Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +8 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 252.83 +/- 18.72
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x722bc9298860>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x722bc9298900>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x722bc92989a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x722bc9298a40>", "_build": "<function ActorCriticPolicy._build at 0x722bc9298ae0>", "forward": "<function ActorCriticPolicy.forward at 0x722bc9298b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x722bc9298c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x722bc9298cc0>", "_predict": "<function ActorCriticPolicy._predict at 0x722bc9298d60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x722bc9298e00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x722bc9298ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x722bc9298f40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x722c0039c680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1745551495423421757, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAADmeMS9Kdxqupf2RzovNAA1ghosu2NT8DMAAIA/AAAAAGpudL4/blY/qj5LvUqCR75bM7K9KqGpvAAAAAAAAAAAmsstvstvjz8dWvu93oNsvhih0b3M0cs9AAAAAAAAAABzRf294WjQuvJ2cbzU6oO57/DgOwi4sToAAIA/AACAP2YKJ72uha+6GtCTNpeNkzHMPPe5SW2rtQAAgD8AAIA/hmI9Pnwsrj6mbWu+0m5yvjy8Nr3tUoY9AAAAAAAAAACmeM09e6yWugqIh7nETWq06/vzusyOnDgAAAAAAACAPyb24b32yB+6A45yOl/vBjbq6YO7nfEGNQAAgD8AAAAAzfq+vblMiT6Y0rA94yFNvgUMqzww/YI9AAAAAAAAAACaMVO+MpASPw7U3T3Tx3C+G2MXPFTmhb0AAAAAAAAAAM3sKLpbDY+8CuzluwWoPD3ZegG+38wsvAAAgD8AAIA/s1AVvhn5xz4KE7U9zGRevofh+jwzw3C9AAAAAAAAAABmDc29jwZJuo7tzTrio3A14u3ZuDIB87kAAAAAAACAP2bK0LxQcsQ+5l5EPXWzeb4k11M9SA9TvQAAAAAAAAAAM20HPdZ5FT3QMte9416RvlogOTsi8Cy9AAAAAAAAAADa28g9w/kyuovE4LoQ8B62iziwO67+BDoAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAtYywfQruMAWyUTbQCjAF0lEdAiqw4ZEUj9nV9lChoBkdAYrdjwQUYbmgHTegDaAhHQIqzHoA4n4R1fZQoaAZHQHAAhvitJWhoB00DA2gIR0CKtm7yxzJZdX2UKGgGR0BwQF+/gzguaAdN7gFoCEdAitgwFs54nnV9lChoBkdAcXzPUKArhGgHTZgBaAhHQIrZFI3BHkN1fZQoaAZHQHIUid4FA3VoB00RAmgIR0CK2bxusLfDdX2UKGgGR0BtMH9P1tfpaAdNeAJoCEdAitn75/LDAXV9lChoBkdAcIYqveP7vWgHTUcCaAhHQIrcxArxy4p1fZQoaAZHQHB7agmJFb5oB02hAWgIR0CK3hwgkka/dX2UKGgGR0BtElQIldC3aAdN3AFoCEdAiufy/j81oHV9lChoBkdAcBN5xR2r4mgHTYkCaAhHQIr0xikO7QN1fZQoaAZHQF7SPkq+ajNoB03oA2gIR0CK9UDf3vhIdX2UKGgGR0BwIicWj45+aAdNTwJoCEdAivhIakyk9HV9lChoBkdAb6R8ZUDMeWgHTXsBaAhHQIr50srd30R1fZQoaAZHQGy8WTX8O09oB03SAWgIR0CK+i3Jgb6ydX2UKGgGR0BuYNlI3BHkaAdNigFoCEdAivvlRP420nV9lChoBkdAbh+Pxx1gY2gHTRECaAhHQIr7+1rqMWJ1fZQoaAZHQHG+Hxri2lVoB015AmgIR0CK/N65Xlr/dX2UKGgGR0BsXMHdGiHqaAdN7gFoCEdAiwEJWNm16XV9lChoBkdAcXzpUgjhUGgHTUsBaAhHQIsDWnn+yZ91fZQoaAZHQHH1vQKKHfxoB03dAWgIR0CLBMfJV81GdX2UKGgGR0BlYNgrpaA4aAdN6ANoCEdAiwU3pnpSrHV9lChoBkdAWcqYhMajvmgHTegDaAhHQIsFkLfDUEx1fZQoaAZHQHEaBdhRZU1oB00/AWgIR0CLCyKE384xdX2UKGgGR0BhG/EqDsdDaAdN6ANoCEdAixNUe+23KHV9lChoBkdAcCeBI4EOiGgHTZIBaAhHQIsU0fms/6h1fZQoaAZHQG1cA7YChexoB02eAWgIR0CLGbMxoIv8dX2UKGgGR0ByC0NMGorGaAdNXgFoCEdAixsLGaQV9HV9lChoBkdAcKsFbVz6rWgHTSgCaAhHQIsfGXNTtLN1fZQoaAZHQG53aeoUBXFoB016AWgIR0CLII6dUbT+dX2UKGgGR0BmoiNwR5C4aAdN6ANoCEdAi0SuKXOW0XV9lChoBkdAYeYQq7ROUWgHTegDaAhHQItIAIyCWeJ1fZQoaAZHQHEhXbRF7UpoB02hAmgIR0CLSMZ75VOsdX2UKGgGR0Br68jPfKp2aAdNAQJoCEdAi0k8psoDxXV9lChoBkdAbxjeXzDn/2gHTd4BaAhHQItNis4ku6F1fZQoaAZHQG++WHDaXa9oB02HAWgIR0CLT/lz2exwdX2UKGgGR0BwGlrnDBM0aAdNoQFoCEdAi1X+wcHW0HV9lChoBkdAbKJLbHp8nmgHTZ0BaAhHQItcJid8Rcx1fZQoaAZHQHAzXqzJIUdoB03wAWgIR0CLXceV9nbqdX2UKGgGR0Be4Q1JlJ6IaAdN6ANoCEdAi2HRyGSIQHV9lChoBkdAbZT4nF5v+GgHTU4BaAhHQIth/Vqesgd1fZQoaAZHQGMf5D7ZWaNoB03oA2gIR0CLY/AJswcpdX2UKGgGR0Bd0anWJ79iaAdN6ANoCEdAi2TlRYRuj3V9lChoBkdAbYo6Ae7tiWgHTSkCaAhHQItl+U6gdwN1fZQoaAZHQG+87Rv3rUtoB02vAWgIR0CLZk8Zk079dX2UKGgGR0BwcPQD3dsSaAdNnQFoCEdAi2gzoEB8yHV9lChoBkdAW3PBxgiNbWgHTegDaAhHQItsvqxC6Yp1fZQoaAZHQGIozFERaoxoB03oA2gIR0CLbYS7oStedX2UKGgGR0BxO0g6ltTDaAdNXgNoCEdAi3C7DVH4GnV9lChoBkdANIi7sfJV82gHS9NoCEdAi3WUbDMvAXV9lChoBkdAceVSCe2/jGgHTVMBaAhHQIt4ZkmQbMp1fZQoaAZHQG+r98zAN5NoB02dAmgIR0CLeVZamoBJdX2UKGgGR0BwPoYm9g4PaAdNVgJoCEdAi3rtI065oXV9lChoBkdAbiQotL+PzWgHTa0BaAhHQIt7WzdDYyx1fZQoaAZHQG7B9hRZU1hoB01kAWgIR0CLe40CRwIddX2UKGgGR0BwRRHjIaLoaAdNLgJoCEdAi32Nr9ETg3V9lChoBkdAcWwJul41P2gHTeoBaAhHQIt9/KlpGnZ1fZQoaAZHQHIZ0XP7el9oB02tAWgIR0CLgNtF8XvZdX2UKGgGR0Bx/N7mdRR/aAdN2QFoCEdAi4E2uxKQJXV9lChoBkdAbZi9zOoo/mgHTaQBaAhHQIuBOGdqcmV1fZQoaAZHQGzvOYplSTBoB01PAWgIR0CLgyaMrEtNdX2UKGgGR0BvATyjHn2aaAdN6wFoCEdAi6fLGza9K3V9lChoBkdAa/1PykKu0WgHTYMBaAhHQIuqcknkT6B1fZQoaAZHQG2OYW1twaRoB018AmgIR0CLqwnQ6ZH/dX2UKGgGR0BlzPiNsFdLaAdN6ANoCEdAi66wdjoZAXV9lChoBkdAbV9EWqLjxWgHTZsBaAhHQIuvUaqCHyp1fZQoaAZHQHD0iVW0Z3toB005AWgIR0CLscR0U47zdX2UKGgGR0ByWOk43m3faAdNoQFoCEdAi7JtmlImPnV9lChoBkdAbswcjqv/zmgHTTsCaAhHQIuzItYjjaR1fZQoaAZHQG4aJnxri2loB03HAWgIR0CLs4lJHy3DdX2UKGgGR0Bx8AcZLqUvaAdNTAFoCEdAi7OL6tT1kHV9lChoBkdAcV4lpXZGrmgHTYcBaAhHQIuz5pJwsGx1fZQoaAZHQG2DraufVZtoB03JAWgIR0CLtXAhStNjdX2UKGgGR0Bvq6QcPvroaAdNUgFoCEdAi7XoZydWhnV9lChoBkdAbntbDdgv12gHTdcBaAhHQIu1/4M4LkV1fZQoaAZHQHJk/zOHFgloB03iAWgIR0CLuA8gZCOWdX2UKGgGR0BxL8QEpy6uaAdNsAFoCEdAi7h+e4Cp33V9lChoBkdAcNTMDfWMCWgHTYEBaAhHQIu/ivFFUhp1fZQoaAZHQFBjSYw7DEZoB01KAWgIR0CLweAbQ1JldX2UKGgGR0BtlNQMx46faAdNRgFoCEdAi8IpR4yGjHV9lChoBkfAIyKlYU34sWgHTRwBaAhHQIvDL5ylvZR1fZQoaAZHQG/ASiEg4fhoB00+AWgIR0CLw8htcfNidX2UKGgGR0BxkND+irT6aAdNowFoCEdAi8S8yN4qw3V9lChoBkdAbjt3g1m8NGgHTcQBaAhHQIvGTYwqRU51fZQoaAZHQHCnh8IAwPBoB01ZAWgIR0CLx2LG7z06dX2UKGgGR0BxAXQLNOdoaAdNTwFoCEdAi8jx0+1SfnV9lChoBkdAcS3Q3PzFuWgHTasBaAhHQIvLmuvECNl1fZQoaAZHQHDG5D3M6iloB02rAWgIR0CLy/JzT4L1dX2UKGgGR0BsoIQL/jsEaAdNyAFoCEdAi8ysN2C/XXV9lChoBkdAb5PuG9HtnmgHTXQBaAhHQIvNyZ4Oc2B1fZQoaAZHQG5F2Cdz4lBoB02OAWgIR0CLz5tb9qDcdX2UKGgGR0ByubS3LFGYaAdNDAJoCEdAi9ObU5MlC3V9lChoBkdAbz0tJ4B3imgHTSMCaAhHQIvUXfhuO0d1fZQoaAZHQHHgX3xnWatoB01nAWgIR0CL2KgIQe3hdX2UKGgGR0BvSvMr3CbdaAdNfAFoCEdAi9jPZqVQh3V9lChoBkdAbx99ETg2qGgHTSsBaAhHQIvZKB3A2yd1fZQoaAZHQG7Y1VPva11oB01GAWgIR0CL2cWLxZuAdX2UKGgGR0BvaV2s7uD0aAdNlwFoCEdAi9rkhJRO13V9lChoBkdAbm9Dye7L+2gHTa4BaAhHQIve/t6X0Gx1fZQoaAZHQG+M7H6uW8hoB01bAWgIR0CL4Yf0VafSdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVoQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjF4vaG9tZS91YnVudHUvbGVhcm5pbmctcHBvLy52ZW52L2xpYi9weXRob24zLjEyL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoGIwEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVoQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjF4vaG9tZS91YnVudHUvbGVhcm5pbmctcHBvLy52ZW52L2xpYi9weXRob24zLjEyL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoGIwEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.8.0-1021-aws-x86_64-with-glibc2.35 # 23~22.04.1-Ubuntu SMP Tue Dec 10 16:50:46 UTC 2024", "Python": "3.12.10", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.7.0+cu126", "GPU Enabled": "True", "Numpy": "2.2.5", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbb99703906d25d780ae243f7a26e96ddb15de9eb2e5873529f9217f88c948f4
|
3 |
+
size 149036
