Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- generate_example.py +91 -0
- llama3.2-1B-base.pth +3 -0
- llama3.2-1B-instruct.pth +3 -0
- llama3.2-3B-base.pth +3 -0
- llama3.2-3B-instruct.pth +3 -0
- model.py +336 -0
- tokenizer.model +3 -0
- tokenizer.py +90 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
generate_example.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
2 |
+
# Source for "Build a Large Language Model From Scratch"
|
3 |
+
# https://github.com/rasbt/LLMs-from-scratch/blob/main/ch05/07_gpt_to_llama/standalone-llama32.ipynb
|
4 |
+
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
import urllib.request
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from model import Llama3Model, generate, text_to_token_ids, token_ids_to_text
|
12 |
+
from tokenizer import Llama3Tokenizer, ChatFormat, clean_text
|
13 |
+
|
14 |
+
#######################################
|
15 |
+
# Model settings
|
16 |
+
|
17 |
+
MODEL_FILE = "llama3.2-1B-instruct.pth"
|
18 |
+
# MODEL_FILE = "llama3.2-1B-base.pth"
|
19 |
+
# MODEL_FILE = "llama3.2-3B-instruct.pth"
|
20 |
+
# MODEL_FILE = "llama3.2-3B-base.pth"
|
21 |
+
|
22 |
+
MODEL_CONTEXT_LENGTH = 8192 # Supports up to 131_072
|
23 |
+
|
24 |
+
# Text generation settings
|
25 |
+
if "instruct" in MODEL_FILE:
|
26 |
+
PROMPT = "What do llamas eat?"
|
27 |
+
else:
|
28 |
+
PROMPT = "Llamas eat"
|
29 |
+
|
30 |
+
MAX_NEW_TOKENS = 150
|
31 |
+
TEMPERATURE = 0.
|
32 |
+
TOP_K = 1
|
33 |
+
#######################################
|
34 |
+
|
35 |
+
url = f"https://huggingface.co/rasbt/llama-3.2-from-scratch/resolve/main/{MODEL_FILE}"
|
36 |
+
|
37 |
+
if not os.path.exists(MODEL_FILE):
|
38 |
+
urllib.request.urlretrieve(url, MODEL_FILE)
|
39 |
+
print(f"Downloaded to {MODEL_FILE}")
|
40 |
+
|
41 |
+
|
42 |
+
if "1B" in MODEL_FILE:
|
43 |
+
from model import LLAMA32_CONFIG_1B as LLAMA32_CONFIG
|
44 |
+
elif "3B" in MODEL_FILE:
|
45 |
+
from model import LLAMA32_CONFIG_3B as LLAMA32_CONFIG
|
46 |
+
else:
|
47 |
+
raise ValueError("Incorrect model file name")
|
48 |
+
|
49 |
+
LLAMA32_CONFIG["context_length"] = MODEL_CONTEXT_LENGTH
|
50 |
+
|
51 |
+
model = Llama3Model(LLAMA32_CONFIG)
|
52 |
+
model.load_state_dict(torch.load(MODEL_FILE, weights_only=True))
|
53 |
+
|
54 |
+
device = (
|
55 |
+
torch.device("cuda") if torch.cuda.is_available() else
|
56 |
+
torch.device("mps") if torch.backends.mps.is_available() else
|
57 |
+
torch.device("cpu")
|
58 |
+
)
|
59 |
+
model.to(device)
|
60 |
+
|
61 |
+
tokenizer = Llama3Tokenizer("tokenizer.model")
|
62 |
+
|
63 |
+
if "instruct" in MODEL_FILE:
|
64 |
+
tokenizer = ChatFormat(tokenizer)
|
65 |
+
|
66 |
+
torch.manual_seed(123)
|
67 |
+
|
68 |
+
start = time.time()
|
69 |
+
|
70 |
+
token_ids = generate(
|
71 |
+
model=model,
|
72 |
+
idx=text_to_token_ids(PROMPT, tokenizer).to(device),
|
73 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
74 |
+
context_size=LLAMA32_CONFIG["context_length"],
|
75 |
+
top_k=TOP_K,
|
76 |
+
temperature=TEMPERATURE
|
77 |
+
)
|
78 |
+
|
79 |
+
print(f"Time: {time.time() - start:.2f} sec")
|
80 |
+
|
81 |
+
