plamo-embedding-1b / modeling_plamo.py
kaitos255's picture
initial commit
e29924d
import enum
from typing import Any, List, NamedTuple, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import functional as F
from transformers import AutoTokenizer, PretrainedConfig, PreTrainedModel
from transformers.modeling_attn_mask_utils import (
_prepare_4d_causal_attention_mask,
_prepare_4d_causal_attention_mask_for_sdpa,
)
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.tokenization_utils_base import BatchEncoding
def _swiglu(h: torch.Tensor) -> torch.Tensor:
h0, h1 = h.chunk(2, dim=-1)
return torch.nn.functional.silu(h0) * h1
class PlamoAttentionCache:
def __init__(self, key: torch.Tensor, value: torch.Tensor) -> None:
B, nh, L, c = key.shape
assert len(value.shape) == 4
assert value.shape[0] == B
assert value.shape[2] == L
self.key = key
self.value = value
def _validate(self, cache: torch.Tensor, new_tensor: torch.Tensor) -> None:
assert len(cache.shape) == 4
assert len(new_tensor.shape) == 4
assert cache.shape[0] == new_tensor.shape[0]
assert cache.shape[1] == new_tensor.shape[1]
assert cache.shape[3] == new_tensor.shape[3]
def append_cache(self, k: torch.Tensor, v: torch.Tensor) -> None:
self._validate(self.key, k)
self._validate(self.value, v)
assert k.shape[2] == v.shape[2]
self.key = torch.cat([self.key, k], dim=2)
self.value = torch.cat([self.value, v], dim=2)
def sequence_length(self) -> int:
return self.key.shape[2]
PlamoLayerCache = PlamoAttentionCache
PlamoCache = list[PlamoLayerCache]
class DecoderInput(NamedTuple):
hidden_states: torch.Tensor
position_ids: torch.Tensor
attention_mask: Optional[torch.Tensor] = None
past_key_values: Optional[PlamoCache] = None
output_hidden_states: Optional[bool] = False
output_attentions: Optional[bool] = False
use_cache: Optional[bool] = False
gradient_checkpointing: bool = False
input_ids: Optional[torch.Tensor] = None
class DecoderOutput(NamedTuple):
hidden_states: torch.Tensor
all_hidden_states: Optional[Tuple[torch.Tensor, ...]]
all_self_attns: Optional[Tuple[torch.Tensor, ...]]
next_decoder_cache: Optional[PlamoCache]
class LinearType(str, enum.Enum):
Normal = "normal"
Fp8 = "fp8"
Fp8Retain = "fp8-retain"
class PlamoConfig(PretrainedConfig): # type: ignore
model_type: str = "plamo"
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 4096,
intermediate_size: int = 13312,
num_hidden_layers: int = 32,
num_attention_heads: int = 32,
num_key_value_heads: int = 4,
hidden_size_per_head: int = 128,
max_position_embeddings: int = 2048,
initializer_range: float = 0.02,
rms_norm_eps: float = 1e-6,
use_cache: bool = True,
tokenizer_class: str = "PlamoTokenizer",
pad_token_id: Optional[int] = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
n_expert: Optional[int] = None,
k_expert: Optional[int] = None,
expert_dropout: float = 0.0,
capacity_factor: float = 1.0,
group_size: int = 1024,
sparse_step: Optional[int] = None,
sparse_intermediate_size: Optional[int] = None,
shared_intermediate_size: Optional[int] = None,
linear_type: LinearType = LinearType.Normal,
fp8_accum_dtype: Optional[str] = None,
eval_attention_n_bit: Optional[int] = None,
eval_mlp_n_bit: Optional[int] = None,
eval_offload_moe: bool = False,
attention_dropout: float = 0.0,
**kwargs: Any,
) -> None:
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_size_per_head = hidden_size_per_head
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.num_key_value_heads = num_key_value_heads
self.n_expert = n_expert
self.k_expert = k_expert
self.sparse_intermediate_size = sparse_intermediate_size
self.shared_intermediate_size = shared_intermediate_size
self.expert_dropout = expert_dropout
self.capacity_factor = capacity_factor
self.group_size = group_size
self.sparse_step = sparse_step
self.linear_type = linear_type
self.fp8_accum_dtype = fp8_accum_dtype
self.eval_attention_n_bit = eval_attention_n_bit
self.eval_mlp_n_bit = eval_mlp_n_bit
self.eval_offload_moe = eval_offload_moe
self.attention_dropout = attention_dropout
super().__init__(
tokenizer_class=tokenizer_class,
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
input_ids_shape: Tuple[int, int],
dtype: torch.dtype,
device: torch.device,
past_key_values_length: int = 0,
) -> torch.Tensor:
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat(
[
torch.zeros(
