|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import einsum, nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
ModelOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.models.auto import AutoModelForCausalLM |
|
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_peft_available, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
|
|
from .configuration_granite_speech import ( |
|
GraniteSpeechConfig, |
|
GraniteSpeechEncoderConfig, |
|
GraniteSpeechProjectorConfig, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "GraniteSpeechConfig" |
|
|
|
|
|
@dataclass |
|
class GraniteSpeechCausalLMOutputWithPast(ModelOutput): |
|
""" |
|
Base class for LlavaNext causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GraniteSpeechQFormerMultiHeadAttention(nn.Module): |
|
def __init__(self, config, is_cross_attention=False): |
|
super().__init__() |
|
self.config = config |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
"The hidden size (%d) is not a multiple of the number of attention heads (%d)" |
|
% (config.hidden_size, config.num_attention_heads) |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
if is_cross_attention: |
|
self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size) |
|
else: |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) |
|
self.save_attention = False |
|
|
|
def save_attn_gradients(self, attn_gradients): |
|
self.attn_gradients = attn_gradients |
|
|
|
def get_attn_gradients(self): |
|
return self.attn_gradients |
|
|
|
def save_attention_map(self, attention_map): |
|
self.attention_map = attention_map |
|
|
|
def get_attention_map(self): |
|
return self.attention_map |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(*new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|
seq_length = hidden_states.size()[1] |
|
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) |
|
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) |
|
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) |
|
|
|
if self.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
|
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|
|
|
if is_cross_attention and self.save_attention: |
|
self.save_attention_map(attention_probs) |
|
attention_probs.register_hook(self.save_attn_gradients) |
|
|
|
|
|
|
|
attention_probs_dropped = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs_dropped = attention_probs_dropped * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs_dropped, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
|
|
class GraniteSpeechQFormerSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
|
|
class GraniteSpeechQFormerAttention(nn.Module): |
|
def __init__(self, config, is_cross_attention=False): |
|
super().__init__() |
|
self.attention = GraniteSpeechQFormerMultiHeadAttention(config, is_cross_attention) |
|
self.output = GraniteSpeechQFormerSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.attention.query = prune_linear_layer(self.attention.query, index) |
|
self.attention.key = prune_linear_layer(self.attention.key, index) |
|
self.attention.value = prune_linear_layer(self.attention.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) |
|
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
self_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
|
|
class GraniteSpeechQFormerIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class GraniteSpeechQFormerOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
|
|
class GraniteSpeechQFormerLayer(nn.Module): |
|
def __init__(self, config, layer_idx): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = GraniteSpeechQFormerAttention(config) |
|
|
|
self.layer_idx = layer_idx |
|
|
|
if layer_idx % config.cross_attention_frequency == 0: |
|
self.crossattention = GraniteSpeechQFormerAttention(config, is_cross_attention=True) |
|
self.has_cross_attention = True |
|
else: |
|
self.has_cross_attention = False |
|
|
|
if config.use_qformer_text_input: |
|
self.intermediate = GraniteSpeechQFormerIntermediate(config) |
|
self.output = GraniteSpeechQFormerOutput(config) |
|
|
|
self.intermediate_query = GraniteSpeechQFormerIntermediate(config) |
|
self.output_query = GraniteSpeechQFormerOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
query_length=0, |
|
): |
|
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
outputs = self_attention_outputs[1:-1] |
|
|
|
present_key_value = self_attention_outputs[-1] |
|
|
|
if query_length > 0: |
|
query_attention_output = attention_output[:, :query_length, :] |
