ritulk commited on
Commit
dd02b89
·
verified ·
1 Parent(s): ebadf00

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,480 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:5749
8
+ - loss:MultipleNegativesRankingLoss
9
+ - loss:CosineSimilarityLoss
10
+ base_model: ritulk/MPNET-fine-tuned-political-clustering
11
+ widget:
12
+ - source_sentence: Der Mann hat über die Internetkamera mit einem Mädchen gesprochen.
13
+ sentences:
14
+ - Eine Gruppe älterer Menschen posiert um einen Esstisch.
15
+ - Ein Teenager spricht über eine Webcam mit einem Mädchen.
16
+ - Mindestlohngesetze schaden den am wenigsten Qualifizierten, den am wenigsten Produktiven
17
+ am meisten.
18
+ - source_sentence: Eine Frau schreibt etwas.
19
+ sentences:
20
+ - Es gibt kein "Standbild", das nicht relativ zu einem anderen Objekt ist.
21
+ - Ein blondhaariges Kind, das vor einem Haus auf der Trompete spielt, während sein
22
+ jüngerer Bruder zusieht.
23
+ - Eine Frau schneidet grüne Zwiebeln.
24
+ - source_sentence: Sterne entstehen in Sternentstehungsgebieten, die ihrerseits aus
25
+ Molekülwolken entstehen.
26
+ sentences:
27
+ - Sie bezieht sich auf die maximale Blendenzahl (definiert als das Verhältnis von
28
+ Brennweite zu effektivem Blendendurchmesser).
29
+ - Es ist möglich, dass ein Sonnensystem wie unseres außerhalb einer Galaxie existiert.
30
+ - Es gibt einen sehr guten Grund, die Gattin der Königin nicht als "König" zu bezeichnen
31
+ - denn sie sind nicht der König.
32
+ - source_sentence: Der Spieler schießt die Siegpunkte.
33
+ sentences:
34
+ - Die Dame frittierte das panierte Fleisch in heißem Öl.
35
+ - Der Basketballspieler ist dabei, Punkte für sein Team zu sammeln.
36
+ - Obwohl ich glaube, dass Searle sich irrt, glaube ich nicht, dass Sie das Problem
37
+ gefunden haben.
38
+ - source_sentence: Zwei Weißkopfseeadler auf einem Ast.
39
+ sentences:
40
+ - Die Frau schneidet Kartoffeln.
41
+ - Ein Mann, der in einem Raum auf dem Boden sitzt, klimpert auf einer Gitarre.
42
+ - Zwei Adler sitzen auf einem Ast.
43
+ pipeline_tag: sentence-similarity
44
+ library_name: sentence-transformers
45
+ metrics:
46
+ - pearson_cosine
47
+ - spearman_cosine
48
+ model-index:
49
+ - name: SentenceTransformer based on ritulk/MPNET-fine-tuned-political-clustering
50
+ results:
51
+ - task:
52
+ type: semantic-similarity
53
+ name: Semantic Similarity
54
+ dataset:
55
+ name: Unknown
56
+ type: unknown
57
+ metrics:
58
+ - type: pearson_cosine
59
+ value: 0.6568108475174784
60
+ name: Pearson Cosine
61
+ - type: spearman_cosine
62
+ value: 0.657621425130489
63
+ name: Spearman Cosine
64
+ - type: pearson_cosine
65
+ value: 0.6759557480156315
66
+ name: Pearson Cosine
67
+ - type: spearman_cosine
68
+ value: 0.6750383325651396
69
+ name: Spearman Cosine
70
+ - type: pearson_cosine
71
+ value: 0.7640996792459651
72
+ name: Pearson Cosine
73
+ - type: spearman_cosine
74
+ value: 0.7619248730277344
75
+ name: Spearman Cosine
76
+ ---
77
+
78
+ # SentenceTransformer based on ritulk/MPNET-fine-tuned-political-clustering
79
+
80
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [ritulk/MPNET-fine-tuned-political-clustering](https://huggingface.co/ritulk/MPNET-fine-tuned-political-clustering). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
81
+
82
+ ## Model Details
83
+
84
+ ### Model Description
85
+ - **Model Type:** Sentence Transformer
86
+ - **Base model:** [ritulk/MPNET-fine-tuned-political-clustering](https://huggingface.co/ritulk/MPNET-fine-tuned-political-clustering) <!-- at revision ae9c82780eb3f2f97dd6943140a34e78030ce7bd -->
87
+ - **Maximum Sequence Length:** 512 tokens
88
+ - **Output Dimensionality:** 768 dimensions
89
+ - **Similarity Function:** Cosine Similarity
90
+ <!-- - **Training Dataset:** Unknown -->
91
+ <!-- - **Language:** Unknown -->
92
+ <!-- - **License:** Unknown -->
93
+
94
+ ### Model Sources
95
+
96
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
97
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
98
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
99
+
100
+ ### Full Model Architecture
101
+
102
+ ```
103
+ SentenceTransformer(
104
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
105
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
106
+ )
107
+ ```
108
+
109
+ ## Usage
110
+
111
+ ### Direct Usage (Sentence Transformers)
112
+
113
+ First install the Sentence Transformers library:
114
+
115
+ ```bash
116
+ pip install -U sentence-transformers
117
+ ```
118
+
119
+ Then you can load this model and run inference.