tgt_len, past_key_values_length, dtype=dtype, device=device
),
mask,
],
dim=-1,
)
return mask[None, None, :, :].expand(
bsz, 1, tgt_len, tgt_len + past_key_values_length
)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(
mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None
) -> torch.Tensor:
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) # type: ignore
class RotaryEmbedding(torch.nn.Module):
def __init__(
self,
dim: int,
max_position_embeddings: int = 2048,
base: int = 10000,
device: Optional[torch.device] = None,
) -> None:
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
)
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings,
device=self.inv_freq.device,
dtype=torch.get_default_dtype(),
)
def _set_cos_sin_cache(self, seq_len: int, device: Any, dtype: Any) -> None:
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) # type: ignore
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer(
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False
)
self.register_buffer(
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False
)
def forward(
self, x: torch.Tensor, seq_len: int
) -> Tuple[torch.Tensor, torch.Tensor]:
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), # type: ignore
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), # type: ignore
)
def _rotate_half(x: torch.Tensor) -> torch.Tensor:
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def _rotary_pos_emb(
x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, position_ids: torch.Tensor
) -> torch.Tensor:
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
x_embed = (x * cos) + (_rotate_half(x) * sin)
return x_embed
def _rms_norm(
hidden_states: torch.Tensor, weight: Optional[torch.Tensor], eps: float
) -> torch.Tensor:
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + eps)
hidden_states = hidden_states.to(input_dtype)
if weight is not None:
hidden_states = weight * hidden_states
return hidden_states
class RMSNorm(nn.Module):
def __init__(
self,
hidden_size: int,
eps: float = 1e-6,
device: Optional[Union[torch.device, str]] = None,
) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size, device=device))
self.variance_epsilon = eps
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return _rms_norm(hidden_states, self.weight, self.variance_epsilon)
class Attention(torch.nn.Module):
def __init__(self, config: PlamoConfig) -> None:
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
head_dim = config.hidden_size_per_head
self.max_position_embeddings = config.max_position_embeddings
self.q_num_heads = config.num_attention_heads
self.qk_dim = self.v_dim = head_dim
self.k_num_heads = self.v_num_heads = config.num_key_value_heads
assert self.q_num_heads % self.k_num_heads == 0
self.n_group = self.q_num_heads // self.k_num_heads
self.q_proj_dim = self.q_num_heads * self.qk_dim
self.k_proj_dim = self.k_num_heads * self.qk_dim
self.v_proj_dim = self.k_num_heads * self.v_dim
self.qkv_proj = nn.Linear(
self.hidden_size,
self.q_proj_dim + self.k_proj_dim + self.v_proj_dim,
bias=False,
)
self.o_proj = nn.Linear(
self.q_num_heads * self.v_dim, self.hidden_size, bias=False
)
self.rotary_emb = RotaryEmbedding(
self.qk_dim, max_position_embeddings=self.max_position_embeddings
)
self.q_weight = torch.nn.Parameter(torch.ones((self.q_num_heads, self.qk_dim)))
self.k_weight = torch.nn.Parameter(torch.ones((self.k_num_heads, self.qk_dim)))
self.is_causal = True
self.attention_dropout = config.attention_dropout
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[PlamoLayerCache] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[PlamoLayerCache]]:
bsz, q_len, _ = hidden_states.size()
qkv = self.qkv_proj(hidden_states)
query_states, key_states, value_states = torch.split(
qkv, [self.q_proj_dim, self.k_proj_dim, self.v_proj_dim], dim=-1
)
query_states = query_states.view(
bsz, q_len, self.q_num_heads, self.qk_dim
).transpose(1, 2)
key_states = key_states.view(
bsz, q_len, self.k_num_heads, self.qk_dim
).transpose(1, 2)
value_states = value_states.view(
bsz, q_len, self.v_num_heads, self.v_dim
).transpose(1, 2)
attn_dtype = query_states.dtype
query_states = (
_rms_norm(query_states, None, 1e-6) * self.q_weight[None, :, None]
)
key_states = _rms_norm(key_states, None, 1e-6) * self.k_weight[None, :, None]
if use_cache and past_key_value is None:
bsz, nhead_k, _, c_k = key_states.shape
_, nhead_v, _, c_v = value_states.shape
past_key_value = PlamoAttentionCache(
torch.zeros(
(bsz, nhead_k, 0, c_k),
dtype=key_states.dtype,
device=key_states.device,
),
torch.zeros(
(bsz, nhead_v, 0, c_v),
dtype=value_states.dtype,
device=value_states.device,
),
)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.sequence_length()
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
assert position_ids is not None
query_states = _rotary_pos_emb(query_states, cos, sin, position_ids)
key_states = _rotary_pos_emb(key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
past_key_value.append_cache(key_states, value_states)
key_states = past_key_value.key
value_states = past_key_value.value
def _expand_kv(t: torch.Tensor, repeat: int, target: int) -> torch.Tensor:
t = torch.repeat_interleave(t, repeat, dim=1)
return t[:, :target]
# expand shared kv
assert self.k_num_heads == self.v_num_heads
key_states = _expand_kv(key_states, self.n_group, self.q_num_heads)
value_states = _expand_kv(value_states, self.n_group, self.q_num_heads)
query_states = query_states.to(attn_dtype)
key_states = key_states.to(attn_dtype)
value_states = value_states.to(attn_dtype)
if attention_mask is not None and attention_mask.dtype != torch.bool:
attention_mask = attention_mask.to(attn_dtype)
attn_output = F.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
is_causal=self.is_causal,
dropout_p=self.attention_dropout if self.training else 0.0,
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.q_num_heads * self.v_dim)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class DenseMLP(nn.Module):
def __init__(self, config: PlamoConfig) -> None:
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_up_proj = torch.nn.Linear(
self.hidden_size, self.intermediate_size * 2, bias=False
)
self.down_proj = torch.nn.Linear(
self.intermediate_size, self.hidden_size, bias=False
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
h = self.gate_up_proj(x)
h = _swiglu(h)
return self.down_proj(h) # type: ignore
def MLP(config: PlamoConfig, is_sparse: bool) -> torch.nn.Module:
return DenseMLP(config)
class PlamoDecoderLayer(torch.nn.Module):
def __init__(self, config: PlamoConfig, is_sparse: bool) -> None:
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.self_attn = Attention(config)
self.mlp = MLP(config, is_sparse=is_sparse)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.norm2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[PlamoLayerCache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[Any, ...]:
# from LlamaDecoder
residual = hidden_states
hidden_states = self.norm(hidden_states)
# Self Attention
hidden_states_sa, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states_sa
residual = hidden_states
hidden_states = self.norm2(hidden_states)
# Fully Connected
hidden_states_mlp = self.mlp(hidden_states)
# Residual
hidden_states = residual + hidden_states_mlp
outputs: Any = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs # type: ignore
def is_sparse(config: PlamoConfig, i: int) -> bool:
if config.sparse_step is None:
return False
if config.sparse_step == 1:
return True
return (i % config.sparse_step) == 1
class PlamoDecoder(torch.nn.Module):
def __init__(self, config: PlamoConfig) -> None:
super().__init__()
self.layers = torch.nn.ModuleList(
[
PlamoDecoderLayer(config, is_sparse=is_sparse(config, i))
for i in range(config.num_hidden_layers)
]
)
def forward(self, x: DecoderInput) -> DecoderOutput:
all_hidden_states: Optional[Tuple[torch.Tensor, ...]] = (
() if x.output_hidden_states else None
)
all_self_attns: Optional[Tuple[torch.Tensor, ...]] = (
() if x.output_attentions else None
)
next_decoder_cache: Optional[PlamoCache] = [] if x.use_cache else None
hidden_states = x.hidden_states
for idx, decoder_layer in enumerate(self.layers):
if x.output_hidden_states:
assert all_hidden_states is not None
all_hidden_states += (hidden_states,)
past_key_value = (
x.past_key_values[idx] if x.past_key_values is not None else None
)
if self.training and x.gradient_checkpointing:
def create_custom_forward(module): # type: ignore
def custom_forward(*inputs): # type: ignore
# None for past_key_value
return module(*inputs, x.output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer), # type: ignore
hidden_states,