|
|
|
if self.has_cross_attention: |
|
if encoder_hidden_states is None: |
|
raise ValueError("encoder_hidden_states must be given for cross-attention layers") |
|
cross_attention_outputs = self.crossattention( |
|
query_attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
query_attention_output = cross_attention_outputs[0] |
|
|
|
outputs = outputs + cross_attention_outputs[1:-1] |
|
|
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk_query, |
|
self.chunk_size_feed_forward, |
|
self.seq_len_dim, |
|
query_attention_output, |
|
) |
|
|
|
if attention_output.shape[1] > query_length: |
|
layer_output_text = apply_chunking_to_forward( |
|
self.feed_forward_chunk, |
|
self.chunk_size_feed_forward, |
|
self.seq_len_dim, |
|
attention_output[:, query_length:, :], |
|
) |
|
layer_output = torch.cat([layer_output, layer_output_text], dim=1) |
|
else: |
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, |
|
self.chunk_size_feed_forward, |
|
self.seq_len_dim, |
|
attention_output, |
|
) |
|
outputs = (layer_output,) + outputs |
|
|
|
outputs = outputs + (present_key_value,) |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
def feed_forward_chunk_query(self, attention_output): |
|
intermediate_output = self.intermediate_query(attention_output) |
|
layer_output = self.output_query(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
|
|
class GraniteSpeechQFormerEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList( |
|
[GraniteSpeechQFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
query_length=0, |
|
): |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = () if output_attentions else None |
|
|
|
next_decoder_cache = () if use_cache else None |
|
|
|
for i in range(self.config.num_hidden_layers): |
|
layer_module = self.layer[i] |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if getattr(self.config, "gradient_checkpointing", False) and self.training: |
|
if use_cache: |
|
logger.warning( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer_module.__call__, |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
query_length, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if layer_module.has_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
class GraniteSpeechEncoderProjectorPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = GraniteSpeechProjectorConfig |
|
base_model_prefix = "qformer" |
|
supports_gradient_checkpointing = True |
|
|
|
_no_split_modules = [ |
|
"GraniteSpeechQFormerMultiHeadAttention", |
|
"T5Block", |
|
"OPTDecoderLayer", |
|
] |
|
_skip_keys_device_placement = "past_key_values" |
|
|
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
factor = self.config.initializer_range |
|
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=factor) |
|
if hasattr(module, "bias") and module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, nn.Linear) and module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
|
|
class GraniteSpeechQFormerModel(GraniteSpeechEncoderProjectorPreTrainedModel): |
|
""" |
|
Querying Transformer (Q-Former), used in GraniteSpeech. |
|
""" |
|
|
|
def __init__(self, config: GraniteSpeechProjectorConfig): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.encoder = GraniteSpeechQFormerEncoder(config) |
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
|
|
def get_extended_attention_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_shape: Tuple[int], |
|
device: torch.device, |
|
has_query: bool = False, |
|
) -> torch.Tensor: |
|
""" |
|
Makes broadcastable attention and causal masks so that future and masked tokens are ignored. |
|
|
|
Arguments: |
|
attention_mask (`torch.Tensor`): |
|
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. |
|
input_shape (`Tuple[int]`): |
|
The shape of the input to the model. |
|
device (`torch.device`): |
|
The device of the input to the model. |
|
|
|
Returns: |
|
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. |
|
""" |
|
|
|
|
|
if attention_mask.dim() == 3: |
|
extended_attention_mask = attention_mask[:, None, :, :] |
|
elif attention_mask.dim() == 2: |
|
|
|
|
|
extended_attention_mask = attention_mask[:, None, None, :] |
|
else: |
|
raise ValueError( |
|
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( |
|
input_shape, attention_mask.shape |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) |
|
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 |
|
return extended_attention_mask |
|
|
|
|
|
def forward( |
|
self, |
|