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x722bc9298860>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x722bc9298900>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x722bc92989a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x722bc9298a40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x722bc9298ae0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x722bc9298b80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x722bc9298c20>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x722bc9298cc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x722bc9298d60>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x722bc9298e00>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x722bc9298ea0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x722bc9298f40>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x722c0039c680>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1745551495423421757,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAADmeMS9Kdxqupf2RzovNAA1ghosu2NT8DMAAIA/AAAAAGpudL4/blY/qj5LvUqCR75bM7K9KqGpvAAAAAAAAAAAmsstvstvjz8dWvu93oNsvhih0b3M0cs9AAAAAAAAAABzRf294WjQuvJ2cbzU6oO57/DgOwi4sToAAIA/AACAP2YKJ72uha+6GtCTNpeNkzHMPPe5SW2rtQAAgD8AAIA/hmI9Pnwsrj6mbWu+0m5yvjy8Nr3tUoY9AAAAAAAAAACmeM09e6yWugqIh7nETWq06/vzusyOnDgAAAAAAACAPyb24b32yB+6A45yOl/vBjbq6YO7nfEGNQAAgD8AAAAAzfq+vblMiT6Y0rA94yFNvgUMqzww/YI9AAAAAAAAAACaMVO+MpASPw7U3T3Tx3C+G2MXPFTmhb0AAAAAAAAAAM3sKLpbDY+8CuzluwWoPD3ZegG+38wsvAAAgD8AAIA/s1AVvhn5xz4KE7U9zGRevofh+jwzw3C9AAAAAAAAAABmDc29jwZJuo7tzTrio3A14u3ZuDIB87kAAAAAAACAP2bK0LxQcsQ+5l5EPXWzeb4k11M9SA9TvQAAAAAAAAAAM20HPdZ5FT3QMte9416RvlogOTsi8Cy9AAAAAAAAAADa28g9w/kyuovE4LoQ8B62iziwO67+BDoAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAtYywfQruMAWyUTbQCjAF0lEdAiqw4ZEUj9nV9lChoBkdAYrdjwQUYbmgHTegDaAhHQIqzHoA4n4R1fZQoaAZHQHAAhvitJWhoB00DA2gIR0CKtm7yxzJZdX2UKGgGR0BwQF+/gzguaAdN7gFoCEdAitgwFs54nnV9lChoBkdAcXzPUKArhGgHTZgBaAhHQIrZFI3BHkN1fZQoaAZHQHIUid4FA3VoB00RAmgIR0CK2bxusLfDdX2UKGgGR0BtMH9P1tfpaAdNeAJoCEdAitn75/LDAXV9lChoBkdAcIYqveP7vWgHTUcCaAhHQIrcxArxy4p1fZQoaAZHQHB7agmJFb5oB02hAWgIR0CK3hwgkka/dX2UKGgGR0BtElQIldC3aAdN3AFoCEdAiufy/j81oHV9lChoBkdAcBN5xR2r4mgHTYkCaAhHQIr0xikO7QN1fZQoaAZHQF7SPkq+ajNoB03oA2gIR0CK9UDf3vhIdX2UKGgGR0BwIicWj45+aAdNTwJoCEdAivhIakyk9HV9lChoBkdAb6R8ZUDMeWgHTXsBaAhHQIr50srd30R1fZQoaAZHQGy8WTX8O09oB03SAWgIR0CK+i3Jgb6ydX2UKGgGR0BuYNlI3BHkaAdNigFoCEdAivvlRP420nV9lChoBkdAbh+Pxx1gY2gHTRECaAhHQIr7+1rqMWJ1fZQoaAZHQHG+Hxri2lVoB015AmgIR0CK/N65Xlr/dX2UKGgGR0BsXMHdGiHqaAdN7gFoCEdAiwEJWNm16XV9lChoBkdAcXzpUgjhUGgHTUsBaAhHQIsDWnn+yZ91fZQoaAZHQHH1vQKKHfxoB03dAWgIR0CLBMfJV81GdX2UKGgGR0BlYNgrpaA4aAdN6ANoCEdAiwU3pnpSrHV9lChoBkdAWcqYhMajvmgHTegDaAhHQIsFkLfDUEx1fZQoaAZHQHEaBdhRZU1oB00/AWgIR0CLCyKE384xdX2UKGgGR0BhG/EqDsdDaAdN6ANoCEdAixNUe+23KHV9lChoBkdAcCeBI4EOiGgHTZIBaAhHQIsU0fms/6h1fZQoaAZHQG1cA7YChexoB02eAWgIR0CLGbMxoIv8dX2UKGgGR0ByC0NMGorGaAdNXgFoCEdAixsLGaQV9HV9lChoBkdAcKsFbVz6rWgHTSgCaAhHQIsfGXNTtLN1fZQoaAZHQG53aeoUBXFoB016AWgIR0CLII6dUbT+dX2UKGgGR0BmoiNwR5C4aAdN6ANoCEdAi0SuKXOW0XV9lChoBkdAYeYQq7ROUWgHTegDaAhHQItIAIyCWeJ1fZQoaAZHQHEhXbRF7UpoB02hAmgIR0CLSMZ75VOsdX2UKGgGR0Br68jPfKp2aAdNAQJoCEdAi0k8psoDxXV9lChoBkdAbxjeXzDn/2gHTd4BaAhHQItNis4ku6F1fZQoaAZHQG++WHDaXa9oB02HAWgIR0CLT/lz2exwdX2UKGgGR0BwGlrnDBM0aAdNoQFoCEdAi1X+wcHW0HV9lChoBkdAbKJLbHp8nmgHTZ0BaAhHQItcJid8Rcx1fZQoaAZHQHAzXqzJIUdoB03wAWgIR0CLXceV9nbqdX2UKGgGR0Be4Q1JlJ6IaAdN6ANoCEdAi2HRyGSIQHV9lChoBkdAbZT4nF5v+GgHTU4BaAhHQIth/Vqesgd1fZQoaAZHQGMf5D7ZWaNoB03oA2gIR0CLY/AJswcpdX2UKGgGR0Bd0anWJ79iaAdN6ANoCEdAi2TlRYRuj3V9lChoBkdAbYo6Ae7tiWgHTSkCaAhHQItl+U6gdwN1fZQoaAZHQG+87Rv3rUtoB02vAWgIR0CLZk8Zk079dX2UKGgGR0BwcPQD3dsSaAdNnQFoCEdAi2gzoEB8yHV9lChoBkdAW3PBxgiNbWgHTegDaAhHQItsvqxC6Yp1fZQoaAZHQGIozFERaoxoB03oA2gIR0CLbYS7oStedX2UKGgGR0BxO0g6ltTDaAdNXgNoCEdAi3C7DVH4GnV9lChoBkdANIi7sfJV82gHS9NoCEdAi3WUbDMvAXV9lChoBkdAceVSCe2/jGgHTVMBaAhHQIt4ZkmQbMp1fZQoaAZHQG+r98zAN5NoB02dAmgIR0CLeVZamoBJdX2UKGgGR0BwPoYm9g4PaAdNVgJoCEdAi3rtI065oXV9lChoBkdAbiQotL+PzWgHTa0BaAhHQIt7WzdDYyx1fZQoaAZHQG7B9hRZU1hoB01kAWgIR0CLe40CRwIddX2UKGgGR0BwRRHjIaLoaAdNLgJoCEdAi32Nr9ETg3V9lChoBkdAcWwJul41P2gHTeoBaAhHQIt9/KlpGnZ1fZQoaAZHQHIZ0XP7el9oB02tAWgIR0CLgNtF8XvZdX2UKGgGR0Bx/N7mdRR/aAdN2QFoCEdAi4E2uxKQJXV9lChoBkdAbZi9zOoo/mgHTaQBaAhHQIuBOGdqcmV1fZQoaAZHQGzvOYplSTBoB01PAWgIR0CLgyaMrEtNdX2UKGgGR0BvATyjHn2aaAdN6wFoCEdAi6fLGza9K3V9lChoBkdAa/1PykKu0WgHTYMBaAhHQIuqcknkT6B1fZQoaAZHQG2OYW1twaRoB018AmgIR0CLqwnQ6ZH/dX2UKGgGR0BlzPiNsFdLaAdN6ANoCEdAi66wdjoZAXV9lChoBkdAbV9EWqLjxWgHTZsBaAhHQIuvUaqCHyp1fZQoaAZHQHD0iVW0Z3toB005AWgIR0CLscR0U47zdX2UKGgGR0ByWOk43m3faAdNoQFoCEdAi7JtmlImPnV9lChoBkdAbswcjqv/zmgHTTsCaAhHQIuzItYjjaR1fZQoaAZHQG4aJnxri2loB03HAWgIR0CLs4lJHy3DdX2UKGgGR0Bx8AcZLqUvaAdNTAFoCEdAi7OL6tT1kHV9lChoBkdAcV4lpXZGrmgHTYcBaAhHQIuz5pJwsGx1fZQoaAZHQG2DraufVZtoB03JAWgIR0CLtXAhStNjdX2UKGgGR0Bvq6QcPvroaAdNUgFoCEdAi7XoZydWhnV9lChoBkdAbntbDdgv12gHTdcBaAhHQIu1/4M4LkV1fZQoaAZHQHJk/zOHFgloB03iAWgIR0CLuA8gZCOWdX2UKGgGR0BxL8QEpy6uaAdNsAFoCEdAi7h+e4Cp33V9lChoBkdAcNTMDfWMCWgHTYEBaAhHQIu/ivFFUhp1fZQoaAZHQFBjSYw7DEZoB01KAWgIR0CLweAbQ1JldX2UKGgGR0BtlNQMx46faAdNRgFoCEdAi8IpR4yGjHV