File size: 4,129 Bytes
e3301ee
 
 
 
 
 
 
 
 
 
 
 
20a9ae8
e3301ee
 
 
 
 
 
 
 
20a9ae8
e3301ee
 
 
20a9ae8
e3301ee
 
20a9ae8
e3301ee
 
20a9ae8
e3301ee
 
20a9ae8
e3301ee
 
20a9ae8
e3301ee
 
 
 
 
20a9ae8
e3301ee
 
 
 
 
 
 
 
 
 
5fbb9fa
e3301ee
 
 
 
 
 
 
 
 
 
 
 
 
20a9ae8
e3301ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20a9ae8
e3301ee
 
 
 
 
 
 
 
 
 
 
 
 
 
0179e5c
e3301ee
0179e5c
e3301ee
 
 
 
5fbb9fa
 
 
 
 
e3301ee
 
 
 
 
 
 
5fbb9fa
e3301ee
 
 
 
 
 
 
5fbb9fa
e3301ee
 
 
 
 
 
 
 
5fbb9fa
 
 
 
 
 
 
e3301ee
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
tags:
- sentence-transformers
- sentence-similarity
- loss:OnlineContrastiveLoss
base_model: Alibaba-NLP/gte-modernbert-base
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_precision
- cosine_recall
- cosine_f1
- cosine_ap
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
  results:
  - task:
      type: my-binary-classification
      name: My Binary Classification
    dataset:
      name: Quora
      type: unknown
    metrics:
    - type: cosine_accuracy
      value:
      name: Cosine Accuracy
    - type: cosine_f1
      value:
      name: Cosine F1
    - type: cosine_precision
      value:
      name: Cosine Precision
    - type: cosine_recall
      value:
      name: Cosine Recall
    - type: cosine_ap
      value:
      name: Cosine Ap
---

# SentenceTransformer based on Alibaba-NLP/gte-modernbert-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the Quora csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity for the purpose of semantic caching.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision bc02f0a92d1b6dd82108036f6cb4b7b423fb7434 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - Quora csv
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v1")
# Run inference
sentences = [
    'Will the value of Indian rupee increase after the ban of 500 and 1000 rupee notes?',
    'What will be the implications of banning 500 and 1000 rupees currency notes on Indian economy?',
    "Are Danish Sait's prank calls fake?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)

```

#### Binary Classification


| Metric                    | Value     |
|:--------------------------|:----------|
| cosine_accuracy           |     |
| cosine_f1                 |     |
| cosine_precision          |    |
| cosine_recall             |     |
| **cosine_ap**             |  |


### Training Dataset

#### csv

* Dataset: csv
* Size:  training samples
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>

### Evaluation Dataset

#### csv

* Dataset: csv
* Size: evaluation samples
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{redisetal.,
    title = "",
    author = "",
    month = "",
    year = "",
    publisher = "",
    url = "",
}
```

<!--