query_embeds: torch.FloatTensor, |
|
query_length: Optional[int] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of: |
|
shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and |
|
value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are |
|
used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key |
|
value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape |
|
`(batch_size, sequence_length)`. |
|
use_cache (`bool`, `optional`): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
past_key_values_length = ( |
|
past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0 |
|
) |
|
|
|
query_length = ( |
|
query_length if query_length is not None else query_embeds.shape[1] if query_embeds is not None else 0 |
|
) |
|
|
|
embedding_output = self.layernorm(query_embeds) |
|
embedding_output = self.dropout(embedding_output) |
|
|
|
input_shape = embedding_output.size()[:-1] |
|
batch_size, seq_length = input_shape |
|
device = embedding_output.device |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) |
|
|
|
|
|
|
|
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) |
|
|
|
|
|
|
|
if encoder_hidden_states is not None: |
|
if isinstance(encoder_hidden_states, list): |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() |
|
else: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
|
|
if isinstance(encoder_attention_mask, list): |
|
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] |
|
elif encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
query_length=query_length, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = sequence_output[:, 0, :] |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GraniteSpeechEncoderProjectorQFormer(nn.Module): |
|
def __init__(self, config: GraniteSpeechProjectorConfig): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.ds_rate = config.downsample_rate |
|
self.window_size = config.window_size |
|
self.num_queries = self.window_size // self.ds_rate |
|
self.query = nn.Parameter(torch.zeros(1, self.num_queries, config.hidden_size)) |
|
self.query.data.normal_(mean=0.0, std=1.0) |
|
|
|
|
|
|
|
|
|
self.qformer = GraniteSpeechQFormerModel(config) |
|
self.linear = nn.Linear(config.hidden_size, config.llm_dim) |
|
|
|
def forward(self, x, atts): |
|
batch_size, seq_len, dim = x.size() |
|
nblocks = math.ceil(seq_len / self.window_size) |
|
pad = nblocks * self.window_size - seq_len |
|
x = nn.functional.pad(x, (0, 0, 0, pad), "constant", 0) |
|
x = x.view(batch_size * nblocks, self.window_size, dim) |
|
|
|
query_output = self.qformer( |
|
query_embeds=self.query.data, |
|
encoder_hidden_states=x, |
|
encoder_attention_mask=atts, |
|
return_dict=True, |
|
) |
|
query_proj = self.linear( |
|
query_output.last_hidden_state.view(batch_size, nblocks * self.window_size // self.ds_rate, -1) |
|
) |
|
return query_proj |
|
|
|
|
|
|
|
class GraniteSpeechCTCModel(nn.Module): |
|
def __init__(self, config: GraniteSpeechEncoderConfig): |
|
super(GraniteSpeechCTCModel, self).__init__() |
|
|
|
self.rnn_tr = nn.ModuleList( |
|
[nn.Linear(config.input_dim, config.hidden_dim, bias=True)] |
|
+ [ |
|
GraniteSpeechConformerBlock( |
|
dim=config.hidden_dim, |
|
dim_head=config.dim_head, |
|
heads=config.num_heads, |
|
ff_mult=config.feedforward_mult, |
|
conv_expansion_factor=config.conv_expansion_factor, |
|
conv_kernel_size=config.conv_kernel_size, |
|
context_size=config.context_size, |
|
attn_dropout=config.dropout, |
|
ff_dropout=config.dropout, |
|
conv_dropout=config.dropout, |
|
) |
|
for layer_idx in range(config.num_layers) |
|
] |
|
) |
|
|
|
self.out = nn.Linear(config.hidden_dim, config.output_dim, bias=True) |
|
self.out_mid = nn.Linear(config.output_dim, config.hidden_dim, bias=True) |
|
self.context_size = config.context_size |
|
self.input_dim = config.input_dim |
|
self.num_layers = config.num_layers |
|
self.hidden_dim = config.hidden_dim |
|
self.output_dim = config.output_dim |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = self.rnn_tr[0](x) |
|
for idx, layer in enumerate(self.rnn_tr[1:], start=1): |
|
x = layer(x, self.context_size) |
|
if idx == self.num_layers // 2: |
|
x_mid = x.clone() |
|
x_mid = self.out(x_mid) |
|
x += self.out_mid(nn.Softmax(dim=-1)(x_mid)) |
|
return x |
|
|
|
|
|
|
|
class GraniteSpeechConformerPermute(nn.Module): |
|
def __init__(self, dims): |
|
super().__init__() |
|
self.dims = dims |
|
|
|
def forward(self, x): |
|
x = x.permute(self.dims) |
|
return x |
|
|
|
|
|
class GraniteSpeechConformerDepthWiseConv1d(nn.Module): |
