Image Classification
Transformers
Safetensors
English
siglip
Multisource-121-DomainNet
prithivMLmods commited on
Commit
92a47ad
·
verified ·
1 Parent(s): b566328

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +222 -1
README.md CHANGED
@@ -4,6 +4,10 @@ datasets:
4
  - TNILab/DomainNet_FL
5
  ---
6
 
 
 
 
 
7
  ![- visual selection(2).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/yfp_IYXqDyZfgZsJQ-7Bo.png)
8
 
9
  ```py
@@ -135,4 +139,221 @@ The_Great_Wall_of_China 0.8893 0.8333 0.8604 270
135
  accuracy 0.7995 32670
136
  macro avg 0.8052 0.7995 0.8006 32670
137
  weighted avg 0.8052 0.7995 0.8006 32670
138
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  - TNILab/DomainNet_FL
5
  ---
6
 
7
+ # **Multisource-121-DomainNet**
8
+
9
+ > **Multisource-121-DomainNet** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images into 121 domain categories using the **SiglipForImageClassification** architecture.
10
+
11
  ![- visual selection(2).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/yfp_IYXqDyZfgZsJQ-7Bo.png)
12
 
13
  ```py
 
139
  accuracy 0.7995 32670
140
  macro avg 0.8052 0.7995 0.8006 32670
141
  weighted avg 0.8052 0.7995 0.8006 32670
142
+ ```
143
+
144
+
145
+
146
+
147
+ The model categorizes images into the following 121 classes:
148
+ - **Class 0:** "barn"
149
+ - **Class 1:** "baseball_bat"
150
+ - **Class 2:** "basket"
151
+ - **Class 3:** "beach"
152
+ - **Class 4:** "bear"
153
+ - **Class 5:** "beard"
154
+ - **Class 6:** "bee"
155
+ - **Class 7:** "bird"
156
+ - **Class 8:** "blueberry"
157
+ - **Class 9:** "bowtie"
158
+ - **Class 10:** "bracelet"
159
+ - **Class 11:** "brain"
160
+ - **Class 12:** "bread"
161
+ - **Class 13:** "broccoli"
162
+ - **Class 14:** "bus"
163
+ - **Class 15:** "butterfly"
164
+ - **Class 16:** "circle"
165
+ - **Class 17:** "cloud"
166
+ - **Class 18:** "cruise_ship"
167
+ - **Class 19:** "dolphin"
168
+ - **Class 20:** "dumbbell"
169
+ - **Class 21:** "elephant"
170
+ - **Class 22:** "eye"
171
+ - **Class 23:** "eyeglasses"
172
+ - **Class 24:** "feather"
173
+ - **Class 25:** "fish"
174
+ - **Class 26:** "flower"
175
+ - **Class 27:** "foot"
176
+ - **Class 28:** "frog"
177
+ - **Class 29:** "giraffe"
178
+ - **Class 30:** "goatee"
179
+ - **Class 31:** "golf_club"
180
+ - **Class 32:** "grapes"
181
+ - **Class 33:** "grass"
182
+ - **Class 34:** "guitar"
183
+ - **Class 35:** "hamburger"
184
+ - **Class 36:** "hand"
185
+ - **Class 37:** "hat"
186
+ - **Class 38:** "headphones"
187
+ - **Class 39:** "helicopter"
188
+ - **Class 40:** "hexagon"
189
+ - **Class 41:** "hockey_stick"
190
+ - **Class 42:** "horse"
191
+ - **Class 43:** "hourglass"
192
+ - **Class 44:** "house"
193
+ - **Class 45:** "ice_cream"
194
+ - **Class 46:** "jacket"
195
+ - **Class 47:** "ladder"
196
+ - **Class 48:** "leg"
197
+ - **Class 49:** "lipstick"
198
+ - **Class 50:** "megaphone"
199
+ - **Class 51:** "monkey"
200
+ - **Class 52:** "moon"
201
+ - **Class 53:** "mushroom"
202
+ - **Class 54:** "necklace"
203
+ - **Class 55:** "owl"
204
+ - **Class 56:** "panda"
205
+ - **Class 57:** "pear"
206
+ - **Class 58:** "peas"
207
+ - **Class 59:** "penguin"
208
+ - **Class 60:** "pig"
209
+ - **Class 61:** "pillow"
210
+ - **Class 62:** "pineapple"
211
+ - **Class 63:** "pizza"
212
+ - **Class 64:** "pool"
213
+ - **Class 65:** "popsicle"
214