if torch.cuda.is_available():
|
82 |
+
max_mem_bytes = torch.cuda.max_memory_allocated()
|
83 |
+
max_mem_gb = max_mem_bytes / (1024 ** 3)
|
84 |
+
print(f"Max memory allocated: {max_mem_gb:.2f} GB")
|
85 |
+
|
86 |
+
output_text = token_ids_to_text(token_ids, tokenizer)
|
87 |
+
|
88 |
+
if "instruct" in MODEL_FILE:
|
89 |
+
output_text = clean_text(output_text)
|
90 |
+
|
91 |
+
print("\n\nOutput text:\n\n", output_text)
|
llama3.2-1B-base.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af0de8aca49b5e6138c53a58bc72eb3a7dc6c37d9bceb9d0778b341cd12f1082
|
3 |
+
size 3064129762
|
llama3.2-1B-instruct.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a1a0ff1c6e4d1aff871e50ab75684c4704e0cacabe6adf4cdbb5da3d4fcc077
|
3 |
+
size 3064130434
|
llama3.2-3B-base.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a41b5e512faeec28da58f144b4bb1739756f16294f105dfc7ee54849645d4253
|
3 |
+
size 7280710838
|
llama3.2-3B-instruct.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:459af5c3c14d19f72a48ddeadd01e53c1a521b7b3df517a6c4f9187d2757df0a
|
3 |
+
size 7280711878
|
model.py
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
2 |
+
# Source for "Build a Large Language Model From Scratch"
|
3 |
+
# https://github.com/rasbt/LLMs-from-scratch/blob/main/ch05/07_gpt_to_llama/standalone-llama32.ipynb
|
4 |
+
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
|
10 |
+
LLAMA32_CONFIG_1B = {
|
11 |
+
"vocab_size": 128_256, # Vocabulary size
|
12 |
+
"context_length": 8192, # Maximum context length to use (reduced to save memory)
|
13 |
+
"orig_context_length": 131_072, # Context length that was used to train the model
|
14 |
+
"emb_dim": 2048, # Embedding dimension
|
15 |
+
"n_heads": 32, # Number of attention heads
|
16 |
+
"n_layers": 16, # Number of layers
|
17 |
+
"hidden_dim": 8192, # Size of the intermediate dimension in FeedForward
|
18 |
+
"n_kv_groups": 8, # Key-Value groups for grouped-query attention
|
19 |
+
"rope_base": 500_000.0, # The base in RoPE's "theta"
|
20 |
+
"dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage
|
21 |
+
"rope_freq": { # RoPE frequency scaling
|
22 |
+
"factor": 32.0,
|
23 |
+
"low_freq_factor": 1.0,
|
24 |
+
"high_freq_factor": 4.0,
|
25 |
+
"original_context_length": 8192,
|
26 |
+
}
|
27 |
+
}
|
28 |
+
|
29 |
+
LLAMA32_CONFIG_3B = {
|
30 |
+
"vocab_size": 128_256, # Vocabulary size
|
31 |
+
"context_length": 8192, # Maximum context length to use (reduced to save memory)
|
32 |
+
"orig_context_length": 131_072, # Context length that was used to train the model
|
33 |
+
"emb_dim": 3072, # Embedding dimension
|
34 |
+
"n_heads": 24, # Number of attention heads
|
35 |
+
"n_layers": 28, # Number of layers
|
36 |
+
"hidden_dim": 8192, # Size of the intermediate dimension in FeedForward
|
37 |
+
"n_kv_groups": 8, # Key-Value groups for grouped-query attention
|
38 |
+
"rope_base": 500_000.0, # The base in RoPE's "theta"
|
39 |
+
"dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage
|
40 |
+
"rope_freq": { # RoPE frequency scaling
|
41 |
+
"factor": 32.0,
|
42 |
+
"low_freq_factor": 1.0,
|
43 |
+
"high_freq_factor": 4.0,
