File size: 10,089 Bytes
8a94acf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Speech Granite.
"""

from collections.abc import Sequence
from typing import List, Union

import numpy as np
import torch

from transformers.feature_extraction_utils import BatchFeature
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils import PreTokenizedInput, TextInput
from transformers.utils import logging


logger = logging.get_logger(__name__)

# 🚨🚨🚨 HACK 🚨🚨🚨
# This is needed to avoid custom registration issues for now,
# since we have a custom subclass for the feature extractor as well.
import math
from typing import List, Optional

from transformers.feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from transformers.utils import is_torch_available, is_torchaudio_available, logging

if is_torch_available():
    import torch

if is_torchaudio_available():
    import torchaudio


class GraniteSpeechFeatureExtractor(FeatureExtractionMixin):
    model_input_names = ["input_features"]

    def __init__(
        self,
        sampling_rate=16000,
        n_fft=512,
        win_length=400,
        hop_length=160,
        n_mels=80,
        projector_window_size=15,
        projector_downsample_rate=5,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.melspec_kwargs = {
            "sample_rate": sampling_rate,
            "n_fft": n_fft,
            "win_length": win_length,
            "hop_length": hop_length,
            "n_mels": n_mels,
        }
        # HACK - for now, lazily initialize the mel spectrogram transform;
        # the feature extractor mixin explodes otherwise because
        # it tries to log the feature extractor, and the melspectrogram
        # transform isn't json serializable...
        self.melspec = None
        self.projector_window_size = projector_window_size
        self.projector_downsample_rate = projector_downsample_rate

    def _ensure_melspec_transform_is_initialized(self):
        if self.melspec is None:
            self.melspec = torchaudio.transforms.MelSpectrogram(**self.melspec_kwargs)

    def __call__(
        self,
        x: torch.Tensor,
        device: Optional[str] = "cpu",
    ) -> BatchFeature:
        # TODO there is probably a better way to do both of these things...
        self._ensure_melspec_transform_is_initialized()
        if device is not None:
            melspec = self.melspec.to(device)
            x = x.to(device)
        else:
            melspec = self.melspec

        B, _ = x.shape
        with torch.no_grad():
            mel = melspec(x.float())
            logmel = mel.transpose(-1, -2).clip_(min=1e-10).log10_()
            mx = logmel.amax(dim=(-2, -1), keepdim=True)
            logmel = torch.maximum(logmel, mx - 8.0).div_(4).add_(1)
            if logmel.shape[1] % 2 == 1:
                logmel = logmel[:, :-1]  # remove last frame if odd
            x = logmel.reshape(B, -1, 2 * logmel.shape[-1])  # stacking and skipping by 2

        if x.device != "cpu":
            return x.detach().cpu()
        return x

    def _get_num_audio_features(self, audio_lengths: List[int]) -> List[int]:
        """
        Gets the (variable length) variable length number of features
        (i.e., projector output) for the sequences being considered.
        """
        hop_length = self.melspec_kwargs["hop_length"]
        effective_window_size = self.projector_window_size // self.projector_downsample_rate

        projector_lengths = []
        for raw_length in audio_lengths:
            # mel sequence length computation
            mel_length = raw_length // hop_length + 1
            # encoder frame takes two mel features
            encoder_length = mel_length // 2
            nblocks = math.ceil(encoder_length / self.projector_window_size)
            # projector output length
            projector_length = nblocks * effective_window_size
            projector_lengths.append(projector_length)

        return projector_lengths


import transformers
transformers.GraniteSpeechFeatureExtractor = GraniteSpeechFeatureExtractor
# The above code is the only change in the modeling code from the following
# commit on Alex's fork: 397e03a4d76c5f3d8a651e47ade9f27c635e1617

class GraniteSpeechProcessor(ProcessorMixin):
    attributes = ["feature_extractor", "tokenizer"]
    valid_kwargs = ["audio_token"]

    feature_extractor_class = "GraniteSpeechFeatureExtractor"
    tokenizer_class = "AutoTokenizer"

    def __init__(
        self,
        feature_extractor,
        tokenizer,
        audio_token="<|audio|>",
    ):
        self.audio_token = tokenizer.audio_token if hasattr(tokenizer, "audio_token") else audio_token
        super().__init__(feature_extractor, tokenizer)

