Update README.md
Browse files
README.md
CHANGED
@@ -3,7 +3,20 @@ license: apache-2.0
|
|
3 |
datasets:
|
4 |
- prithivMLmods/IndoorOutdoorNet-20K
|
5 |
library_name: transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
---
|
|
|
|
|
|
|
7 |
|
8 |
```py
|
9 |
Classification Report:
|
@@ -17,4 +30,78 @@ Classification Report:
|
|
17 |
weighted avg 0.9610 0.9609 0.9609 19998
|
18 |
```
|
19 |
|
20 |
-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
datasets:
|
4 |
- prithivMLmods/IndoorOutdoorNet-20K
|
5 |
library_name: transformers
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
base_model:
|
9 |
+
- google/siglip2-base-patch16-224
|
10 |
+
pipeline_tag: image-classification
|
11 |
+
tags:
|
12 |
+
- Indoor
|
13 |
+
- Outdoor
|
14 |
+
- Classification
|
15 |
+
- SigLIP2
|
16 |
---
|
17 |
+
# **IndoorOutdoorNet**
|
18 |
+
|
19 |
+
> **IndoorOutdoorNet** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images as either **Indoor** or **Outdoor** using the **SiglipForImageClassification** architecture.
|
20 |
|
21 |
```py
|
22 |
Classification Report:
|
|
|
30 |
weighted avg 0.9610 0.9609 0.9609 19998
|
31 |
```
|
32 |
|
33 |
+

|
34 |
+
|
35 |
+
|
36 |
+
---
|
37 |
+
|
38 |
+
The model categorizes images into 2 environment-related classes:
|
39 |
+
|
40 |
+
```
|
41 |
+
Class 0: "Indoor"
|
42 |
+
Class 1: "Outdoor"
|
43 |
+
```
|
44 |
+
|
45 |
+
---
|
46 |
+
|
47 |
+
## **Install dependencies**
|
48 |
+
|
49 |
+
```python
|
50 |
+
!pip install -q transformers torch pillow gradio
|
51 |
+
```
|
52 |
+
|
53 |
+
---
|
54 |
+
|
55 |
+
## **Inference Code**
|
56 |
+
|
57 |
+
```python
|
58 |
+
import gradio as gr
|
59 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
60 |
+
from PIL import Image
|
61 |
+
import torch
|
62 |
+
|
63 |
+
# Load model and processor
|
64 |
+
model_name = "prithivMLmods/IndoorOutdoorNet" # Updated model name
|
65 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
66 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
67 |
+
|
68 |
+
def classify_environment_image(image):
|
69 |
+
"""Predicts whether an image is Indoor or Outdoor."""
|
70 |
+
image = Image.fromarray(image).convert("RGB")
|
71 |
+
inputs = processor(images=image, return_tensors="pt")
|
72 |
+
|
73 |
+
with torch.no_grad():
|
74 |
+
outputs = model(**inputs)
|
75 |
+
logits = outputs.logits
|
76 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
77 |
+
|
78 |
+
labels = {
|
79 |
+
"0": "Indoor", "1": "Outdoor"
|
80 |
+
}
|
81 |
+
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
82 |
+
|
83 |
+
return predictions
|
84 |
+
|
85 |
+
# Create Gradio interface
|
86 |
+
iface = gr.Interface(
|
87 |
+
fn=classify_environment_image,
|
88 |
+
inputs=gr.Image(type="numpy"),
|
89 |
+
outputs=gr.Label(label="Prediction Scores"),
|
90 |
+
title="IndoorOutdoorNet",
|
91 |
+
description="Upload an image to classify it as Indoor or Outdoor."
|
92 |
+
)
|
93 |
+
|
94 |
+
if __name__ == "__main__":
|
95 |
+
iface.launch()
|
96 |
+
```
|
97 |
+
|
98 |
+
---
|
99 |
+
|
100 |
+
## **Intended Use:**
|
101 |
+
|
102 |
+
The **IndoorOutdoorNet** model is designed to classify images into indoor or outdoor environments. Potential use cases include:
|
103 |
+
|
104 |
+
- **Smart Cameras:** Detect indoor/outdoor context to adjust settings.
|
105 |
+
- **Dataset Curation:** Automatically filter image datasets by setting.
|
106 |
+
- **Robotics & Drones:** Environment-aware navigation logic.
|
107 |
+
- **Content Filtering:** Moderate or tag environment context in image platforms.
|