9lChoBkfAIyKlYU34sWgHTRwBaAhHQIvDL5ylvZR1fZQoaAZHQG/ASiEg4fhoB00+AWgIR0CLw8htcfNidX2UKGgGR0BxkND+irT6aAdNowFoCEdAi8S8yN4qw3V9lChoBkdAbjt3g1m8NGgHTcQBaAhHQIvGTYwqRU51fZQoaAZHQHCnh8IAwPBoB01ZAWgIR0CLx2LG7z06dX2UKGgGR0BxAXQLNOdoaAdNTwFoCEdAi8jx0+1SfnV9lChoBkdAcS3Q3PzFuWgHTasBaAhHQIvLmuvECNl1fZQoaAZHQHDG5D3M6iloB02rAWgIR0CLy/JzT4L1dX2UKGgGR0BsoIQL/jsEaAdNyAFoCEdAi8ysN2C/XXV9lChoBkdAb5PuG9HtnmgHTXQBaAhHQIvNyZ4Oc2B1fZQoaAZHQG5F2Cdz4lBoB02OAWgIR0CLz5tb9qDcdX2UKGgGR0ByubS3LFGYaAdNDAJoCEdAi9ObU5MlC3V9lChoBkdAbz0tJ4B3imgHTSMCaAhHQIvUXfhuO0d1fZQoaAZHQHHgX3xnWatoB01nAWgIR0CL2KgIQe3hdX2UKGgGR0BvSvMr3CbdaAdNfAFoCEdAi9jPZqVQh3V9lChoBkdAbx99ETg2qGgHTSsBaAhHQIvZKB3A2yd1fZQoaAZHQG7Y1VPva11oB01GAWgIR0CL2cWLxZuAdX2UKGgGR0BvaV2s7uD0aAdNlwFoCEdAi9rkhJRO13V9lChoBkdAbm9Dye7L+2gHTa4BaAhHQIve/t6X0Gx1fZQoaAZHQG+M7H6uW8hoB01bAWgIR0CL4Yf0VafSdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVoQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjF4vaG9tZS91YnVudHUvbGVhcm5pbmctcHBvLy52ZW52L2xpYi9weXRob24zLjEyL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoGIwEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVoQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjF4vaG9tZS91YnVudHUvbGVhcm5pbmctcHBvLy52ZW52L2xpYi9weXRob24zLjEyL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoGIwEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7398543003af038ebcf165b03101a9ecb8297086e1b9394f7177c42851c3b9a
|
3 |
+
size 88695
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18122db87c6e63be591d48c691d22fc367a85d8a6690ac7626a950fd1bb178f2
|
3 |
+
size 44095
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07c7431cf6005e7d8f367d79e995f63e2f9b981a37e3437b795d058f9af4308b
|
3 |
+
size 1261
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.8.0-1021-aws-x86_64-with-glibc2.35 # 23~22.04.1-Ubuntu SMP Tue Dec 10 16:50:46 UTC 2024
|
2 |
+
- Python: 3.12.10
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.7.0+cu126
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 2.2.5
|
7 |
+
- Cloudpickle: 3.1.1
|
8 |
+
- Gymnasium: 0.28.1
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c676082f5d1b612bf23fedd8050654749111948bb99e395e81f7691a34706b3a
|
3 |
+
size 172067
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 252.83498346945515, "std_reward": 18.716954412506766, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-04-25T03:46:04.235248"}
|