|
import enum |
|
from typing import Any, List, NamedTuple, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from transformers import AutoTokenizer, PretrainedConfig, PreTrainedModel |
|
from transformers.modeling_attn_mask_utils import ( |
|
_prepare_4d_causal_attention_mask, |
|
_prepare_4d_causal_attention_mask_for_sdpa, |
|
) |
|
from transformers.modeling_outputs import BaseModelOutputWithPast |
|
from transformers.tokenization_utils_base import BatchEncoding |
|
|
|
|
|
def _swiglu(h: torch.Tensor) -> torch.Tensor: |
|
h0, h1 = h.chunk(2, dim=-1) |
|
return torch.nn.functional.silu(h0) * h1 |
|
|
|
|
|
class PlamoAttentionCache: |
|
def __init__(self, key: torch.Tensor, value: torch.Tensor) -> None: |
|
B, nh, L, c = key.shape |
|
assert len(value.shape) == 4 |
|
assert value.shape[0] == B |
|
assert value.shape[2] == L |
|
self.key = key |
|
self.value = value |
|
|
|
def _validate(self, cache: torch.Tensor, new_tensor: torch.Tensor) -> None: |
|
assert len(cache.shape) == 4 |
|
assert len(new_tensor.shape) == 4 |
|
assert cache.shape[0] == new_tensor.shape[0] |
|
assert cache.shape[1] == new_tensor.shape[1] |
|
assert cache.shape[3] == new_tensor.shape[3] |
|
|
|
def append_cache(self, k: torch.Tensor, v: torch.Tensor) -> None: |
|
self._validate(self.key, k) |
|
self._validate(self.value, v) |
|
assert k.shape[2] == v.shape[2] |
|
self.key = torch.cat([self.key, k], dim=2) |
|
self.value = torch.cat([self.value, v], dim=2) |
|
|
|
def sequence_length(self) -> int: |
|
return self.key.shape[2] |
|
|
|
|
|
PlamoLayerCache = PlamoAttentionCache |
|
|
|
PlamoCache = list[PlamoLayerCache] |
|
|
|
|
|
class DecoderInput(NamedTuple): |
|
hidden_states: torch.Tensor |
|
position_ids: torch.Tensor |
|
attention_mask: Optional[torch.Tensor] = None |
|
past_key_values: Optional[PlamoCache] = None |
|
output_hidden_states: Optional[bool] = False |
|
output_attentions: Optional[bool] = False |
|
use_cache: Optional[bool] = False |
|
gradient_checkpointing: bool = False |
|
input_ids: Optional[torch.Tensor] = None |
|
|
|
|
|
class DecoderOutput(NamedTuple): |
|
hidden_states: torch.Tensor |
|
all_hidden_states: Optional[Tuple[torch.Tensor, ...]] |
|
all_self_attns: Optional[Tuple[torch.Tensor, ...]] |
|
next_decoder_cache: Optional[PlamoCache] |
|
|
|
|
|
class LinearType(str, enum.Enum): |
|
Normal = "normal" |
|
Fp8 = "fp8" |
|
Fp8Retain = "fp8-retain" |
|
|
|
|
|
class PlamoConfig(PretrainedConfig): |
|
model_type: str = "plamo" |
|
|
|
def __init__( |
|
self, |
|
vocab_size: int = 32000, |
|
hidden_size: int = 4096, |
|
intermediate_size: int = 13312, |
|
num_hidden_layers: int = 32, |
|
num_attention_heads: int = 32, |
|
num_key_value_heads: int = 4, |
|
hidden_size_per_head: int = 128, |
|
max_position_embeddings: int = 2048, |
|
initializer_range: float = 0.02, |
|
rms_norm_eps: float = 1e-6, |
|
use_cache: bool = True, |
|
tokenizer_class: str = "PlamoTokenizer", |
|
pad_token_id: Optional[int] = None, |
|
bos_token_id: int = 1, |
|
eos_token_id: int = 2, |
|
tie_word_embeddings: bool = False, |
|
n_expert: Optional[int] = None, |
|
k_expert: Optional[int] = None, |
|
expert_dropout: float = 0.0, |
|
capacity_factor: float = 1.0, |
|
group_size: int = 1024, |
|
sparse_step: Optional[int] = None, |
|
sparse_intermediate_size: Optional[int] = None, |
|
shared_intermediate_size: Optional[int] = None, |
|
linear_type: LinearType = LinearType.Normal, |
|
fp8_accum_dtype: Optional[str] = None, |
|
eval_attention_n_bit: Optional[int] = None, |
|
eval_mlp_n_bit: Optional[int] = None, |
|
eval_offload_moe: bool = False, |
|
attention_dropout: float = 0.0, |
|
**kwargs: Any, |
|
) -> None: |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_size_per_head = hidden_size_per_head |
|
|
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
|
|
self.n_expert = n_expert |
|
self.k_expert = k_expert |
|
self.sparse_intermediate_size = sparse_intermediate_size |
|
self.shared_intermediate_size = shared_intermediate_size |
|
self.expert_dropout = expert_dropout |
|
self.capacity_factor = capacity_factor |
|
self.group_size = group_size |
|
self.sparse_step = sparse_step |
|
|
|
self.linear_type = linear_type |
|
self.fp8_accum_dtype = fp8_accum_dtype |
|
|
|
self.eval_attention_n_bit = eval_attention_n_bit |
|
self.eval_mlp_n_bit = eval_mlp_n_bit |
|
self.eval_offload_moe = eval_offload_moe |
|
|
|
self.attention_dropout = attention_dropout |
|
|
|
super().__init__( |
|
tokenizer_class=tokenizer_class, |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: Tuple[int, int], |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