120
+ ```python
121
+ from sentence_transformers import SentenceTransformer
122
+
123
+ # Download from the 🤗 Hub
124
+ model = SentenceTransformer("ritulk/MPNET_finetuned_on_stsb_multi_mt_dataset")
125
+ # Run inference
126
+ sentences = [
127
+ 'Zwei Weißkopfseeadler auf einem Ast.',
128
+ 'Zwei Adler sitzen auf einem Ast.',
129
+ 'Ein Mann, der in einem Raum auf dem Boden sitzt, klimpert auf einer Gitarre.',
130
+ ]
131
+ embeddings = model.encode(sentences)
132
+ print(embeddings.shape)
133
+ # [3, 768]
134
+
135
+ # Get the similarity scores for the embeddings
136
+ similarities = model.similarity(embeddings, embeddings)
137
+ print(similarities.shape)
138
+ # [3, 3]
139
+ ```
140
+
141
+ <!--
142
+ ### Direct Usage (Transformers)
143
+
144
+ <details><summary>Click to see the direct usage in Transformers</summary>
145
+
146
+ </details>
147
+ -->
148
+
149
+ <!--
150
+ ### Downstream Usage (Sentence Transformers)
151
+
152
+ You can finetune this model on your own dataset.
153
+
154
+ <details><summary>Click to expand</summary>
155
+
156
+ </details>
157
+ -->
158
+
159
+ <!--
160
+ ### Out-of-Scope Use
161
+
162
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
163
+ -->
164
+
165
+ ## Evaluation
166
+
167
+ ### Metrics
168
+
169
+ #### Semantic Similarity
170
+
171
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
172
+
173
+ | Metric | Value |
174
+ |:--------------------|:-----------|
175
+ | pearson_cosine | 0.6568 |
176
+ | **spearman_cosine** | **0.6576** |
177
+
178
+ #### Semantic Similarity
179
+
180
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
181
+
182
+ | Metric | Value |
183
+ |:--------------------|:----------|
184
+ | pearson_cosine | 0.676 |
185
+ | **spearman_cosine** | **0.675** |
186
+
187
+ #### Semantic Similarity
188
+
189
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
190
+
191
+ | Metric | Value |
192
+ |:--------------------|:-----------|
193
+ | pearson_cosine | 0.7641 |
194
+ | **spearman_cosine** | **0.7619** |
195
+
196
+ <!--
197
+ ## Bias, Risks and Limitations
198
+
199
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
200
+ -->
201
+
202
+ <!--
203
+ ### Recommendations
204
+
205
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
206
+ -->
207
+
208
+ ## Training Details
209
+
210
+ ### Training Dataset
211
+
212
+ #### Unnamed Dataset
213
+
214
+ * Size: 5,749 training samples
215
+ * Columns: <code>text</code>, <code>text_pair</code>, and <code>score</code>
216
+ * Approximate statistics based on the first 1000 samples:
217
+ | | text | text_pair | score |
218
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
219
+ | type | string | string | float |
220
+ | details | <ul><li>min: 7 tokens</li><li>mean: 14.58 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 14.6 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
221
+ * Samples:
222
+ | text | text_pair | score |
223
+ |:---------------------------------------------------------------|:--------------------------------------------------------------------------|:--------------------------------|
224
+ | <code>Ein Flugzeug hebt gerade ab.</code> | <code>Ein Flugzeug hebt gerade ab.</code> | <code>1.0</code> |
225
+ | <code>Ein Mann spielt eine große Flöte.</code> | <code>Ein Mann spielt eine Flöte.</code> | <code>0.7599999904632568</code> |
226