    def __call__(
        self,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
        audios: Union[torch.Tensor, List[torch.Tensor]] = None,
        device: str = "cpu",
        **kwargs,
    ) -> BatchFeature:
        speech_inputs = {}
        text_inputs = {}

        text = self._get_validated_text(text)
        expected_num_audios = sum(t.count(self.audio_token) for t in text)

        if audios is not None:
            audios, audio_lengths = self._get_validated_audios(audios)
            if any(text.count(self.audio_token) != 1 for text in text):
                raise ValueError("Only one audio sample is currently supported per input")
            if len(audio_lengths) != expected_num_audios:
                raise ValueError("Text/Audio mismatch. The number of audios and audio tokens do not match")

            # Calculate Mel features & the number of placeholders we will need
            speech_inputs["input_features"] = self.feature_extractor(
                audios,
                device=device,
            )
            num_audio_features = self.feature_extractor._get_num_audio_features(audio_lengths)
            speech_inputs["input_features_mask"] = torch.arange(max(num_audio_features)).view(1, -1) <= torch.tensor(
                num_audio_features
            ).view(-1, 1)

            # duplicate the audio placeholders to match the feature dims
            text = self._expand_audio_placeholders(text, num_audio_features)
        else:
            assert expected_num_audios == 0, "No audio is provided, expecting no audio tokens"

        text_inputs = self.tokenizer(text, padding=True, **kwargs)
        return BatchFeature(data={**text_inputs, **speech_inputs})

    def _expand_audio_placeholders(self, text: list[str], num_audio_features: List[int]):
        """
        Expands audio placeholders in the formatted text to match the number of
        features of the corresponding embeddings; we can use the resulting text
        to conveniently mask the audio features into the text embeddings.
        """
        prompt_strings = []
        num_replaced = 0
        for sample in text:
            while self.audio_token in sample:
                sample = sample.replace(
                    self.audio_token,
                    "<placeholder>" * num_audio_features[num_replaced],
                    1,
                )
                num_replaced += 1
            prompt_strings.append(sample)

        prompt_strings = [sample.replace("<placeholder>", self.audio_token) for sample in prompt_strings]
        return prompt_strings

    ##### Validation
    def _get_validated_text(self, text: Union[str, list]) -> List[str]:
        if isinstance(text, str):
            return [text]
        elif isinstance(text, list) and isinstance(text[0], str):
            return text
        raise TypeError("Invalid text provided! Text should be a string or list of strings.")

    def _get_validated_audios(self, audios):
        # Coerce to PyTorch tensors if we have numpy arrays, since
        # currently we have a dependency on torch/torchaudio anyway
        if isinstance(audios, np.ndarray):
            audios = torch.from_numpy(audios)
        elif isinstance(audios, Sequence) and isinstance(audios[0], np.ndarray):
            audios = [torch.from_numpy(arr) for arr in audios]

        if isinstance(audios, torch.Tensor):
            if audios.ndim == 1:
                audios = audios.unsqueeze(0)
            if not torch.is_floating_point(audios):
                raise ValueError("Invalid audio provided. Audio should be a floating point between 0 and 1")

            if audios.shape[0] > 1:
                logger.warning("Audio samples are already collated; assuming they all have the same length")
            lengths = [audios.shape[-1]] * audios.shape[0]
            return audios, lengths

        elif isinstance(audios, Sequence) and isinstance(audios[0], torch.Tensor):
            if not torch.is_floating_point(audios[0]):
                raise ValueError("Invalid audio provided. Audio should be a floating point between 0 and 1")
            lengths = [audio.shape[-1] for audio in audios]
            padding = [max(lengths) - length for length in lengths]
            # ensure all audios have a batch dimension:
            audios = [audio.view(1, -1) for audio in audios]
            padded = [torch.nn.functional.pad(audio, (0, pad)) for audio, pad in zip(audios, padding)]
            audios = torch.cat(padded, dim=0)
            return audios, lengths

        raise TypeError("Invalid audio provided. Audio should be a one or more torch tensors or numpy arrays")


__all__ = ["GraniteSpeechProcessor"]