|
def __init__(self, chan_in, chan_out, kernel_size, padding): |
|
super().__init__() |
|
self.padding = padding |
|
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups=chan_in, bias=False) |
|
|
|
def forward(self, x): |
|
x = F.pad(x, self.padding) |
|
return self.conv(x) |
|
|
|
|
|
class GraniteSpeechConformerScale(nn.Module): |
|
def __init__(self, scale, fn): |
|
super().__init__() |
|
self.fn = fn |
|
self.scale = scale |
|
|
|
def forward(self, x, **kwargs): |
|
return self.fn(x, **kwargs) * self.scale |
|
|
|
|
|
class GraniteSpeechConformerPreNorm(nn.Module): |
|
def __init__(self, dim, fn): |
|
super().__init__() |
|
self.fn = fn |
|
self.norm = nn.LayerNorm(dim) |
|
|
|
def forward(self, x, **kwargs): |
|
x = self.norm(x) |
|
return self.fn(x, **kwargs) |
|
|
|
|
|
class GraniteSpeechConformerPreNormAttn(nn.Module): |
|
def __init__(self, dim, fn): |
|
super().__init__() |
|
self.fn = fn |
|
self.norm = nn.LayerNorm(dim) |
|
|
|
def forward(self, x, context_size, **kwargs): |
|
x = self.norm(x) |
|
return self.fn(x, context_size, **kwargs) |
|
|
|
|
|
class GraniteSpeechConformerAttention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
heads=8, |
|
dim_head=64, |
|
dropout=0.0, |
|
context_size=200, |
|
max_pos_emb=512, |
|
): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
self.heads = heads |
|
self.dim_head = dim_head |
|
self.scale = dim_head**-0.5 |
|
self.to_q = nn.Linear(dim, inner_dim, bias=False) |
|
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) |
|
self.to_out = nn.Linear(inner_dim, dim) |
|
|
|
self.max_pos_emb = max_pos_emb |
|
self.rel_pos_emb = nn.Embedding(2 * max_pos_emb + 1, dim_head) |
|
|
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x, context_size): |
|
device, h, max_pos_emb = x.device, self.heads, self.max_pos_emb |
|
bs, n, d = x.shape |
|
assert context_size > 0 and context_size <= max_pos_emb |
|
|
|
nb = math.ceil(n / context_size) |
|
nr = n % context_size |
|
if nr > 0: |
|
|
|
x = torch.nn.functional.pad(x, (0, 0, 0, context_size - nr)) |
|
|
|
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim=-1)) |
|
q, k, v = [t.reshape(bs, nb, context_size, h, -1).transpose(2, 3) for t in (q, k, v)] |
|
|
|
dots = einsum("b m h i d, b m h j d -> b m h i j", q, k) * self.scale |
|
|
|
|
|
seq = torch.arange(context_size, device=device) |
|
dist = seq.view(-1, 1) - seq.view(1, -1) |
|
dist = torch.clamp(dist, -context_size, context_size) + max_pos_emb |
|
rel_pos_emb = self.rel_pos_emb(dist).to(q) |
|
pos_attn = einsum("b m h c d, c r d -> b m h c r", q, rel_pos_emb) * self.scale |
|
dots = dots + pos_attn |
|
|
|
if nr > 0: |
|
|
|
mask = torch.ones(context_size, context_size, dtype=bool, device=device) |
|
mask[:nr, :nr] = 0 |
|
mask_value = -torch.finfo(dots.dtype).max |
|
dots[:, -1, :].masked_fill_(mask, mask_value) |
|
|
|
attn = dots.softmax(dim=-1) |
|
|
|
out = einsum("b m h i j, b m h j d -> b m h i d", attn, v) |
|
out = out.transpose(2, 3).reshape(bs, x.shape[1], -1) |
|
out = self.to_out(out[:, :n, :]) |
|
return self.dropout(out) |
|
|
|
|
|
class GraniteSpeechConformerFeedForward(nn.Module): |
|
def __init__(self, dim, mult=4, dropout=0.0): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.Linear(dim, dim * mult), nn.SiLU(), nn.Dropout(dropout), nn.Linear(dim * mult, dim), nn.Dropout(dropout) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
class GraniteSpeechConformerConvModule(nn.Module): |
|
def __init__(self, dim, causal=False, expansion_factor=2, kernel_size=31, dropout=0.0): |
|
super().__init__() |
|
|
|
inner_dim = dim * expansion_factor |
|
padding = self.calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0) |
|
|
|
self.net = nn.Sequential( |
|
nn.LayerNorm(dim), |
|
GraniteSpeechConformerPermute(dims=(0, 2, 1)), |
|
nn.Conv1d(dim, inner_dim * 2, 1), |
|
nn.GLU(dim=1), |
|
GraniteSpeechConformerDepthWiseConv1d(inner_dim, inner_dim, kernel_size=kernel_size, padding=padding), |
|
nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(), |
|
nn.SiLU(), |
|
nn.Conv1d(inner_dim, dim, 1), |
|
GraniteSpeechConformerPermute(dims=(0, 2, 1)), |
|
nn.Dropout(dropout), |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
@staticmethod |
|
def calc_same_padding(kernel_size: int): |
|
pad = kernel_size // 2 |
|
return (pad, pad - (kernel_size + 1) % 2) |
|
|
|
|
|
class GraniteSpeechConformerBlock(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
dim, |
|
dim_head=64, |
|
heads=8, |
|
ff_mult=2, |
