pszemraj commited on
Commit
432ace0
·
verified ·
1 Parent(s): 02b31a8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -20
README.md CHANGED
@@ -16,6 +16,15 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  # bart-large-summary-map-reduce-1024
18
 
 
 
 
 
 
 
 
 
 
19
  This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the pszemraj/summary-map-reduce dataset.
20
  It achieves the following results on the evaluation set:
21
  - Loss: 0.7894
@@ -75,23 +84,3 @@ The following hyperparameters were used during training:
75
  - lr_scheduler_type: cosine
76
  - lr_scheduler_warmup_ratio: 0.05
77
  - num_epochs: 3.0
78
-
79
- ### Training results
80
-
81
- | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
82
- |:-------------:|:------:|:----:|:---------------:|:-----------------:|
83
- | 1.0645 | 0.3834 | 100 | 0.9265 | 1844404 |
84
- | 1.0769 | 0.7668 | 200 | 0.8621 | 3640408 |
85
- | 0.849 | 1.1503 | 300 | 0.8502 | 5504644 |
86
- | 0.8612 | 1.5337 | 400 | 0.8289 | 7316212 |
87
- | 0.7934 | 1.9171 | 500 | 0.8072 | 9167936 |
88
- | 0.6701 | 2.3005 | 600 | 0.8051 | 10969348 |
89
- | 0.6579 | 2.6839 | 700 | 0.7903 | 12814620 |
90
-
91
-
92
- ### Framework versions
93
-
94
- - Transformers 4.46.0.dev0
95
- - Pytorch 2.5.1+cu124
96
- - Datasets 3.1.0
97
- - Tokenizers 0.20.2
 
16
 
17
  # bart-large-summary-map-reduce-1024
18
 
19
+ A text2text model to "map-reduce" summaries of a chunked long document into one.
20
+
21
+ An explanation of this model's role:
22
+
23
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/Sv7_-MM901qNkyHuBdTC_.png)
24
+
25
+ <small> modified flowchart from Google's blog [here](https://cloud.google.com/blog/products/ai-machine-learning/long-document-summarization-with-workflows-and-gemini-models) </small>
26
+
27
+ ## Details
28
  This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the pszemraj/summary-map-reduce dataset.
29
  It achieves the following results on the evaluation set:
30
  - Loss: 0.7894
 
84
  - lr_scheduler_type: cosine
85
  - lr_scheduler_warmup_ratio: 0.05
86
  - num_epochs: 3.0