|
44 |
+
"original_context_length": 8192,
|
45 |
+
}
|
46 |
+
}
|
47 |
+
|
48 |
+
|
49 |
+
class Llama3Model(nn.Module):
|
50 |
+
def __init__(self, cfg):
|
51 |
+
super().__init__()
|
52 |
+
|
53 |
+
# Main model parameters
|
54 |
+
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"])
|
55 |
+
|
56 |
+
self.trf_blocks = nn.ModuleList( # ModuleList since Sequential can only accept one input, and we need `x, mask, cos, sin`
|
57 |
+
[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]
|
58 |
+
)
|
59 |
+
|
60 |
+
self.final_norm = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
|
61 |
+
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
|
62 |
+
|
63 |
+
# Reusuable utilities
|
64 |
+
self.register_buffer("mask", torch.triu(torch.ones(cfg["context_length"], cfg["context_length"]), diagonal=1).bool())
|
65 |
+
|
66 |
+
if cfg["orig_context_length"] != cfg["context_length"]:
|
67 |
+
cfg["rope_base"] = rescale_theta(
|
68 |
+
cfg["rope_base"],
|
69 |
+
cfg["orig_context_length"],
|
70 |
+
cfg["context_length"]
|
71 |
+
)
|
72 |
+
cos, sin = compute_rope_params(
|
73 |
+
head_dim=cfg["emb_dim"] // cfg["n_heads"],
|
74 |
+
theta_base=cfg["rope_base"],
|
75 |
+
context_length=cfg["context_length"],
|
76 |
+
freq_config=cfg["rope_freq"]
|
77 |
+
)
|
78 |
+
self.register_buffer("cos", cos, persistent=False)
|
79 |
+
self.register_buffer("sin", sin, persistent=False)
|
80 |
+
self.cfg = cfg
|
81 |
+
|
82 |
+
def forward(self, in_idx):
|
83 |
+
# Forward pass
|
84 |
+
tok_embeds = self.tok_emb(in_idx)
|
85 |
+
x = tok_embeds
|
86 |
+
|
87 |
+
for block in self.trf_blocks:
|
88 |
+
x = block(x, self.mask, self.cos, self.sin)
|
89 |
+
x = self.final_norm(x)
|
90 |
+
logits = self.out_head(x.to(self.cfg["dtype"]))
|
91 |
+
return logits
|
92 |
+
|
93 |
+
|
94 |
+
class TransformerBlock(nn.Module):
|
95 |
+
def __init__(self, cfg):
|
96 |
+
super().__init__()
|
97 |
+
self.att = GroupedQueryAttention(
|
98 |
+
d_in=cfg["emb_dim"],
|
99 |
+
d_out=cfg["emb_dim"],
|
100 |
+
context_length=cfg["context_length"],
|
101 |
+
num_heads=cfg["n_heads"],
|
102 |
+
num_kv_groups=cfg["n_kv_groups"],
|
103 |
+
rope_base=cfg["rope_base"],
|
104 |
+
rope_config=cfg["rope_freq"],
|
105 |
+
dtype=cfg["dtype"]
|
106 |
+
)
|
107 |
+
self.ff = FeedForward(cfg)
|
108 |
+
self.norm1 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
|
109 |
+
self.norm2 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
|
110 |
+
|
111 |
+
def forward(self, x, mask, cos, sin):
|
112 |
+
# Shortcut connection for attention block
|
113 |
+
shortcut = x
|
114 |
+
x = self.norm1(x)
|
115 |
+
x = self.att(x, mask, cos, sin) # Shape [batch_size, num_tokens, emb_size]
|
116 |
+
x = x + shortcut # Add the original input back
|
117 |
+
|
118 |
+
# Shortcut connection for feed-forward block
|
119 |
+
shortcut = x
|
120 |
+
x = self.norm2(x)
|
121 |
+
x = self.ff(x)
|
122 |
+
x = x + shortcut # Add the original input back
|
123 |
+
|
124 |
+
return x
|
125 |
+
|
126 |
+
|
127 |
+
class FeedForward(nn.Module):
|
128 |
+
def __init__(self, cfg):
|
129 |
+
super().__init__()
|
130 |
+
