elpogzz commited on
Commit
ec39970
·
verified ·
1 Parent(s): c0c068a

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +21 -19
handler.py CHANGED
@@ -13,27 +13,29 @@ class EndpointHandler():
13
  Return:
14
  A :obj:`list` | `dict`: will be serialized and returned
15
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  inputs = data.pop("inputs",data)
17
  prediction = self.pipeline(inputs)
18
  normalized_prediction = normalize_vectors(prediction)
19
 
20
- return normalized_prediction
21
-
22
- def normalize_vectors(vectors):
23
- """
24
- Normalize a single vector or a list of vectors.
25
-
26
- Parameters:
27
- vectors (Union[np.ndarray, List[np.ndarray]]): Input vector or list of vectors.
28
 
29
- Returns:
30
- Union[np.ndarray, List[np.ndarray]]: Normalized vector or list of normalized vectors.
31
- """
32
- if isinstance(vectors, np.ndarray):
33
- # If it's a single vector, normalize it
34
- return vectors / np.linalg.norm(vectors)
35
- elif isinstance(vectors, list):
36
- # If it's a list of vectors, normalize each vector in the list
37
- return [vector / np.linalg.norm(vector) for vector in vectors]
38
- else:
39
- raise ValueError("Input must be a numpy array or a list of numpy arrays.")
 
13
  Return:
14
  A :obj:`list` | `dict`: will be serialized and returned
15
  """
16
+
17
+ def normalize_vectors(vectors):
18
+ """
19
+ Normalize a single vector or a list of vectors.
20
+
21
+ Parameters:
22
+ vectors (Union[np.ndarray, List[np.ndarray]]): Input vector or list of vectors.
23
+
24
+ Returns:
25
+ Union[np.ndarray, List[np.ndarray]]: Normalized vector or list of normalized vectors.
26
+ """
27
+ if isinstance(vectors, np.ndarray):
28
+ # If it's a single vector, normalize it
29
+ return vectors / np.linalg.norm(vectors)
30
+ elif isinstance(vectors, list):
31
+ # If it's a list of vectors, normalize each vector in the list
32
+ return [vector / np.linalg.norm(vector) for vector in vectors]
33
+ else:
34
+ raise ValueError("Input must be a numpy array or a list of numpy arrays.")
35
+
36
  inputs = data.pop("inputs",data)
37
  prediction = self.pipeline(inputs)
38
  normalized_prediction = normalize_vectors(prediction)
39
 
40
+ return {"embeddings": normalized_prediction}
 
 
 
 
 
 
 
41