+ - **Class 66:** "rabbit"
215
+ - **Class 67:** "rhinoceros"
216
+ - **Class 68:** "rifle"
217
+ - **Class 69:** "river"
218
+ - **Class 70:** "sailboat"
219
+ - **Class 71:** "sandwich"
220
+ - **Class 72:** "sea_turtle"
221
+ - **Class 73:** "shark"
222
+ - **Class 74:** "shoe"
223
+ - **Class 75:** "skyscraper"
224
+ - **Class 76:** "snorkel"
225
+ - **Class 77:** "snowman"
226
+ - **Class 78:** "soccer_ball"
227
+ - **Class 79:** "speedboat"
228
+ - **Class 80:** "spider"
229
+ - **Class 81:** "spoon"
230
+ - **Class 82:** "square"
231
+ - **Class 83:** "squirrel"
232
+ - **Class 84:** "stethoscope"
233
+ - **Class 85:** "strawberry"
234
+ - **Class 86:** "streetlight"
235
+ - **Class 87:** "submarine"
236
+ - **Class 88:** "suitcase"
237
+ - **Class 89:** "sun"
238
+ - **Class 90:** "sweater"
239
+ - **Class 91:** "sword"
240
+ - **Class 92:** "table"
241
+ - **Class 93:** "teapot"
242
+ - **Class 94:** "teddy-bear"
243
+ - **Class 95:** "telephone"
244
+ - **Class 96:** "tent"
245
+ - **Class 97:** "The_Eiffel_Tower"
246
+ - **Class 98:** "The_Great_Wall_of_China"
247
+ - **Class 99:** "The_Mona_Lisa"
248
+ - **Class 100:** "tiger"
249
+ - **Class 101:** "toaster"
250
+ - **Class 102:** "tooth"
251
+ - **Class 103:** "tornado"
252
+ - **Class 104:** "tractor"
253
+ - **Class 105:** "train"
254
+ - **Class 106:** "tree"
255
+ - **Class 107:** "triangle"
256
+ - **Class 108:** "trombone"
257
+ - **Class 109:** "truck"
258
+ - **Class 110:** "trumpet"
259
+ - **Class 111:** "umbrella"
260
+ - **Class 112:** "vase"
261
+ - **Class 113:** "violin"
262
+ - **Class 114:** "watermelon"
263
+ - **Class 115:** "whale"
264
+ - **Class 116:** "windmill"
265
+ - **Class 117:** "wine_glass"
266
+ - **Class 118:** "yoga"
267
+ - **Class 119:** "zebra"
268
+ - **Class 120:** "zigzag"
269
+
270
+ # **Run with Transformers🤗**
271
+
272
+ ```python
273
+ !pip install -q transformers torch pillow gradio
274
+ ```
275
+
276
+ ```python
277
+ import gradio as gr
278
+ from transformers import AutoImageProcessor, SiglipForImageClassification
279
+ from transformers.image_utils import load_image
280
+ from PIL import Image
281
+ import torch
282
+
283
+ # Load model and processor
284
+ model_name = "prithivMLmods/Multisource-121-DomainNet"
285
+ model = SiglipForImageClassification.from_pretrained(model_name)
286
+ processor = AutoImageProcessor.from_pretrained(model_name)
287
+
288
+ def multisource_classification(image):
289
+ """Predicts the domain category for an input image."""
290
+ # Convert the input numpy array to a PIL Image and ensure it is in RGB format
291
+ image = Image.fromarray(image).convert("RGB")
292
+
293
+ # Process the image and convert it to model inputs
294
+ inputs = processor(images=image, return_tensors="pt")
295
+
296
+ # Get model predictions without gradient calculations
297
+ with torch.no_grad():
298
+ outputs = model(**inputs)
299
+ logits = outputs.logits
300
+ # Convert logits to probabilities using softmax
301
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
302
+
303
+ # Mapping from class indices to domain labels
304
+ labels = {
305
+ "0": "barn", "1": "baseball_bat", "2": "basket", "3": "beach", "4": "bear",
306
+ "5": "beard", "6": "bee", "7": "bird", "8": "blueberry", "9": "bowtie",
307
+ "10": "bracelet", "11": "brain", "12": "bread", "13": "broccoli", "14": "bus",