self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
|
131 |
+
self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
|
132 |
+
self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False)
|
133 |
+
|
134 |
+
def forward(self, x):
|
135 |
+
x_fc1 = self.fc1(x)
|
136 |
+
x_fc2 = self.fc2(x)
|
137 |
+
x = nn.functional.silu(x_fc1) * x_fc2
|
138 |
+
return self.fc3(x)
|
139 |
+
|
140 |
+
|
141 |
+
class GroupedQueryAttention(nn.Module):
|
142 |
+
def __init__(
|
143 |
+
self, d_in, d_out, context_length, num_heads,
|
144 |
+
num_kv_groups,
|
145 |
+
rope_base=10_000,
|
146 |
+
rope_config=None,
|
147 |
+
dtype=None
|
148 |
+
):
|
149 |
+
super().__init__()
|
150 |
+
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
|
151 |
+
assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups"
|
152 |
+
|
153 |
+
self.d_out = d_out
|
154 |
+
self.num_heads = num_heads
|
155 |
+
self.head_dim = d_out // num_heads
|
156 |
+
|
157 |
+
self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
|
158 |
+
self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
|
159 |
+
self.num_kv_groups = num_kv_groups
|
160 |
+
self.group_size = num_heads // num_kv_groups
|
161 |
+
|
162 |
+
self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype)
|
163 |
+
self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype)
|
164 |
+
|
165 |
+
def forward(self, x, mask, cos, sin):
|
166 |
+
b, num_tokens, d_in = x.shape
|
167 |
+
|
168 |
+
queries = self.W_query(x) # Shape: (b, num_tokens, d_out)
|
169 |
+
keys = self.W_key(x) # Shape: (b, num_tokens, num_kv_groups * head_dim)
|
170 |
+
values = self.W_value(x) # Shape: (b, num_tokens, num_kv_groups * head_dim)
|
171 |
+
|
172 |
+
# Reshape queries, keys, and values
|
173 |
+
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
174 |
+
keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim)
|
175 |
+
values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim)
|
176 |
+
|
177 |
+
# Transpose keys, values, and queries
|
178 |
+
keys = keys.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim)
|
179 |
+
values = values.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim)
|
180 |
+
queries = queries.transpose(1, 2) # Shape: (b, num_query_groups, num_tokens, head_dim)
|
181 |
+
|
182 |
+
# Apply RoPE
|
183 |
+
keys = apply_rope(keys, cos, sin)
|
184 |
+
queries = apply_rope(queries, cos, sin)
|
185 |
+
|
186 |
+
# Expand keys and values to match the number of heads
|
187 |
+
# Shape: (b, num_heads, num_tokens, head_dim)
|
188 |
+
keys = keys.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim)
|
189 |
+
values = values.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim)
|
190 |
+
# For example, before repeat_interleave along dim=1 (query groups):
|
191 |
+
# [K1, K2]
|
192 |
+
# After repeat_interleave (each query group is repeated group_size times):
|
193 |
+
# [K1, K1, K2, K2]
|
194 |
+
# If we used regular repeat instead of repeat_interleave, we'd get:
|
195 |
+
# [K1, K2, K1, K2]
|
196 |
+
|
197 |
+
# Compute scaled dot-product attention (aka self-attention) with a causal mask
|
198 |
+
