|
114 |
-
# Function for testing queries
|
115 |
-
def predict_sql_injection(query):
|
116 |
-
# Prepare the model for inference
|
117 |
-
inference_model = FastLanguageModel.for_inference(model)
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
```
|
137 |
## Training Details
|
138 |
|
|
|
32 |
|
33 |
## Uses
|
34 |
|
35 |
+
### Colab Use
|
36 |
|
37 |
To use the SQL Injection Classifier model, you can follow the code snippet below. This example demonstrates how to predict whether a given SQL query is normal or an injection attack.
|
38 |
|
|
|
95 |
|
96 |
Users (both direct and downstream) should be aware of the potential risks of relying on the model in security-sensitive applications. Additional domain-specific testing and validation are recommended before deployment.
|
97 |
|
98 |
+
## How to Get Started with the Model (Colab Streamlit)
|
99 |
|
100 |
```python
|
101 |
+
!pip install unsloth
|
102 |
+
|
103 |
+
%%writefile app.py
|
104 |
+
import streamlit as st
|
105 |
from unsloth import FastLanguageModel
|
106 |
from transformers import AutoTokenizer
|
107 |
|
108 |
+
# Streamlit UI for input
|
109 |
+
st.title("SQL Injection Classifier")
|
110 |
+
hf_token = st.text_input("Enter your Hugging Face Token", type="password")
|
111 |
model_name = "shukdevdatta123/sql_injection_classifier_DeepSeek_R1_fine_tuned_model"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
# Load the model and tokenizer when HF token is provided
|
114 |
+
if hf_token:
|
115 |
+
try:
|
116 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
117 |
+
model_name=model_name,
|
118 |
+
load_in_4bit=True,
|
119 |
+
token=hf_token,
|
120 |
+
)
|
121 |
+
|
122 |
+
# Function for testing queries
|
123 |
+
def predict_sql_injection(query):
|
124 |
+
# Prepare the model for inference
|
125 |
+
inference_model = FastLanguageModel.for_inference(model)
|
126 |
+
|
127 |
+
prompt = f"### Instruction:\nClassify the following SQL query as normal (0) or an injection attack (1).\n\n### Query:\n{query}\n\n### Classification:\n"
|
128 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
129 |
+
|
130 |
+
# Use the inference model for generation
|
131 |
+
outputs = inference_model.generate(
|
132 |
+
input_ids=inputs.input_ids,
|
133 |
+
attention_mask=inputs.attention_mask,
|
134 |
+
max_new_tokens=1000,
|
135 |
+
use_cache=True,
|
136 |
+
)
|
137 |
+
prediction = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
138 |
+
return prediction.split("### Classification:\n")[-1].strip()
|
139 |
+
|
140 |
+
# Input query from the user
|
141 |
+
query = st.text_area("Enter an SQL query to test for injection", "")
|
142 |
+
|
143 |
+
# Add a button to classify the query
|
144 |
+
if st.button("Classify SQL Injection"):
|
145 |
+
if query:
|
146 |
+
result = predict_sql_injection(query)
|
147 |
+
st.write(f"Prediction: {result}")
|
148 |
+
else:
|
149 |
+
st.write("Please enter a SQL query first.")
|
150 |
+
|
151 |
+
except Exception as e:
|
152 |
+
st.error(f"Error loading model: {str(e)}")
|
153 |
+
else:
|
154 |
+
st.write("Please enter your Hugging Face token to proceed.")
|
155 |
+
|
156 |
+
!pip install streamlit
|
157 |
+
|
158 |
+
!streamlit run app.py & npx localtunnel --port 8501
|
159 |
```
|
160 |
## Training Details
|
161 |
|