x.attention_mask,
x.position_ids,
None,
use_reentrant=False,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=x.attention_mask,
position_ids=x.position_ids,
past_key_value=past_key_value,
output_attentions=x.output_attentions,
use_cache=x.use_cache,
)
hidden_states = layer_outputs[0]
if x.use_cache:
cache = layer_outputs[2 if x.output_attentions else 1]
assert cache is not None
assert next_decoder_cache is not None
next_decoder_cache += (cache,)
if x.output_attentions:
assert layer_outputs[1] is not None
assert all_self_attns is not None
all_self_attns += (layer_outputs[1],)
return DecoderOutput(
hidden_states, all_hidden_states, all_self_attns, next_decoder_cache
)
class PlamoPreTrainedModel(PreTrainedModel): # type: ignore
config_class = PlamoConfig
_no_split_modules: List[str]
base_model_prefix = "model"
supports_gradient_checkpointing = True
_supports_sdpa = True
_no_split_modules = ["PlamoDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module: torch.nn.Module) -> None:
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(
self, module: torch.nn.Module, value: bool = False
) -> None:
module.gradient_checkpointing = value # type: ignore
class PlamoModel(PlamoPreTrainedModel):
def __init__(self, config: PlamoConfig):
super().__init__(config)
assert config.eval_attention_n_bit is None
assert config.eval_mlp_n_bit is None
assert not config.eval_offload_moe
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
self.layers = PlamoDecoder(config) # type: ignore
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> torch.nn.Embedding:
return self.embed_tokens
def set_input_embeddings(self, value: torch.nn.Embedding) -> None:
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(
self,
attention_mask: torch.Tensor,
input_shape: Tuple[int, int],
inputs_embeds: Optional[torch.Tensor],
past_key_values_length: int,
) -> Optional[torch.Tensor]:
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask: Optional[torch.Tensor] = None
if input_shape[-1] > 1:
assert inputs_embeds is not None
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
assert inputs_embeds is not None
expanded_attn_mask = _expand_mask(
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
).to(inputs_embeds.device)
combined_attention_mask = (
expanded_attn_mask
if combined_attention_mask is None
else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[PlamoCache] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
assert input_ids is not None
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
else:
raise ValueError(
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
)
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0].sequence_length()
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if (
attention_mask is not None
or not self.training
or past_key_values is not None
):
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past),
dtype=torch.bool,
device=inputs_embeds.device,
)
# attention_mask = self._prepare_decoder_attention_mask(
# attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
# )
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
use_cache = False
# decoder layers
out = self.layers(
DecoderInput(
hidden_states,
position_ids,
attention_mask,
past_key_values,
output_hidden_states,
output_attentions,
use_cache,
self.gradient_checkpointing,
)
)
assert isinstance(out, DecoderOutput)
hidden_states = out.hidden_states
all_hidden_states = out.all_hidden_states
all_self_attns = out.all_self_attns
next_decoder_cache = out.next_decoder_cache
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
assert all_hidden_states is not None
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class ModifiedAttention(Attention):
def __init__(self, config: PlamoConfig, **kwargs):
super().__init__(config, **kwargs)
self.is_causal = False
PLAMO_ATTENTION_CLASSES = {
"sdpa": ModifiedAttention,
}
class ModifiedPlamoDecoderLayer(PlamoDecoderLayer):
def __init__(self, config: PlamoConfig, is_sparse: bool):
nn.Module.__init__(self)
self.config = config
self.hidden_size = config.hidden_size
self.self_attn = PLAMO_ATTENTION_CLASSES[config._attn_implementation](
config=config
)
self.mlp = MLP(config, is_sparse=is_sparse)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.norm2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
class ModifiedPlamoDecoder(PlamoDecoder):
def __init__(self, config: PlamoConfig) -> None:
nn.Module.__init__(self)
self.layers = nn.ModuleList(
[
ModifiedPlamoDecoderLayer(
config, is_sparse=is_sparse(config, layer_idx)
)
for layer_idx in range(config.num_hidden_layers)
]
)
class PlamoBiModel(PlamoModel):
_no_split_modules = ["ModifiedPlamoDecoderLayer"]
def __init__(self, config: PlamoConfig):
PlamoPreTrainedModel.__init__(self, config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
self.layers = ModifiedPlamoDecoder(config)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
self._attn_implementation = config._attn_implementation
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[PlamoCache] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
assert input_ids is not None
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
else:
raise ValueError(
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
)
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0].sequence_length()
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if self._attn_implementation == "sdpa" and not output_attentions:
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
else:
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
use_cache = False
out = self.layers(
DecoderInput(
hidden_states,
position_ids,
attention_mask,
past_key_values,
output_hidden_states,
output_attentions,
use_cache,
self.gradient_checkpointing,
)
)
assert isinstance(out, DecoderOutput)
hidden_states = out.hidden_states
all_hidden_states = out.all_hidden_states
all_self_attns = out.all_self_attns
next_decoder_cache = out.next_decoder_cache
hidden_states = self.norm(hidden_states)
if output_hidden_states:
assert all_hidden_states is not None
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _tokenize(
self,
texts: List[str],
tokenizer: AutoTokenizer,
add_special_tokens: bool = True,
) -> BatchEncoding:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
return tokenizer(
texts,
return_tensors="pt",
truncation=True,
padding=True,
max_length=self.config.max_length,
add_special_tokens=add_special_tokens,
)
def _tokenize_with_instruction(
self,
sentences: List[str],
tokenizer: AutoTokenizer,
instruction: str,
add_special_tokens: bool = True,
) -> Tuple[BatchEncoding, torch.Tensor]:
sentence_features = self._tokenize(
sentences, tokenizer, add_special_tokens=False
)
sentences_with_instruction = [instruction + sentence for sentence in sentences]
sentence_features_with_instruction = self._tokenize(
sentences_with_instruction, tokenizer, add_special_tokens
)
embed_mask_list = []
for i in range(len(sentences)):
n_tokens = int(sentence_features["attention_mask"][i].sum().item())
mask = torch.zeros_like(
sentence_features_with_instruction["attention_mask"][i]
)
if n_tokens > 0:
mask[-n_tokens:] = torch.ones(n_tokens, dtype=mask.dtype)
embed_mask_list.append(mask.unsqueeze(0))
embed_mask = torch.cat(embed_mask_list, dim=0)
return sentence_features_with_instruction, embed_mask
def _mean_pooling(
self,
sentence_features: BatchEncoding,
last_hidden_state: torch.Tensor,
embed_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if embed_mask is None:
mask = sentence_features["attention_mask"]
else:
mask = embed_mask
sum_hidden = (
last_hidden_state * mask.unsqueeze(-1).type_as(last_hidden_state)
).sum(dim=1)
lengths = mask.sum(dim=1, keepdim=True).clamp(min=1)
return sum_hidden / lengths
def encode(
self,
sentences: Union[str, List[str]],
tokenizer: AutoTokenizer,
instruction: str,
) -> torch.Tensor:
if isinstance(sentences, str):
sentences = [sentences]
sentence_features, embed_mask = self._tokenize_with_instruction(
sentences,
tokenizer,
instruction=instruction,
)
sentence_features = sentence_features.to(self.device)
embed_mask = embed_mask.to(self.device)
reps = self(**sentence_features)
return self._mean_pooling(sentence_features, reps.last_hidden_state, embed_mask)
def encode_document(
self,
sentences: Union[str, List[str]],
tokenizer: AutoTokenizer,
) -> torch.Tensor:
default_document_instruction = ""
return self.encode(sentences, tokenizer, default_document_instruction)
def encode_query(
self,
sentences: Union[str, List[str]],
tokenizer: AutoTokenizer,
) -> torch.Tensor:
default_query_instruction = "次の文章に対して、関連する文章を検索してください: "
return self.encode(sentences, tokenizer, default_query_instruction)