past_key_values_length: int = 0, |
|
) -> torch.Tensor: |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat( |
|
[ |
|
torch.zeros( |
|
tgt_len, past_key_values_length, dtype=dtype, device=device |
|
), |
|
mask, |
|
], |
|
dim=-1, |
|
) |
|
return mask[None, None, :, :].expand( |
|
bsz, 1, tgt_len, tgt_len + past_key_values_length |
|
) |
|
|
|
|
|
|
|
def _expand_mask( |
|
mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None |
|
) -> torch.Tensor: |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
max_position_embeddings: int = 2048, |
|
base: int = 10000, |
|
device: Optional[torch.device] = None, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / ( |
|
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) |
|
) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, |
|
device=self.inv_freq.device, |
|
dtype=torch.get_default_dtype(), |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len: int, device: Any, dtype: Any) -> None: |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer( |
|
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False |
|
) |
|
self.register_buffer( |
|
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False |
|
) |
|
|
|
def forward( |
|
self, x: torch.Tensor, seq_len: int |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
def _rotate_half(x: torch.Tensor) -> torch.Tensor: |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def _rotary_pos_emb( |
|
x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, position_ids: torch.Tensor |
|
) -> torch.Tensor: |
|
|
|
cos = cos.squeeze(1).squeeze(0) |
|
sin = sin.squeeze(1).squeeze(0) |
|
cos = cos[position_ids].unsqueeze(1) |
|
sin = sin[position_ids].unsqueeze(1) |
|
x_embed = (x * cos) + (_rotate_half(x) * sin) |
|
return x_embed |
|
|
|
|
|
def _rms_norm( |
|
hidden_states: torch.Tensor, weight: Optional[torch.Tensor], eps: float |
|
) -> torch.Tensor: |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + eps) |
|
hidden_states = hidden_states.to(input_dtype) |
|
if weight is not None: |
|
hidden_states = weight * hidden_states |
|
return hidden_states |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
eps: float = 1e-6, |
|
device: Optional[Union[torch.device, str]] = None, |
|
) -> None: |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size, device=device)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
return _rms_norm(hidden_states, self.weight, self.variance_epsilon) |
|
|
|
|
|
class Attention(torch.nn.Module): |
|
def __init__(self, config: PlamoConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
head_dim = config.hidden_size_per_head |
|
self.max_position_embeddings = config.max_position_embeddings |
|
|
|
self.q_num_heads = config.num_attention_heads |
|
self.qk_dim = self.v_dim = head_dim |
|
self.k_num_heads = self.v_num_heads = config.num_key_value_heads |
|
assert self.q_num_heads % self.k_num_heads == 0 |
|
self.n_group = self.q_num_heads // self.k_num_heads |
|
|
|
self.q_proj_dim = self.q_num_heads * self.qk_dim |
|
self.k_proj_dim = self.k_num_heads * self.qk_dim |
|
self.v_proj_dim = self.k_num_heads * self.v_dim |
|
self.qkv_proj = nn.Linear( |
|
self.hidden_size, |
|
self.q_proj_dim + self.k_proj_dim + self.v_proj_dim, |
|
bias=False, |
|
) |
|
self.o_proj = nn.Linear( |
|
self.q_num_heads * self.v_dim, self.hidden_size, bias=False |
|
) |
|
self.rotary_emb = RotaryEmbedding( |
|
self.qk_dim, max_position_embeddings=self.max_position_embeddings |
|
) |
|
|
|
self.q_weight = torch.nn.Parameter(torch.ones((self.q_num_heads, self.qk_dim))) |
|
self.k_weight = torch.nn.Parameter(torch.ones((self.k_num_heads, self.qk_dim))) |
|
self.is_causal = True |
|
self.attention_dropout = config.attention_dropout |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[PlamoLayerCache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[PlamoLayerCache]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
qkv = self.qkv_proj(hidden_states) |
|
query_states, key_states, value_states = torch.split( |
|
qkv, [self.q_proj_dim, self.k_proj_dim, self.v_proj_dim], dim=-1 |
|
) |
|
query_states = query_states.view( |
|
bsz, q_len, self.q_num_heads, self.qk_dim |
|
).transpose(1, 2) |
|
key_states = key_states.view( |
|
bsz, q_len, self.k_num_heads, self.qk_dim |
|
).transpose(1, 2) |
|
value_states = value_states.view( |
|
bsz, q_len, self.v_num_heads, self.v_dim |
|
).transpose(1, 2) |
|
|
|
attn_dtype = query_states.dtype |
|
|
|
query_states = ( |
|
_rms_norm(query_states, None, 1e-6) * self.q_weight[None, :, None] |
|
) |
|