# Shape: (b, num_heads, num_tokens, num_tokens)
|
199 |
+
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
|
200 |
+
|
201 |
+
# Use the mask to fill attention scores
|
202 |
+
attn_scores = attn_scores.masked_fill(mask[:num_tokens, :num_tokens], -torch.inf)
|
203 |
+
|
204 |
+
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
|
205 |
+
assert keys.shape[-1] == self.head_dim
|
206 |
+
|
207 |
+
# Shape: (b, num_tokens, num_heads, head_dim)
|
208 |
+
context_vec = (attn_weights @ values).transpose(1, 2)
|
209 |
+
|
210 |
+
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
211 |
+
context_vec = context_vec.reshape(b, num_tokens, self.d_out)
|
212 |
+
context_vec = self.out_proj(context_vec) # optional projection
|
213 |
+
|
214 |
+
return context_vec
|
215 |
+
|
216 |
+
|
217 |
+
def compute_rope_params(head_dim, theta_base=10_000, context_length=4096, freq_config=None, dtype=torch.float32):
|
218 |
+
assert head_dim % 2 == 0, "Embedding dimension must be even"
|
219 |
+
|
220 |
+
# Compute the inverse frequencies
|
221 |
+
inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2, dtype=dtype)[: (head_dim // 2)].float() / head_dim))
|
222 |
+
|
223 |
+
# Frequency adjustments
|
224 |
+
if freq_config is not None:
|
225 |
+
low_freq_wavelen = freq_config["original_context_length"] / freq_config["low_freq_factor"]
|
226 |
+
high_freq_wavelen = freq_config["original_context_length"] / freq_config["high_freq_factor"]
|
227 |
+
|
228 |
+
wavelen = 2 * torch.pi / inv_freq
|
229 |
+
|
230 |
+
inv_freq_llama = torch.where(
|
231 |
+
wavelen > low_freq_wavelen, inv_freq / freq_config["factor"], inv_freq
|
232 |
+
)
|
233 |
+
|
234 |
+
smooth_factor = (freq_config["original_context_length"] / wavelen - freq_config["low_freq_factor"]) / (
|
235 |
+
freq_config["high_freq_factor"] - freq_config["low_freq_factor"]
|
236 |
+
)
|
237 |
+
|
238 |
+
smoothed_inv_freq = (
|
239 |
+
(1 - smooth_factor) * (inv_freq / freq_config["factor"]) + smooth_factor * inv_freq
|
240 |
+
)
|
241 |
+
|
242 |
+
is_medium_freq = (wavelen <= low_freq_wavelen) & (wavelen >= high_freq_wavelen)
|
243 |
+
inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
|
244 |
+
inv_freq = inv_freq_llama
|
245 |
+
|
246 |
+
# Generate position indices
|
247 |
+
positions = torch.arange(context_length, dtype=dtype)
|
248 |
+
|
249 |
+
# Compute the angles
|
250 |
+
angles = positions[:, None] * inv_freq[None, :] # Shape: (context_length, head_dim // 2)
|
251 |
+
|
252 |
+
# Expand angles to match the head_dim
|
253 |
+
angles = torch.cat([angles, angles], dim=1) # Shape: (context_length, head_dim)
|
254 |
+
|
255 |
+
# Precompute sine and cosine
|
256 |
+
cos = torch.cos(angles)
|
257 |
+
sin = torch.sin(angles)
|
258 |
+
|
259 |
+
return cos, sin
|
260 |
+
|
261 |
+
|
262 |
+
def apply_rope(x, cos, sin):
|
263 |
+
# x: (batch_size, num_heads, seq_len, head_dim)
|
264 |
+
batch_size, num_heads, seq_len, head_dim = x.shape
|
265 |
+
assert head_dim % 2 == 0, "Head dimension must be even"
|
266 |
+
|
267 |
+
# Split x into first half and second half
|
268 |
+
x1 = x[..., : head_dim // 2] # First half