+ | <code>Ein Mann streicht geriebenen Käse auf eine Pizza.</code> | <code>Ein Mann streicht geriebenen Käse auf eine ungekochte Pizza.</code> | <code>0.7599999904632568</code> |
227
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
228
+ ```json
229
+ {
230
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
231
+ }
232
+ ```
233
+
234
+ ### Evaluation Dataset
235
+
236
+ #### Unnamed Dataset
237
+
238
+ * Size: 1,500 evaluation samples
239
+ * Columns: <code>text</code>, <code>text_pair</code>, and <code>score</code>
240
+ * Approximate statistics based on the first 1000 samples:
241
+ | | text | text_pair | score |
242
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
243
+ | type | string | string | float |
244
+ | details | <ul><li>min: 6 tokens</li><li>mean: 25.19 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 25.21 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
245
+ * Samples:
246
+ | text | text_pair | score |
247
+ |:-------------------------------------------------------------|:-----------------------------------------------------------|:------------------|
248
+ | <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>1.0</code> |
249
+ | <code>Ein kleines Kind reitet auf einem Pferd.</code> | <code>Ein Kind reitet auf einem Pferd.</code> | <code>0.95</code> |
250
+ | <code>Ein Mann verfüttert eine Maus an eine Schlange.</code> | <code>Der Mann füttert die Schlange mit einer Maus.</code> | <code>1.0</code> |
251
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
252
+ ```json
253
+ {
254
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
255
+ }
256
+ ```
257
+
258
+ ### Training Hyperparameters
259
+ #### Non-Default Hyperparameters
260
+
261
+ - `eval_strategy`: steps
262
+ - `per_device_train_batch_size`: 16
263
+ - `per_device_eval_batch_size`: 16
264
+ - `num_train_epochs`: 5
265
+ - `warmup_ratio`: 0.1
266
+ - `fp16`: True
267
+ - `batch_sampler`: no_duplicates
268
+
269
+ #### All Hyperparameters
270
+ <details><summary>Click to expand</summary>
271
+
272
+ - `overwrite_output_dir`: False
273
+ - `do_predict`: False
274
+ - `eval_strategy`: steps
275
+ - `prediction_loss_only`: True
276
+ - `per_device_train_batch_size`: 16
277
+ - `per_device_eval_batch_size`: 16
278
+ - `per_gpu_train_batch_size`: None
279
+ - `per_gpu_eval_batch_size`: None
280
+ - `gradient_accumulation_steps`: 1
281
+ - `eval_accumulation_steps`: None
282
+ - `torch_empty_cache_steps`: None
283
+ - `learning_rate`: 5e-05
284
+ - `weight_decay`: 0.0
285
+ - `adam_beta1`: 0.9
286
+ - `adam_beta2`: 0.999
287
+ - `adam_epsilon`: 1e-08
288
+ - `max_grad_norm`: 1.0
289
+ - `num_train_epochs`: 5
290
+ - `max_steps`: -1
291
+ - `lr_scheduler_type`: linear
292
+ - `lr_scheduler_kwargs`: {}
293
+ - `warmup_ratio`: 0.1
294
+ - `warmup_steps`: 0
295
+ - `log_level`: passive
296
+ - `log_level_replica`: warning
297
+ - `log_on_each_node`: True
298
+ - `logging_nan_inf_filter`: True
299
+ - `save_safetensors`: True
300
+ - `save_on_each_node`: False
301
+ - `save_only_model`: False
302
+ - `restore_callback_states_from_checkpoint`: False
303
+ - `no_cuda`: False
304
+ - `use_cpu`: False
305
+ - `use_mps_device`: False
306
+ - `seed`: 42
307
+ - `data_seed`: None
308
+ - `jit_mode_eval`: False
309
+ - `use_ipex`: False
310
+ - `bf16`: False
311
+ - `fp16`: True
312
+ - `fp16_opt_level`: O1
313
+ - `half_precision_backend`: auto
314
+ - `bf16_full_eval`: False
315
+ - `fp16_full_eval`: False
