update model card README.md
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [codeparrot/codeparrot-small](https://huggingface.co/codeparrot/codeparrot-small) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
|
19 |
## Model description
|
20 |
|
@@ -39,52 +39,92 @@ The following hyperparameters were used during training:
|
|
39 |
- seed: 42
|
40 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
- lr_scheduler_type: linear
|
42 |
-
- num_epochs:
|
43 |
|
44 |
### Training results
|
45 |
|
46 |
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
|:-------------:|:-----:|:----:|:---------------:|
|
48 |
-
| 1.
|
49 |
-
| 1.
|
50 |
-
| 0.
|
51 |
-
| 0.
|
52 |
-
|
|
53 |
-
| 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
|
90 |
### Framework versions
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [codeparrot/codeparrot-small](https://huggingface.co/codeparrot/codeparrot-small) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.4238
|
18 |
|
19 |
## Model description
|
20 |
|
|
|
39 |
- seed: 42
|
40 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
- lr_scheduler_type: linear
|
42 |
+
- num_epochs: 10
|
43 |
|
44 |
### Training results
|
45 |
|
46 |
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
|:-------------:|:-----:|:----:|:---------------:|
|
48 |
+
| 1.216 | 0.12 | 1 | 1.0747 |
|
49 |
+
| 1.051 | 0.25 | 2 | 1.0005 |
|
50 |
+
| 0.9855 | 0.38 | 3 | 0.9462 |
|
51 |
+
| 0.9259 | 0.5 | 4 | 0.9042 |
|
52 |
+
| 0.9236 | 0.62 | 5 | 0.8675 |
|
53 |
+
| 0.8644 | 0.75 | 6 | 0.8331 |
|
54 |
+
| 0.8148 | 0.88 | 7 | 0.8030 |
|
55 |
+
| 0.7554 | 1.0 | 8 | 0.7800 |
|
56 |
+
| 0.7815 | 1.12 | 9 | 0.7600 |
|
57 |
+
| 0.784 | 1.25 | 10 | 0.7440 |
|
58 |
+
| 0.635 | 1.38 | 11 | 0.7309 |
|
59 |
+
| 0.6666 | 1.5 | 12 | 0.7170 |
|
60 |
+
| 0.7676 | 1.62 | 13 | 0.6993 |
|
61 |
+
| 0.6608 | 1.75 | 14 | 0.6835 |
|
62 |
+
| 0.6885 | 1.88 | 15 | 0.6696 |
|
63 |
+
| 0.69 | 2.0 | 16 | 0.6582 |
|
64 |
+
| 0.6343 | 2.12 | 17 | 0.6463 |
|
65 |
+
| 0.709 | 2.25 | 18 | 0.6324 |
|
66 |
+
| 0.5446 | 2.38 | 19 | 0.6206 |
|
67 |
+
| 0.5298 | 2.5 | 20 | 0.6102 |
|
68 |
+
| 0.6478 | 2.62 | 21 | 0.6016 |
|
69 |
+
| 0.546 | 2.75 | 22 | 0.5941 |
|
70 |
+
| 0.6297 | 2.88 | 23 | 0.5871 |
|
71 |
+
| 0.4518 | 3.0 | 24 | 0.5814 |
|
72 |
+
| 0.566 | 3.12 | 25 | 0.5769 |
|
73 |