|
269 |
+
x2 = x[..., head_dim // 2:] # Second half
|
270 |
+
|
271 |
+
# Adjust sin and cos shapes
|
272 |
+
cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0) # Shape: (1, 1, seq_len, head_dim)
|
273 |
+
sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0)
|
274 |
+
|
275 |
+
# Apply the rotary transformation
|
276 |
+
rotated = torch.cat((-x2, x1), dim=-1)
|
277 |
+
x_rotated = (x * cos) + (rotated * sin)
|
278 |
+
|
279 |
+
# It's ok to use lower-precision after applying cos and sin rotation
|
280 |
+
return x_rotated.to(dtype=x.dtype)
|
281 |
+
|
282 |
+
|
283 |
+
def rescale_theta(theta_old, context_length_old, context_length_new):
|
284 |
+
scaling_factor = context_length_new / context_length_old
|
285 |
+
theta_new = theta_old * scaling_factor
|
286 |
+
return theta_new
|
287 |
+
|
288 |
+
|
289 |
+
def text_to_token_ids(text, tokenizer):
|
290 |
+
encoded = tokenizer.encode(text)
|
291 |
+
encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
|
292 |
+
return encoded_tensor
|
293 |
+
|
294 |
+
|
295 |
+
def token_ids_to_text(token_ids, tokenizer):
|
296 |
+
flat = token_ids.squeeze(0) # remove batch dimension
|
297 |
+
return tokenizer.decode(flat.tolist())
|
298 |
+
|
299 |
+
|
300 |
+
def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):
|
301 |
+
|
302 |
+
# For-loop is the same as before: Get logits, and only focus on last time step
|
303 |
+
for _ in range(max_new_tokens):
|
304 |
+
idx_cond = idx[:, -context_size:]
|
305 |
+
with torch.no_grad():
|
306 |
+
logits = model(idx_cond)
|
307 |
+
logits = logits[:, -1, :]
|
308 |
+
|
309 |
+
# New: Filter logits with top_k sampling
|
310 |
+
if top_k is not None:
|
311 |
+
# Keep only top_k values
|
312 |
+
top_logits, _ = torch.topk(logits, top_k)
|
313 |
+
min_val = top_logits[:, -1]
|
314 |
+
logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)
|
315 |
+
|
316 |
+
# New: Apply temperature scaling
|
317 |
+
if temperature > 0.0:
|
318 |
+
logits = logits / temperature
|
319 |
+
|
320 |
+
# Apply softmax to get probabilities
|
321 |
+
probs = torch.softmax(logits, dim=-1) # (batch_size, context_len)
|
322 |
+
|
323 |
+
# Sample from the distribution
|
324 |
+
idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1)
|
325 |
+
|
326 |
+
# Otherwise same as before: get idx of the vocab entry with the highest logits value
|
327 |
+
else:
|
328 |
+
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1)
|
329 |
+
|
330 |
+
if idx_next == eos_id: # Stop generating early if end-of-sequence token is encountered and eos_id is specified
|
331 |
+
break
|
332 |
+
|
333 |
+
# Same as before: append sampled index to the running sequence
|
334 |
+
idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1)
|
335 |
+
|
336 |
+
return idx
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82e9d31979e92ab929cd544440f129d9ecd797b69e327f80f17e1c50d5551b55
|
3 |
+
size 2183982
|
tokenizer.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
2 |
+
# Source for "Build a Large Language Model From Scratch"
|
3 |
+
# https://github.com/rasbt/LLMs-from-scratch/blob/main/ch05/07_gpt_to_llama/standalone-llama32.ipynb
|
4 |
+
|
5 |
+
|
6 |
+
import os
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
import tiktoken
|
10 |
+
from tiktoken.load import load_tiktoken_bpe
|
11 |
+
|
12 |
+
|
13 |
+
class Tokenizer:
|
14 |
+
def __init__(self, model_path):
|
15 |
+
assert os.path.isfile(model_path), f"Model file {model_path} not found"
|
16 |
+
mergeable_ranks = load_tiktoken_bpe(model_path)
|
17 |
+
|
18 |
+
self.special_tokens = {
|
19 |
+
"<|begin_of_text|>": 128000,
|
20 |
+
"<|end_of_text|>": 128001,
|
21 |
+
"<|start_header_id|>": 128006,
|
22 |
+
"<|end_header_id|>": 128007,
|
23 |
+
"<|eot_id|>": 128009,
|
24 |
+
}
|
25 |
+
self.special_tokens.update({
|
26 |
+
f"<|reserved_{i}|>": 128002 + i for i in range(256) if (128002 + i) not in self.special_tokens.values()
|
27 |
+
})
|
28 |
+
|
29 |
+
self.model = tiktoken.Encoding(
|
30 |
+
name=Path(model_path).name,
|
31 |
+
pat_str=r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+",
|
32 |
+
mergeable_ranks=mergeable_ranks,
|
33 |
+
special_tokens=self.special_tokens
|
34 |
+
)
|
35 |
+
|
36 |
+
def encode(self, text, bos=False, eos=False, allowed_special=set(), disallowed_special=()):
|
37 |
+
if bos:
|
38 |
+
tokens = [self.special_tokens["<|begin_of_text|>"]]
|
39 |
+
else:
|
40 |
+
tokens = []
|
41 |
+
|
42 |
+
tokens += self.model.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special)
|
43 |
+
|
44 |
+
if eos:
|
45 |
+
tokens.append(self.special_tokens["<|end_of_text|>"])
|
46 |
+
return tokens
|
47 |
+
|
48 |
+
def decode(self, tokens):
|
49 |
+
return self.model.decode(tokens)
|
50 |
+
|
51 |
+
|
52 |
+
class ChatFormat:
|
53 |
+
def __init__(self, tokenizer):
|
54 |
+
self.tokenizer = tokenizer
|
55 |
+
|
56 |
+
def encode_header(self, message):
|
57 |
+
tokens = []
|
58 |
+
tokens.append(self.tokenizer.special_tokens["<|start_header_id|>"])
|
59 |
+
tokens.extend(self.tokenizer.encode(message["role"], bos=False, eos=False))
|
60 |
+
tokens.append(self.tokenizer.special_tokens["<|end_header_id|>"])
|
61 |
+
tokens.extend(self.tokenizer.encode("\n\n", bos=False, eos=False))
|
62 |
+
return tokens
|
63 |
+
|
64 |
+
def encode(self, text):
|
65 |
+
message = {
|
66 |
+
"role": "user",
|
67 |
+
"content": text
|
68 |
+
}
|
69 |
+
|
70 |
+
tokens = self.encode_header(message)
|
71 |
+
tokens.extend(
|
72 |
+
self.tokenizer.encode(message["content"].strip(), bos=False, eos=False)
|
73 |
+
)
|
74 |
+
tokens.append(self.tokenizer.special_tokens["<|eot_id|>"])
|
75 |
+
return tokens
|
76 |
+
|
77 |
+
def decode(self, token_ids):
|
78 |
+
return self.tokenizer.decode(token_ids)
|
79 |
+
|
80 |
+
|
81 |
+
def clean_text(text, header_end="assistant<|end_header_id|>\n\n"):
|
82 |
+
# Find the index of the first occurrence of "<|end_header_id|>"
|
83 |
+
index = text.find(header_end)
|
84 |
+
|
85 |
+
if index != -1:
|
86 |
+
# Return the substring starting after "<|end_header_id|>"
|
87 |
+
return text[index + len(header_end):].strip() # Strip removes leading/trailing whitespace
|
88 |
+
else:
|
89 |
+
# If the token is not found, return the original text
|
90 |
+
return text
|