|
conv_expansion_factor=2, |
|
conv_kernel_size=31, |
|
context_size=-1, |
|
attn_dropout=0.0, |
|
ff_dropout=0.0, |
|
conv_dropout=0.0, |
|
): |
|
super().__init__() |
|
self.ff1 = GraniteSpeechConformerFeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout) |
|
self.attn = GraniteSpeechConformerAttention( |
|
dim=dim, |
|
dim_head=dim_head, |
|
heads=heads, |
|
dropout=attn_dropout, |
|
context_size=context_size, |
|
) |
|
self.conv = GraniteSpeechConformerConvModule( |
|
dim=dim, |
|
causal=False, |
|
expansion_factor=conv_expansion_factor, |
|
kernel_size=conv_kernel_size, |
|
dropout=conv_dropout, |
|
) |
|
self.ff2 = GraniteSpeechConformerFeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout) |
|
|
|
self.attn = GraniteSpeechConformerPreNormAttn(dim, self.attn) |
|
self.ff1 = GraniteSpeechConformerScale(0.5, GraniteSpeechConformerPreNorm(dim, self.ff1)) |
|
self.ff2 = GraniteSpeechConformerScale(0.5, GraniteSpeechConformerPreNorm(dim, self.ff2)) |
|
|
|
self.post_norm = nn.LayerNorm(dim) |
|
|
|
def forward(self, x, context_size): |
|
x = self.ff1(x) + x |
|
x = self.attn(x, context_size) + x |
|
x = self.conv(x) + x |
|
x = self.ff2(x) + x |
|
x = self.post_norm(x) |
|
return x |
|
|
|
|
|
GRANITE_SPEECH_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config (`GraniteSpeechConfig`): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Granite Speech Model outputting raw hidden-states without any specific head on top.", |
|
GRANITE_SPEECH_START_DOCSTRING, |
|
) |
|
class GraniteSpeechPreTrainedModel(PreTrainedModel): |
|
config_class = GraniteSpeechConfig |
|
_supports_cache_class = True |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, (nn.Linear, nn.Conv1d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
GRANITE_SPEECH_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
input_features (`torch.FloatTensor` of shape `(batch_size, audio seq len, mel feat dim)): |
|
The tensors corresponding to the input audios. input features can be obtained using |
|
[`AutoFeatureExtractor`]. See [`GraniteSpeechFeatureExtractor.__call__`] for details. |
|
[`GraniteSpeechProcessor`] uses [`GraniteSpeechFeatureExtractor`] for processing audio. |
|
input_mask (`torch.Tensor`, *optional*) |
|
Mask for extracted audio features that should should be ignored when creating the merged |
|
multimodal representation (i.e., due to padding). |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, |
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer |
|
the complete sequence length. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"""The Granite Speech model, which consists of an audio encoder, projector, and language model.""", |
|
GRANITE_SPEECH_START_DOCSTRING, |
|
) |
|
class GraniteSpeechForConditionalGeneration(GraniteSpeechPreTrainedModel, GenerationMixin): |
|
def __init__(self, config: GraniteSpeechConfig): |
|
super().__init__(config) |
|
|
|
|
|
|
|
|
|
self.language_model = AutoModelForCausalLM.from_config(config.text_config) |
|
|
|
if self.language_model._tied_weights_keys is not None: |
|
self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys] |
|
|
|
self.encoder = GraniteSpeechCTCModel(config.encoder_config) |
|
self.projector = GraniteSpeechEncoderProjectorQFormer(config.projector_config) |
|
|
|
if config.has_lora_adapter and not is_peft_available(): |
|
logger.warning( |
|
"Config indicates that a lora adapter should be present, but " |
|
"peft is not installed; this will cause the model to perform " |
|
"incorrectly when audio inputs are provided. Please install " |
|
"peft and reload the model!" |
|
) |
|
|
|
self.post_init() |
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.language_model.set_output_embeddings(new_embeddings) |
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
def get_output_embeddings(self): |
|
return self.language_model.get_output_embeddings() |
|
|
|
def get_audio_features(self, input_features): |
|
encoder_embeds = self.encoder(input_features) |
|
projected_embeds = self.projector(encoder_embeds, None) |
|
return projected_embeds |
|
|
|
@add_start_docstrings_to_model_forward(GRANITE_SPEECH_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=GraniteSpeechCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
input_features: torch.FloatTensor = None, |
|
input_features_mask: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
**lm_kwargs, |
|
) -> Union[Tuple[torch.Tensor], GraniteSpeechCausalLMOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
