Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,11 @@
|
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
- prithivMLmods/WeatherNet-05
|
|
|
5 |
---
|
|
|
|
|
|
|
6 |
|
7 |
```py
|
8 |
Classification Report:
|
@@ -20,3 +24,90 @@ cloudy/overcast 0.8493 0.8762 0.8625 6702
|
|
20 |
```
|
21 |
|
22 |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
- prithivMLmods/WeatherNet-05
|
5 |
+
library_name: transformers
|
6 |
---
|
7 |
+
# Weather-Image-Classification
|
8 |
+
|
9 |
+
> Weather-Image-Classification is a vision-language model fine-tuned from google/siglip2-base-patch16-224 for multi-class image classification. It is trained to recognize weather conditions from images using the SiglipForImageClassification architecture.
|
10 |
|
11 |
```py
|
12 |
Classification Report:
|
|
|
24 |
```
|
25 |
|
26 |

|
27 |
+
|
28 |
+
---
|
29 |
+
|
30 |
+
## Label Space: 5 Classes
|
31 |
+
|
32 |
+
The model classifies an image into one of the following weather categories:
|
33 |
+
|
34 |
+
```json
|
35 |
+
"id2label": {
|
36 |
+
"0": "cloudy/overcast",
|
37 |
+
"1": "foggy/hazy",
|
38 |
+
"2": "rain/storm",
|
39 |
+
"3": "snow/frosty",
|
40 |
+
"4": "sun/clear"
|
41 |
+
}
|
42 |
+
```
|
43 |
+
|
44 |
+
---
|
45 |
+
|
46 |
+
## Install Dependencies
|
47 |
+
|
48 |
+
```bash
|
49 |
+
pip install -q transformers torch pillow gradio
|
50 |
+
```
|
51 |
+
|
52 |
+
---
|
53 |
+
|
54 |
+
## Inference Code
|
55 |
+
|
56 |
+
```python
|
57 |
+
import gradio as gr
|
58 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
59 |
+
from PIL import Image
|
60 |
+
import torch
|
61 |
+
|
62 |
+
# Load model and processor
|
63 |
+
model_name = "prithivMLmods/Weather-Image-Classification" # Replace with actual path
|
64 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
65 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
66 |
+
|
67 |
+
# Label mapping
|
68 |
+
id2label = {
|
69 |
+
"0": "cloudy/overcast",
|
70 |
+
"1": "foggy/hazy",
|
71 |
+
"2": "rain/storm",
|
72 |
+
"3": "snow/frosty",
|
73 |
+
"4": "sun/clear"
|
74 |
+
}
|
75 |
+
|
76 |
+
def classify_weather(image):
|
77 |
+
image = Image.fromarray(image).convert("RGB")
|
78 |
+
inputs = processor(images=image, return_tensors="pt")
|
79 |
+
|
80 |
+
with torch.no_grad():
|
81 |
+
outputs = model(**inputs)
|
82 |
+
logits = outputs.logits
|
83 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
84 |
+
|
85 |
+
prediction = {
|
86 |
+
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
|
87 |
+
}
|
88 |
+
|
89 |
+
return prediction
|
90 |
+
|
91 |
+
# Gradio Interface
|
92 |
+
iface = gr.Interface(
|
93 |
+
fn=classify_weather,
|
94 |
+
inputs=gr.Image(type="numpy"),
|
95 |
+
outputs=gr.Label(num_top_classes=5, label="Weather Condition"),
|
96 |
+
title="Weather-Image-Classification",
|
97 |
+
description="Upload an image to identify the weather condition (sun, rain, snow, fog, or clouds)."
|
98 |
+
)
|
99 |
+
|
100 |
+
if __name__ == "__main__":
|
101 |
+
iface.launch()
|
102 |
+
```
|
103 |
+
|
104 |
+
---
|
105 |
+
|
106 |
+
## Intended Use
|
107 |
+
|
108 |
+
Weather-Image-Classification is useful for:
|
109 |
+
|
110 |
+
* Automated weather tagging for photography and media.
|
111 |
+
* Enhancing dataset labeling in weather-related research.
|
112 |
+
* Supporting smart surveillance and traffic systems.
|
113 |
+
* Improving scene understanding in autonomous vehicles.
|