--- library_name: transformers license: apache-2.0 base_model: - Qwen/Qwen2.5-Coder-3B-Instruct --- # Model Card for Model ID Generates and Edits minimal multi-file python code. Right now consistently generates upto 2-3 files with a runner.sh bash script that orchestrates the file. Maintains the PEP-8 style. ## Model Details ### Model Description - **Developed by:** Reshinth Adithyan - **License:** Apache 2.0 ### Model Sources [optional] - **Repository:** https://github.com/reshinthadithyan/repo-level-code/tree/main ### Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer import fire def main(model_path:str="./models_dir/repo_coder_v1"): input_prompt = "###Instruction: {prompt}".format(prompt="Generate a small python repo for matplotlib to visualize timeseries data to read from timeseries.csv file using pandas.") def load_model(model_path): """ Load the model and tokenizer from the specified path. """ tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype="auto") return model, tokenizer model, tokenizer = load_model(model_path) print(f"Loaded model from {model_path}.") input = tokenizer(input_prompt, return_tensors="pt").to(model.device) print(input) with torch.no_grad(): output = model.generate(**input, max_length=1024, do_sample=True, temperature=0.9, top_p=0.95, top_k=50) output_text = tokenizer.decode(output[0], skip_special_tokens=True) print(f"Generated text: {output_text}") if __name__ == "__main__": fire.Fire(main) ```