sciarrilli commited on
Commit
edcf956
·
verified ·
1 Parent(s): 4a58d24

Model save

Browse files
Files changed (3) hide show
  1. README.md +49 -35
  2. all_results.json +13 -13
  3. eval_results.json +13 -13
README.md CHANGED
@@ -1,55 +1,69 @@
1
  ---
2
- library_name: peft
3
- license: llama3.2
4
  base_model: meta-llama/Llama-3.2-3B-Instruct
 
 
5
  tags:
 
6
  - trl
7
  - dpo
8
- - generated_from_trainer
9
- model-index:
10
- - name: Llama-3.2-3B-DPO
11
- results: []
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/sciarrilli/dpo-llama32/runs/degfzo4x)
18
- # Llama-3.2-3B-DPO
19
 
20
- This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on an unknown dataset.
21
 
22
- ## Model description
 
23
 
24
- More information needed
 
 
 
 
25
 
26
- ## Intended uses & limitations
27
 
28
- More information needed
29
 
30
- ## Training and evaluation data
31
 
32
- More information needed
33
 
34
- ## Training procedure
35
 
36
- ### Training hyperparameters
 
 
 
 
37
 
38
- The following hyperparameters were used during training:
39
- - learning_rate: 5e-06
40
- - train_batch_size: 2
41
- - eval_batch_size: 8
42
- - seed: 42
43
- - gradient_accumulation_steps: 8
44
- - total_train_batch_size: 16
45
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
46
- - lr_scheduler_type: linear
47
- - num_epochs: 1.0
48
 
49
- ### Framework versions
 
 
 
 
 
 
 
 
 
 
 
50
 
51
- - PEFT 0.14.0
52
- - Transformers 4.49.0
53
- - Pytorch 2.6.0+cu126
54
- - Datasets 3.4.1
55
- - Tokenizers 0.21.1
 
 
 
 
 
 
 
 
1
  ---
 
 
2
  base_model: meta-llama/Llama-3.2-3B-Instruct
3
+ library_name: transformers
4
+ model_name: Llama-3.2-3B-DPO
5
  tags:
6
+ - generated_from_trainer
7
  - trl
8
  - dpo
9
+ licence: license
 
 
 
10
  ---
11
 
12
+ # Model Card for Llama-3.2-3B-DPO
 
13
 
14
+ This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
 
17
+ ## Quick start
18
 
19
+ ```python
20
+ from transformers import pipeline
21
 
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="sciarrilli/Llama-3.2-3B-DPO", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
 
28
+ ## Training procedure
29
 
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/sciarrilli/dpo-llama32/runs/degfzo4x)
31
 
 
32
 
33
+ This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
34
 
35
+ ### Framework versions
36
 
37
+ - TRL: 0.15.2
38
+ - Transformers: 4.49.0
39
+ - Pytorch: 2.6.0+cu126
40
+ - Datasets: 3.4.1
41
+ - Tokenizers: 0.21.1
42
 
43
+ ## Citations
 
 
 
 
 
 
 
 
 
44
 
45
+ Cite DPO as:
46
+
47
+ ```bibtex
48
+ @inproceedings{rafailov2023direct,
49
+ title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
50
+ author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
51
+ year = 2023,
52
+ booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
53
+ url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
54
+ editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
55
+ }
56
+ ```
57
 
58
+ Cite TRL as:
59
+
60
+ ```bibtex
61
+ @misc{vonwerra2022trl,
62
+ title = {{TRL: Transformer Reinforcement Learning}},
63
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
64
+ year = 2020,
65
+ journal = {GitHub repository},
66
+ publisher = {GitHub},
67
+ howpublished = {\url{https://github.com/huggingface/trl}}
68
+ }
69
+ ```
all_results.json CHANGED
@@ -1,15 +1,15 @@
1
  {
2
- "epoch": 0.9990344383649823,
3
- "eval_logits/chosen": 0.6598725914955139,
4
- "eval_logits/rejected": 0.470087468624115,
5
- "eval_logps/chosen": -349.9416198730469,
6
- "eval_logps/rejected": -318.07635498046875,
7
- "eval_loss": 0.6646144986152649,
8
- "eval_rewards/accuracies": 0.6153846383094788,
9
- "eval_rewards/chosen": -0.0643770769238472,
10
- "eval_rewards/margins": 0.06126875430345535,
11
- "eval_rewards/rejected": -0.12564583122730255,
12
- "eval_runtime": 85.284,
13
- "eval_samples_per_second": 1.173,
14
- "eval_steps_per_second": 0.152
15
  }
 
1
  {
2
+ "epoch": 0.9957081545064378,
3
+ "eval_logits/chosen": 0.6785366535186768,
4
+ "eval_logits/rejected": 0.5101125240325928,
5
+ "eval_logps/chosen": -353.8060607910156,
6
+ "eval_logps/rejected": -244.0733184814453,
7
+ "eval_loss": 0.6846491098403931,
8
+ "eval_rewards/accuracies": 0.625,
9
+ "eval_rewards/chosen": -0.03933782875537872,
10
+ "eval_rewards/margins": 0.03162214532494545,
11
+ "eval_rewards/rejected": -0.07095997035503387,
12
+ "eval_runtime": 9.0831,
13
+ "eval_samples_per_second": 1.101,
14
+ "eval_steps_per_second": 0.22
15
  }
eval_results.json CHANGED
@@ -1,15 +1,15 @@
1
  {
2
- "epoch": 0.9990344383649823,
3
- "eval_logits/chosen": 0.6598725914955139,
4
- "eval_logits/rejected": 0.470087468624115,
5
- "eval_logps/chosen": -349.9416198730469,
6
- "eval_logps/rejected": -318.07635498046875,
7
- "eval_loss": 0.6646144986152649,
8
- "eval_rewards/accuracies": 0.6153846383094788,
9
- "eval_rewards/chosen": -0.0643770769238472,
10
- "eval_rewards/margins": 0.06126875430345535,
11
- "eval_rewards/rejected": -0.12564583122730255,
12
- "eval_runtime": 85.284,
13
- "eval_samples_per_second": 1.173,
14
- "eval_steps_per_second": 0.152
15
  }
 
1
  {
2
+ "epoch": 0.9957081545064378,
3
+ "eval_logits/chosen": 0.6785366535186768,
4
+ "eval_logits/rejected": 0.5101125240325928,
5
+ "eval_logps/chosen": -353.8060607910156,
6
+ "eval_logps/rejected": -244.0733184814453,
7
+ "eval_loss": 0.6846491098403931,
8
+ "eval_rewards/accuracies": 0.625,
9
+ "eval_rewards/chosen": -0.03933782875537872,
10
+ "eval_rewards/margins": 0.03162214532494545,
11
+ "eval_rewards/rejected": -0.07095997035503387,
12
+ "eval_runtime": 9.0831,
13
+ "eval_samples_per_second": 1.101,
14
+ "eval_steps_per_second": 0.22
15
  }