File size: 5,257 Bytes
6730f7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2d1124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
language:
  - en
license: mit
tags:
  - code-generation
  - transformer
  - ast
  - cfg
  - langchain
  - ollama
model_name: MiniCoderX
datasets:
  - the-stack
  - codesearchnet
  - humaneval
  - mbpp
  - bugs2fix
  - java-python
pipeline_tag: text-generation
---

# ๐Ÿš€ MiniCoderX: A Lightweight Transformer for Code Generation

**MiniCoderX** is a structure-aware, transformer-based small language model (SLM) for code generation. It blends modern architectural techniques with efficient deployment using tools like **LangChain** and **Ollama**, making it ideal for rapid local experimentation.

---

## โœจ Features

- ๐Ÿง  Transformer-based encoder-decoder (TinyCodeT5 / DistilGPT2)
- ๐ŸŒฒ AST/CFG-aware encoding for code structure understanding
- ๐Ÿ’พ Syntax-constrained decoding using grammar rules and trees
- ๐Ÿ” Multi-task heads: generation, summarization, translation, bug fixing
- โš™๏ธ LangChain + Ollama integration for fast local deployment
- ๐Ÿงช Evaluated on HumanEval, CodeXGLUE, MBPP

---

## ๐Ÿ—๏ธ Model Architecture

| Component       | Description                                               |
|----------------|-----------------------------------------------------------|
| Base           | Tiny encoder-decoder (MiniLM, DistilGPT2, TinyCodeT5)     |
| Structure-aware | AST and Control Flow Graph embeddings + positional masks |
| Heads          | Multi-task heads for flexible downstream use              |
| Decoder        | Syntax-aware beam search (grammar constraints)            |
| Tokenizer      | BPE or SentencePiece trained on code + comments           |

---

## ๐Ÿ”ง Architectural Additions (SOTA Techniques)

### ๐ŸŒฒ AST/CFG Embeddings
Enhances understanding of code structure by:
- Adding AST node/edge embeddings to token inputs
- Including path embeddings between syntactic elements
- Graph-aware position encoding

Inspired by: **StructCoder**, **AST-T5**, **Code4Struct**

### ๐Ÿ’พ Syntax-Constrained Decoding
Improves generation accuracy and reduces invalid code by:
- Restricting token outputs using grammar constraints (BNF/PEG)
- Custom decoding logic (e.g., Tree traversal)
- Dynamic decoding masks based on token state

Inspired by: **TreeGen**, **Code4Struct**

### ๐Ÿ” Multi-Task Learning Heads
Supports multiple tasks:
- Code generation (NL โ†’ Code)
- Summarization (Code โ†’ NL)
- Translation (Java โ‡„ Python)
- Code repair and completion

Inspired by: **CodeT5+**, **CoTexT**

---

## โšก LangChain + Ollama Integration

### ๐Ÿ’ก Why?
To enable:
- ๐Ÿงช Local testing and chaining of models via **LangChain**
- ๐Ÿฆฎ Fast prototyping with **Ollama** for custom transformer backends
- ๐Ÿ”„ Easy switch between small local models and larger remote APIs

### ๐Ÿ”Œ Integration Plan
```python
from langchain.llms import Ollama
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

# Load MiniCoderX with Ollama
llm = Ollama(model="minicoderx")  # Local model via Ollama

# Define code generation prompt
prompt = PromptTemplate(
    input_variables=["instruction"],
    template="Generate Python code for the task: {instruction}",
)

chain = LLMChain(llm=llm, prompt=prompt)
result = chain.run("Sort a list of integers using quicksort")

print(result)
```

> โœ… Ollama will be used to serve your fine-tuned SLM locally  
> โœ… LangChain will wrap it with prompts, chains, and memory features for interactivity

---

## ๐Ÿ“ฆ Datasets

| Dataset        | Use                        |
|----------------|----------------------------|
| The Stack (subset) | Pretraining corpus     |
| CodeSearchNet  | Summarization, Search      |
| HumanEval      | Code generation benchmark  |
| MBPP           | Python programming prompts |
| Bugs2Fix       | Code repair                |
| Java-Python    | Cross-language translation |

---

## ๐Ÿ”ฌ Training Objectives

- โœ… Span Masking (CodeT5-style)
- โœ… Contrastive pretraining
- โœ… Instruction tuning (natural prompt formatting)
- โœ… Auto-regressive generation

---

## ๐Ÿ“Š Evaluation Benchmarks

| Benchmark  | Metric            |
|------------|-------------------|
| HumanEval  | Pass@1, BLEU      |
| MBPP       | Accuracy          |
| CodeXGLUE  | CodeBLEU, EM      |
| Unit Tests | Pass Rate         |

---

## ๐Ÿงช Project Roadmap

### โœ… Phase 1: MVP Model
- Train TinyCodeT5 model with span masking
- Evaluate on MBPP and HumanEval-lite
- Serve via Ollama + LangChain prompt chain

### ๐Ÿ” Phase 2: Structural Learning
- Add AST/CFG encodings
- Introduce grammar-constrained decoding
- Multi-task training (gen, sum, repair)

### ๐Ÿ“ฆ Phase 3: Optimization & Packaging
- Distill from larger model (e.g., StarCoder)
- Add reinforcement fine-tuning via test cases
- Export to Hugging Face + Ollama integration

---

## ๐Ÿ› ๏ธ Tools & Frameworks

- [Hugging Face Transformers](https://github.com/huggingface/transformers)
- [LangChain](https://github.com/langchain-ai/langchain)
- [Ollama](https://ollama.com/)
- SentencePiece / BPE
- NetworkX for AST/CFG parsing

---

## ๐Ÿค Contributing

Want to help with grammar decoders, AST integration, or evaluation? PRs welcome!

---

## ๐Ÿ“œ License

MIT License. Built for research and open experimentation.

---

## ๐Ÿ“ง Contact

Drop an issue or discussion on GitHub!