316
+ - `tf32`: None
317
+ - `local_rank`: 0
318
+ - `ddp_backend`: None
319
+ - `tpu_num_cores`: None
320
+ - `tpu_metrics_debug`: False
321
+ - `debug`: []
322
+ - `dataloader_drop_last`: False
323
+ - `dataloader_num_workers`: 0
324
+ - `dataloader_prefetch_factor`: None
325
+ - `past_index`: -1
326
+ - `disable_tqdm`: False
327
+ - `remove_unused_columns`: True
328
+ - `label_names`: None
329
+ - `load_best_model_at_end`: False
330
+ - `ignore_data_skip`: False
331
+ - `fsdp`: []
332
+ - `fsdp_min_num_params`: 0
333
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
334
+ - `tp_size`: 0
335
+ - `fsdp_transformer_layer_cls_to_wrap`: None
336
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
337
+ - `deepspeed`: None
338
+ - `label_smoothing_factor`: 0.0
339
+ - `optim`: adamw_torch
340
+ - `optim_args`: None
341
+ - `adafactor`: False
342
+ - `group_by_length`: False
343
+ - `length_column_name`: length
344
+ - `ddp_find_unused_parameters`: None
345
+ - `ddp_bucket_cap_mb`: None
346
+ - `ddp_broadcast_buffers`: False
347
+ - `dataloader_pin_memory`: True
348
+ - `dataloader_persistent_workers`: False
349
+ - `skip_memory_metrics`: True
350
+ - `use_legacy_prediction_loop`: False
351
+ - `push_to_hub`: False
352
+ - `resume_from_checkpoint`: None
353
+ - `hub_model_id`: None
354
+ - `hub_strategy`: every_save
355
+ - `hub_private_repo`: None
356
+ - `hub_always_push`: False
357
+ - `gradient_checkpointing`: False
358
+ - `gradient_checkpointing_kwargs`: None
359
+ - `include_inputs_for_metrics`: False
360
+ - `include_for_metrics`: []
361
+ - `eval_do_concat_batches`: True
362
+ - `fp16_backend`: auto
363
+ - `push_to_hub_model_id`: None
364
+ - `push_to_hub_organization`: None
365
+ - `mp_parameters`:
366
+ - `auto_find_batch_size`: False
367
+ - `full_determinism`: False
368
+ - `torchdynamo`: None
369
+ - `ray_scope`: last
370
+ - `ddp_timeout`: 1800
371
+ - `torch_compile`: False
372
+ - `torch_compile_backend`: None
373
+ - `torch_compile_mode`: None
374
+ - `dispatch_batches`: None
375
+ - `split_batches`: None
376
+ - `include_tokens_per_second`: False
377
+ - `include_num_input_tokens_seen`: False
378
+ - `neftune_noise_alpha`: None
379
+ - `optim_target_modules`: None
380
+ - `batch_eval_metrics`: False
381
+ - `eval_on_start`: False
382
+ - `use_liger_kernel`: False
383
+ - `eval_use_gather_object`: False
384
+ - `average_tokens_across_devices`: False
385
+ - `prompts`: None
386
+ - `batch_sampler`: no_duplicates
387
+ - `multi_dataset_batch_sampler`: proportional
388
+
389
+ </details>
390
+
391
+ ### Training Logs
392
+ | Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
393
+ |:------:|:----:|:-------------:|:---------------:|:---------------:|
394
+ | 0.2778 | 100 | 0.6009 | 0.9181 | - |
395
+ | 0.5556 | 200 | 0.4724 | 0.8744 | - |
396
+ | 0.8333 | 300 | 0.449 | 0.8405 | - |
397
+ | -1 | -1 | - | - | 0.6576 |
398
+ | 0.2778 | 100 | 0.0781 | 0.9378 | - |
399
+ | 0.5556 | 200 | 0.0772 | 0.9290 | - |
400
+ | 0.8333 | 300 | 0.2281 | 0.8876 | - |
401
+ | 1.1111 | 400 | 0.3267 | 0.9336 | - |
402
+ | 1.3889 | 500 | 0.2936 | 0.8612 | - |
403
+ | 1.6667 | 600 | 0.2283 | 0.8569 | - |
404
+ | 1.9444 | 700 | 0.2448 | 0.8589 | - |
405
+ | 2.2222 | 800 | 0.1877 | 0.8418 | - |
406
+ | 2.5 | 900 | 0.1693 | 0.8351 | - |
407
+ | 2.7778 | 1000 | 0.1635 | 0.8588 | - |
408
+ | 3.0556 | 1100 | 0.1642 | 0.8260 | - |
409