key_states = _rms_norm(key_states, None, 1e-6) * self.k_weight[None, :, None] |
|
|
|
if use_cache and past_key_value is None: |
|
bsz, nhead_k, _, c_k = key_states.shape |
|
_, nhead_v, _, c_v = value_states.shape |
|
past_key_value = PlamoAttentionCache( |
|
torch.zeros( |
|
(bsz, nhead_k, 0, c_k), |
|
dtype=key_states.dtype, |
|
device=key_states.device, |
|
), |
|
torch.zeros( |
|
(bsz, nhead_v, 0, c_v), |
|
dtype=value_states.dtype, |
|
device=value_states.device, |
|
), |
|
) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value.sequence_length() |
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
assert position_ids is not None |
|
query_states = _rotary_pos_emb(query_states, cos, sin, position_ids) |
|
key_states = _rotary_pos_emb(key_states, cos, sin, position_ids) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
past_key_value.append_cache(key_states, value_states) |
|
key_states = past_key_value.key |
|
value_states = past_key_value.value |
|
|
|
def _expand_kv(t: torch.Tensor, repeat: int, target: int) -> torch.Tensor: |
|
t = torch.repeat_interleave(t, repeat, dim=1) |
|
return t[:, :target] |
|
|
|
|
|
assert self.k_num_heads == self.v_num_heads |
|
key_states = _expand_kv(key_states, self.n_group, self.q_num_heads) |
|
value_states = _expand_kv(value_states, self.n_group, self.q_num_heads) |
|
|
|
query_states = query_states.to(attn_dtype) |
|
key_states = key_states.to(attn_dtype) |
|
value_states = value_states.to(attn_dtype) |
|
|
|
if attention_mask is not None and attention_mask.dtype != torch.bool: |
|
attention_mask = attention_mask.to(attn_dtype) |
|
|
|
attn_output = F.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=attention_mask, |
|
is_causal=self.is_causal, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
) |
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.q_num_heads * self.v_dim) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class DenseMLP(nn.Module): |
|
def __init__(self, config: PlamoConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_up_proj = torch.nn.Linear( |
|
self.hidden_size, self.intermediate_size * 2, bias=False |
|
) |
|
self.down_proj = torch.nn.Linear( |
|
self.intermediate_size, self.hidden_size, bias=False |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
h = self.gate_up_proj(x) |
|
h = _swiglu(h) |
|
return self.down_proj(h) |
|
|
|
|
|
def MLP(config: PlamoConfig, is_sparse: bool) -> torch.nn.Module: |
|
return DenseMLP(config) |
|
|
|
|
|
class PlamoDecoderLayer(torch.nn.Module): |
|
def __init__(self, config: PlamoConfig, is_sparse: bool) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = Attention(config) |
|
self.mlp = MLP(config, is_sparse=is_sparse) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.norm2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[PlamoLayerCache] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
) -> Tuple[Any, ...]: |
|
|
|
residual = hidden_states |
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
hidden_states_sa, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = residual + hidden_states_sa |
|
|
|
residual = hidden_states |
|
hidden_states = self.norm2(hidden_states) |
|
|
|
|
|
hidden_states_mlp = self.mlp(hidden_states) |
|
|
|
|
|
hidden_states = residual + hidden_states_mlp |
|
|
|
outputs: Any = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
def is_sparse(config: PlamoConfig, i: int) -> bool: |
|
if config.sparse_step is None: |
|
return False |
|
if config.sparse_step == 1: |
|
return True |
|
return (i % config.sparse_step) == 1 |
|
|
|
|
|
class PlamoDecoder(torch.nn.Module): |
|
def __init__(self, config: PlamoConfig) -> None: |
|
super().__init__() |
|
|
|
self.layers = torch.nn.ModuleList( |
|
[ |
|
PlamoDecoderLayer(config, is_sparse=is_sparse(config, i)) |
|
for i in range(config.num_hidden_layers) |
|
] |
|
) |
|
|
|
def forward(self, x: DecoderInput) -> DecoderOutput: |
|
all_hidden_states: Optional[Tuple[torch.Tensor, ...]] = ( |
|
() if x.output_hidden_states else None |
|
) |
|
all_self_attns: Optional[Tuple[torch.Tensor, ...]] = ( |
|
() if x.output_attentions else None |
|
) |
|
next_decoder_cache: Optional[PlamoCache] = [] if x.use_cache else None |
|
hidden_states = x.hidden_states |
|
for idx, decoder_layer in enumerate(self.layers): |
|
if x.output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = ( |
|
x.past_key_values[idx] if x.past_key_values is not None else None |
|
) |
|
|
|
if self.training and x.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, x.output_attentions, None) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
