File size: 1,724 Bytes
8639f09
 
c70bb0f
 
 
8639f09
 
 
 
c70bb0f
8639f09
 
 
 
 
 
c70bb0f
 
8639f09
 
 
 
 
c70bb0f
f304736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
library_name: transformers
license: apache-2.0
base_model:
- Qwen/Qwen2.5-Coder-3B-Instruct
---

# Model Card for Model ID

Generates and Edits minimal multi-file python code. Right now consistently generates upto 2-3 files with a runner.sh bash script that orchestrates the file. Maintains the PEP-8 style.


## Model Details

### Model Description

- **Developed by:** Reshinth Adithyan
- **License:** Apache 2.0

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/reshinthadithyan/repo-level-code/tree/main
### Usage
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import fire


def main(model_path:str="./models_dir/repo_coder_v1"):
    input_prompt =  "###Instruction: {prompt}".format(prompt="Generate a small python repo for matplotlib to visualize timeseries data to read from timeseries.csv file using pandas.")

    def load_model(model_path):
        """
        Load the model and tokenizer from the specified path.
        """
        tokenizer = AutoTokenizer.from_pretrained(model_path)
        model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype="auto")
        return model, tokenizer


    model, tokenizer = load_model(model_path)
    print(f"Loaded model from {model_path}.")

    input = tokenizer(input_prompt, return_tensors="pt").to(model.device)
    print(input)
    with torch.no_grad():
        output = model.generate(**input, max_length=1024, do_sample=True, temperature=0.9, top_p=0.95, top_k=50)
        output_text = tokenizer.decode(output[0], skip_special_tokens=True)
        print(f"Generated text: {output_text}")

if __name__ == "__main__":
    fire.Fire(main)
```