+ | 3.3333 | 1200 | 0.1027 | 0.8380 | - |
410
+ | 3.6111 | 1300 | 0.0983 | 0.8407 | - |
411
+ | 3.8889 | 1400 | 0.0978 | 0.8317 | - |
412
+ | 4.1667 | 1500 | 0.1187 | 0.8376 | - |
413
+ | 4.4444 | 1600 | 0.0977 | 0.8465 | - |
414
+ | 4.7222 | 1700 | 0.0686 | 0.8492 | - |
415
+ | 5.0 | 1800 | 0.0587 | 0.8485 | - |
416
+ | -1 | -1 | - | - | 0.6750 |
417
+ | 0.2778 | 100 | 0.0656 | 0.0464 | - |
418
+ | 0.5556 | 200 | 0.0564 | 0.0454 | - |
419
+ | 0.8333 | 300 | 0.0498 | 0.0496 | - |
420
+ | 1.1111 | 400 | 0.042 | 0.0408 | - |
421
+ | 1.3889 | 500 | 0.0384 | 0.0416 | - |
422
+ | 1.6667 | 600 | 0.0319 | 0.0427 | - |
423
+ | 1.9444 | 700 | 0.0332 | 0.0427 | - |
424
+ | 2.2222 | 800 | 0.0249 | 0.0416 | - |
425
+ | 2.5 | 900 | 0.0232 | 0.0408 | - |
426
+ | 2.7778 | 1000 | 0.0219 | 0.0415 | - |
427
+ | 3.0556 | 1100 | 0.0215 | 0.0409 | - |
428
+ | 3.3333 | 1200 | 0.0158 | 0.0402 | - |
429
+ | 3.6111 | 1300 | 0.0171 | 0.0387 | - |
430
+ | 3.8889 | 1400 | 0.0152 | 0.0393 | - |
431
+ | 4.1667 | 1500 | 0.0126 | 0.0389 | - |
432
+ | 4.4444 | 1600 | 0.0124 | 0.0389 | - |
433
+ | 4.7222 | 1700 | 0.0118 | 0.0393 | - |
434
+ | 5.0 | 1800 | 0.0127 | 0.0391 | - |
435
+ | -1 | -1 | - | - | 0.7619 |
436
+
437
+
438
+ ### Framework Versions
439
+ - Python: 3.11.12
440
+ - Sentence Transformers: 4.0.2
441
+ - Transformers: 4.50.3
442
+ - PyTorch: 2.6.0+cu124
443
+ - Accelerate: 1.5.2
444
+ - Datasets: 3.5.0
445
+ - Tokenizers: 0.21.1
446
+
447
+ ## Citation
448
+
449
+ ### BibTeX
450
+
451
+ #### Sentence Transformers
452
+ ```bibtex
453
+ @inproceedings{reimers-2019-sentence-bert,
454
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
455
+ author = "Reimers, Nils and Gurevych, Iryna",
456
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
457
+ month = "11",
458
+ year = "2019",
459
+ publisher = "Association for Computational Linguistics",
460
+ url = "https://arxiv.org/abs/1908.10084",
461
+ }
462
+ ```
463
+
464
+ <!--
465
+ ## Glossary
466
+
467
+ *Clearly define terms in order to be accessible across audiences.*
468
+ -->
469
+
470
+ <!--
471
+ ## Model Card Authors
472
+
473
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
474
+ -->
475
+
476
+ <!--
477
+ ## Model Card Contact
478
+
479
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
480
+ -->
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MPNetModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-05,
14
+ "max_position_embeddings": 514,
15
+ "model_type": "mpnet",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 1,
19
+ "relative_attention_num_buckets": 32,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.50.3",
22
+ "vocab_size": 30527
23
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.0.2",
4
+ "transformers": "4.50.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24ce7820db3643400f89ec2310adf12233358c40369242225c952582d15835b6
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "max_length": 512,
60
+ "model_max_length": 512,
61
+ "pad_to_multiple_of": null,
62
+ "pad_token": "<pad>",
63
+ "pad_token_type_id": 0,
64
+ "padding_side": "right",
65
+ "sep_token": "</s>",
66
+ "stride": 0,
67
+ "strip_accents": null,
68
+ "tokenize_chinese_chars": true,
69
+ "tokenizer_class": "MPNetTokenizer",
70
+ "truncation_side": "right",
71
+ "truncation_strategy": "longest_first",
72
+ "unk_token": "[UNK]"
73
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff