Model save
Browse files- README.md +49 -35
- all_results.json +13 -13
- eval_results.json +13 -13
README.md
CHANGED
@@ -1,55 +1,69 @@
|
|
1 |
---
|
2 |
-
library_name: peft
|
3 |
-
license: llama3.2
|
4 |
base_model: meta-llama/Llama-3.2-3B-Instruct
|
|
|
|
|
5 |
tags:
|
|
|
6 |
- trl
|
7 |
- dpo
|
8 |
-
|
9 |
-
model-index:
|
10 |
-
- name: Llama-3.2-3B-DPO
|
11 |
-
results: []
|
12 |
---
|
13 |
|
14 |
-
|
15 |
-
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
21 |
|
22 |
-
|
|
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
##
|
27 |
|
28 |
-
|
29 |
|
30 |
-
## Training and evaluation data
|
31 |
|
32 |
-
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
- learning_rate: 5e-06
|
40 |
-
- train_batch_size: 2
|
41 |
-
- eval_batch_size: 8
|
42 |
-
- seed: 42
|
43 |
-
- gradient_accumulation_steps: 8
|
44 |
-
- total_train_batch_size: 16
|
45 |
-
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
46 |
-
- lr_scheduler_type: linear
|
47 |
-
- num_epochs: 1.0
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
|
|
2 |
base_model: meta-llama/Llama-3.2-3B-Instruct
|
3 |
+
library_name: transformers
|
4 |
+
model_name: Llama-3.2-3B-DPO
|
5 |
tags:
|
6 |
+
- generated_from_trainer
|
7 |
- trl
|
8 |
- dpo
|
9 |
+
licence: license
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
+
# Model Card for Llama-3.2-3B-DPO
|
|
|
13 |
|
14 |
+
This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
|
17 |
+
## Quick start
|
18 |
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="sciarrilli/Llama-3.2-3B-DPO", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
|
28 |
+
## Training procedure
|
29 |
|
30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/sciarrilli/dpo-llama32/runs/degfzo4x)
|
31 |
|
|
|
32 |
|
33 |
+
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
|
34 |
|
35 |
+
### Framework versions
|
36 |
|
37 |
+
- TRL: 0.15.2
|
38 |
+
- Transformers: 4.49.0
|
39 |
+
- Pytorch: 2.6.0+cu126
|
40 |
+
- Datasets: 3.4.1
|
41 |
+
- Tokenizers: 0.21.1
|
42 |
|
43 |
+
## Citations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
Cite DPO as:
|
46 |
+
|
47 |
+
```bibtex
|
48 |
+
@inproceedings{rafailov2023direct,
|
49 |
+
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
|
50 |
+
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
|
51 |
+
year = 2023,
|
52 |
+
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
|
53 |
+
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
|
54 |
+
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
|
55 |
+
}
|
56 |
+
```
|
57 |
|
58 |
+
Cite TRL as:
|
59 |
+
|
60 |
+
```bibtex
|
61 |
+
@misc{vonwerra2022trl,
|
62 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
63 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
64 |
+
year = 2020,
|
65 |
+
journal = {GitHub repository},
|
66 |
+
publisher = {GitHub},
|
67 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
68 |
+
}
|
69 |
+
```
|
all_results.json
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
{
|
2 |
-
"epoch": 0.
|
3 |
-
"eval_logits/chosen": 0.
|
4 |
-
"eval_logits/rejected": 0.
|
5 |
-
"eval_logps/chosen": -
|
6 |
-
"eval_logps/rejected": -
|
7 |
-
"eval_loss": 0.
|
8 |
-
"eval_rewards/accuracies": 0.
|
9 |
-
"eval_rewards/chosen": -0.
|
10 |
-
"eval_rewards/margins": 0.
|
11 |
-
"eval_rewards/rejected": -0.
|
12 |
-
"eval_runtime":
|
13 |
-
"eval_samples_per_second": 1.
|
14 |
-
"eval_steps_per_second": 0.
|
15 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 0.9957081545064378,
|
3 |
+
"eval_logits/chosen": 0.6785366535186768,
|
4 |
+
"eval_logits/rejected": 0.5101125240325928,
|
5 |
+
"eval_logps/chosen": -353.8060607910156,
|
6 |
+
"eval_logps/rejected": -244.0733184814453,
|
7 |
+
"eval_loss": 0.6846491098403931,
|
8 |
+
"eval_rewards/accuracies": 0.625,
|
9 |
+
"eval_rewards/chosen": -0.03933782875537872,
|
10 |
+
"eval_rewards/margins": 0.03162214532494545,
|
11 |
+
"eval_rewards/rejected": -0.07095997035503387,
|
12 |
+
"eval_runtime": 9.0831,
|
13 |
+
"eval_samples_per_second": 1.101,
|
14 |
+
"eval_steps_per_second": 0.22
|
15 |
}
|
eval_results.json
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
{
|
2 |
-
"epoch": 0.
|
3 |
-
"eval_logits/chosen": 0.
|
4 |
-
"eval_logits/rejected": 0.
|
5 |
-
"eval_logps/chosen": -
|
6 |
-
"eval_logps/rejected": -
|
7 |
-
"eval_loss": 0.
|
8 |
-
"eval_rewards/accuracies": 0.
|
9 |
-
"eval_rewards/chosen": -0.
|
10 |
-
"eval_rewards/margins": 0.
|
11 |
-
"eval_rewards/rejected": -0.
|
12 |
-
"eval_runtime":
|
13 |
-
"eval_samples_per_second": 1.
|
14 |
-
"eval_steps_per_second": 0.
|
15 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 0.9957081545064378,
|
3 |
+
"eval_logits/chosen": 0.6785366535186768,
|
4 |
+
"eval_logits/rejected": 0.5101125240325928,
|
5 |
+
"eval_logps/chosen": -353.8060607910156,
|
6 |
+
"eval_logps/rejected": -244.0733184814453,
|
7 |
+
"eval_loss": 0.6846491098403931,
|
8 |
+
"eval_rewards/accuracies": 0.625,
|
9 |
+
"eval_rewards/chosen": -0.03933782875537872,
|
10 |
+
"eval_rewards/margins": 0.03162214532494545,
|
11 |
+
"eval_rewards/rejected": -0.07095997035503387,
|
12 |
+
"eval_runtime": 9.0831,
|
13 |
+
"eval_samples_per_second": 1.101,
|
14 |
+
"eval_steps_per_second": 0.22
|
15 |
}
|