+
| 0.6285 | 3.25 | 26 | 0.5702 |
|
74 |
+
| 0.5938 | 3.38 | 27 | 0.5631 |
|
75 |
+
| 0.514 | 3.5 | 28 | 0.5568 |
|
76 |
+
| 0.5113 | 3.62 | 29 | 0.5504 |
|
77 |
+
| 0.512 | 3.75 | 30 | 0.5451 |
|
78 |
+
| 0.4392 | 3.88 | 31 | 0.5407 |
|
79 |
+
| 0.5097 | 4.0 | 32 | 0.5370 |
|
80 |
+
| 0.4866 | 4.12 | 33 | 0.5326 |
|
81 |
+
| 0.5028 | 4.25 | 34 | 0.5285 |
|
82 |
+
| 0.5438 | 4.38 | 35 | 0.5228 |
|
83 |
+
| 0.5424 | 4.5 | 36 | 0.5166 |
|
84 |
+
| 0.5156 | 4.62 | 37 | 0.5108 |
|
85 |
+
| 0.4335 | 4.75 | 38 | 0.5056 |
|
86 |
+
| 0.4298 | 4.88 | 39 | 0.5013 |
|
87 |
+
| 0.5268 | 5.0 | 40 | 0.4978 |
|
88 |
+
| 0.4714 | 5.12 | 41 | 0.4938 |
|
89 |
+
| 0.4659 | 5.25 | 42 | 0.4907 |
|
90 |
+
| 0.4573 | 5.38 | 43 | 0.4874 |
|
91 |
+
| 0.4689 | 5.5 | 44 | 0.4847 |
|
92 |
+
| 0.4346 | 5.62 | 45 | 0.4824 |
|
93 |
+
| 0.4563 | 5.75 | 46 | 0.4794 |
|
94 |
+
| 0.4505 | 5.88 | 47 | 0.4761 |
|
95 |
+
| 0.7359 | 6.0 | 48 | 0.4732 |
|
96 |
+
| 0.4704 | 6.12 | 49 | 0.4706 |
|
97 |
+
| 0.4223 | 6.25 | 50 | 0.4685 |
|
98 |
+
| 0.4789 | 6.38 | 51 | 0.4651 |
|
99 |
+
| 0.4402 | 6.5 | 52 | 0.4624 |
|
100 |
+
| 0.4454 | 6.62 | 53 | 0.4597 |
|
101 |
+
| 0.4496 | 6.75 | 54 | 0.4566 |
|
102 |
+
| 0.3942 | 6.88 | 55 | 0.4539 |
|
103 |
+
| 0.2915 | 7.0 | 56 | 0.4515 |
|
104 |
+
| 0.3926 | 7.12 | 57 | 0.4496 |
|
105 |
+
| 0.4102 | 7.25 | 58 | 0.4474 |
|
106 |
+
| 0.4235 | 7.38 | 59 | 0.4456 |
|
107 |
+
| 0.4841 | 7.5 | 60 | 0.4441 |
|
108 |
+
| 0.3914 | 7.62 | 61 | 0.4423 |
|
109 |
+
| 0.4417 | 7.75 | 62 | 0.4404 |
|
110 |
+
| 0.4212 | 7.88 | 63 | 0.4384 |
|
111 |
+
| 0.4343 | 8.0 | 64 | 0.4369 |
|
112 |
+
| 0.4159 | 8.12 | 65 | 0.4355 |
|
113 |
+
| 0.4193 | 8.25 | 66 | 0.4343 |
|
114 |
+
| 0.4393 | 8.38 | 67 | 0.4333 |
|
115 |
+
| 0.4507 | 8.5 | 68 | 0.4319 |
|
116 |
+
| 0.3855 | 8.62 | 69 | 0.4305 |
|
117 |
+
| 0.4064 | 8.75 | 70 | 0.4293 |
|
118 |
+
| 0.4044 | 8.88 | 71 | 0.4283 |
|
119 |
+
| 0.2957 | 9.0 | 72 | 0.4275 |
|
120 |
+
| 0.4442 | 9.12 | 73 | 0.4266 |
|
121 |
+
| 0.4142 | 9.25 | 74 | 0.4260 |
|
122 |
+
| 0.4022 | 9.38 | 75 | 0.4253 |
|
123 |
+
| 0.4161 | 9.5 | 76 | 0.4248 |
|
124 |
+
| 0.3828 | 9.62 | 77 | 0.4244 |
|
125 |
+
| 0.384 | 9.75 | 78 | 0.4241 |
|
126 |
+
| 0.3985 | 9.88 | 79 | 0.4239 |
|
127 |
+
| 0.4912 | 10.0 | 80 | 0.4238 |
|
128 |
|
129 |
|
130 |
### Framework versions
|