logits_to_keep (`int` or `torch.Tensor`, *optional*): |
|
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all |
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that |
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size. |
|
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. |
|
This is useful when using packed tensor format (single dimension for batch and sequence length). |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
TODO - add example for usage. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if input_features is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_features and inputs_embeds at the same time, and must specify either one" |
|
) |
|
|
|
if inputs_embeds is None: |
|
|
|
|
|
|
|
is_audio_idx = input_ids == self.config.audio_token_index |
|
llm_input_ids = input_ids.clone() |
|
llm_input_ids[is_audio_idx] = 0 |
|
inputs_embeds = self.get_input_embeddings()(llm_input_ids) |
|
|
|
if input_features is not None: |
|
if input_features.dtype != self.dtype: |
|
logger.warning(f"input features are casted to {self.dtype}") |
|
input_features = input_features.to(self.dtype) |
|
|
|
audio_features = self.get_audio_features(input_features) |
|
|
|
|
|
inputs_embeds = self.get_merged_audio_embeddings( |
|
input_ids=input_ids, audio_features=audio_features, input_features_mask=input_features_mask |
|
) |
|
|
|
outputs = self.language_model( |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
logits_to_keep=logits_to_keep, |
|
**lm_kwargs, |
|
) |
|
logits = outputs[0] |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
if attention_mask is not None: |
|
|
|
|
|
shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device) |
|
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() |
|
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() |
|
else: |
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) |
|
) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return GraniteSpeechCausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
input_features=None, |
|
attention_mask=None, |
|
cache_position=None, |
|
logits_to_keep=None, |
|
**kwargs, |
|
): |
|
|
|
|
|
model_inputs = self.language_model.prepare_inputs_for_generation( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
cache_position=cache_position, |
|
logits_to_keep=logits_to_keep, |
|
**kwargs, |
|
) |
|
|
|
|
|
|
|
|
|
if cache_position[0] == 0: |
|
model_inputs["input_features"] = input_features |
|
return model_inputs |
|
|
|
def get_merged_audio_embeddings(self, input_ids, audio_features, input_features_mask): |
|
""" |
|
Adds the audio token to the model's LLM vocabulary so that we can pass it |
|
through the tokenizer; it's assumed that the embeddings corresponding to the |
|
<|audio|> token will be clobbered with speech features. |
|
|
|
TODO - This needs to be adapted to handle batches of variable length sequences |
|
and potentially labels. |
|
""" |
|
is_audio_index = input_ids == self.config.audio_token_index |
|
llm_input_ids = torch.where(is_audio_index, 0, input_ids) |
|
inputs_embeds = self.language_model.get_input_embeddings()(llm_input_ids) |
|
|
|
|
|
special_audio_mask = is_audio_index.unsqueeze(-1) |
|
audio_features = audio_features.to(inputs_embeds.device, inputs_embeds.dtype)[input_features_mask] |
|
inputs_embeds = inputs_embeds.masked_scatter( |
|
special_audio_mask, |
|
audio_features, |
|
) |
|
return inputs_embeds |
|
|
|
def generate(self, *args, **kwargs): |
|
"""This model is expected to have a lora adapater, which is only |
|
enabled when considering audio inputs. As such, we override generate |
|
to conditionally enable / disable the lora adapter based on whether |
|
or not any input features were provided. |
|
""" |
|
input_features = kwargs.pop("input_features", None) |
|
if is_peft_available and self._hf_peft_config_loaded: |
|
if input_features is not None: |
|
self.enable_adapters() |
|
else: |
|
self.disable_adapters() |
|
return super().generate(*args, input_features=input_features, **kwargs) |
|
|
|
def save_pretrained(self, *args, **kwargs): |
|
|
|
|
|
|
|
|
|
|
|
if is_peft_available and self._hf_peft_config_loaded: |
|
super().save_pretrained(*args, **kwargs) |
|
|
|
self._hf_peft_config_loaded = False |
|
super().save_pretrained(*args, **kwargs) |
|
|
|
|
|
__all__ = [ |
|
"GraniteSpeechForConditionalGeneration", |
|
"GraniteSpeechPreTrainedModel", |
|
"GraniteSpeechEncoderProjectorPreTrainedModel", |
|
"GraniteSpeechQFormerModel", |
|
] |
|
|