308
+ "15": "butterfly", "16": "circle", "17": "cloud", "18": "cruise_ship", "19": "dolphin",
309
+ "20": "dumbbell", "21": "elephant", "22": "eye", "23": "eyeglasses", "24": "feather",
310
+ "25": "fish", "26": "flower", "27": "foot", "28": "frog", "29": "giraffe",
311
+ "30": "goatee", "31": "golf_club", "32": "grapes", "33": "grass", "34": "guitar",
312
+ "35": "hamburger", "36": "hand", "37": "hat", "38": "headphones", "39": "helicopter",
313
+ "40": "hexagon", "41": "hockey_stick", "42": "horse", "43": "hourglass", "44": "house",
314
+ "45": "ice_cream", "46": "jacket", "47": "ladder", "48": "leg", "49": "lipstick",
315
+ "50": "megaphone", "51": "monkey", "52": "moon", "53": "mushroom", "54": "necklace",
316
+ "55": "owl", "56": "panda", "57": "pear", "58": "peas", "59": "penguin",
317
+ "60": "pig", "61": "pillow", "62": "pineapple", "63": "pizza", "64": "pool",
318
+ "65": "popsicle", "66": "rabbit", "67": "rhinoceros", "68": "rifle", "69": "river",
319
+ "70": "sailboat", "71": "sandwich", "72": "sea_turtle", "73": "shark", "74": "shoe",
320
+ "75": "skyscraper", "76": "snorkel", "77": "snowman", "78": "soccer_ball", "79": "speedboat",
321
+ "80": "spider", "81": "spoon", "82": "square", "83": "squirrel", "84": "stethoscope",
322
+ "85": "strawberry", "86": "streetlight", "87": "submarine", "88": "suitcase", "89": "sun",
323
+ "90": "sweater", "91": "sword", "92": "table", "93": "teapot", "94": "teddy-bear",
324
+ "95": "telephone", "96": "tent", "97": "The_Eiffel_Tower", "98": "The_Great_Wall_of_China",
325
+ "99": "The_Mona_Lisa", "100": "tiger", "101": "toaster", "102": "tooth", "103": "tornado",
326
+ "104": "tractor", "105": "train", "106": "tree", "107": "triangle", "108": "trombone",
327
+ "109": "truck", "110": "trumpet", "111": "umbrella", "112": "vase", "113": "violin",
328
+ "114": "watermelon", "115": "whale", "116": "windmill", "117": "wine_glass", "118": "yoga",
329
+ "119": "zebra", "120": "zigzag"
330
+ }
331
+
332
+ # Create a dictionary mapping each label to its corresponding probability (rounded)
333
+ predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
334
+ return predictions
335
+
336
+ # Create Gradio interface
337
+ iface = gr.Interface(
338
+ fn=multisource_classification,
339
+ inputs=gr.Image(type="numpy"),
340
+ outputs=gr.Label(label="Prediction Scores"),
341
+ title="Multisource-121-DomainNet Classification",
342
+ description="Upload an image to classify it into one of 121 domain categories."
343
+ )
344
+
345
+ # Launch the app
346
+ if __name__ == "__main__":
347
+ iface.launch()
348
+ ```
349
+
350
+ ---
351
+
352
+ # **Intended Use:**
353
+
354
+ The **Multisource-121-DomainNet** model is designed for multi-source image classification. It can categorize images into a diverse set of 121 domains, covering various objects, scenes, and landmarks. Potential use cases include:
355
+
356
+ - **Cross-Domain Image Analysis:** Enabling robust classification across a wide range of visual domains.
357
+ - **Multimedia Retrieval:** Assisting in content organization and retrieval in multimedia databases.
358
+ - **Computer Vision Research:** Serving as a benchmark for evaluating domain adaptation and transfer learning techniques.
359
+ - **Interactive Applications:** Enhancing user interfaces with diverse, real-time image recognition capabilities.