x.attention_mask, |
|
x.position_ids, |
|
None, |
|
use_reentrant=False, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=x.attention_mask, |
|
position_ids=x.position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=x.output_attentions, |
|
use_cache=x.use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if x.use_cache: |
|
cache = layer_outputs[2 if x.output_attentions else 1] |
|
assert cache is not None |
|
assert next_decoder_cache is not None |
|
next_decoder_cache += (cache,) |
|
|
|
if x.output_attentions: |
|
assert layer_outputs[1] is not None |
|
assert all_self_attns is not None |
|
all_self_attns += (layer_outputs[1],) |
|
return DecoderOutput( |
|
hidden_states, all_hidden_states, all_self_attns, next_decoder_cache |
|
) |
|
|
|
|
|
class PlamoPreTrainedModel(PreTrainedModel): |
|
config_class = PlamoConfig |
|
_no_split_modules: List[str] |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_supports_sdpa = True |
|
_no_split_modules = ["PlamoDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
|
|
def _init_weights(self, module: torch.nn.Module) -> None: |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing( |
|
self, module: torch.nn.Module, value: bool = False |
|
) -> None: |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class PlamoModel(PlamoPreTrainedModel): |
|
def __init__(self, config: PlamoConfig): |
|
super().__init__(config) |
|
assert config.eval_attention_n_bit is None |
|
assert config.eval_mlp_n_bit is None |
|
assert not config.eval_offload_moe |
|
|
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding( |
|
config.vocab_size, config.hidden_size, self.padding_idx |
|
) |
|
self.layers = PlamoDecoder(config) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> torch.nn.Embedding: |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value: torch.nn.Embedding) -> None: |
|
self.embed_tokens = value |
|
|
|
|
|
def _prepare_decoder_attention_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_shape: Tuple[int, int], |
|
inputs_embeds: Optional[torch.Tensor], |
|
past_key_values_length: int, |
|
) -> Optional[torch.Tensor]: |
|
|
|
|
|
combined_attention_mask: Optional[torch.Tensor] = None |
|
if input_shape[-1] > 1: |
|
assert inputs_embeds is not None |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
assert inputs_embeds is not None |
|
expanded_attn_mask = _expand_mask( |
|
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] |
|
).to(inputs_embeds.device) |
|
combined_attention_mask = ( |
|
expanded_attn_mask |
|
if combined_attention_mask is None |
|
else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[PlamoCache] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
assert input_ids is not None |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
else: |
|
raise ValueError( |
|
"You have to specify either decoder_input_ids or decoder_inputs_embeds" |
|
) |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0].sequence_length() |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device |
|
position_ids = torch.arange( |
|
past_key_values_length, |
|
seq_length + past_key_values_length, |
|
dtype=torch.long, |
|
device=device, |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if ( |
|
attention_mask is not None |
|
or not self.training |
|
or past_key_values is not None |
|
): |
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), |
|
dtype=torch.bool, |
|
device=inputs_embeds.device, |
|
) |
|
|
|
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
use_cache = False |
|
|
|
|
|
out = self.layers( |
|
DecoderInput( |
|
hidden_states, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
output_hidden_states, |
|
output_attentions, |
|
use_cache, |
|
self.gradient_checkpointing, |
|
) |
|
) |
|
assert isinstance(out, DecoderOutput) |
|
hidden_states = out.hidden_states |
|
all_hidden_states = out.all_hidden_states |
|
all_self_attns = out.all_self_attns |
|
next_decoder_cache = out.next_decoder_cache |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class ModifiedAttention(Attention): |
|
def __init__(self, config: PlamoConfig, **kwargs): |
|
super().__init__(config, **kwargs) |
|
self.is_causal = False |
|
|
|
|
|
PLAMO_ATTENTION_CLASSES = { |
|
"sdpa": ModifiedAttention, |
|
} |
|
|
|
|
|
class ModifiedPlamoDecoderLayer(PlamoDecoderLayer): |
|
def __init__(self, config: PlamoConfig, is_sparse: bool): |
|
nn.Module.__init__(self) |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
|
|
self.self_attn = PLAMO_ATTENTION_CLASSES[config._attn_implementation]( |
|
config=config |
|
) |
|
|
|
self.mlp = MLP(config, is_sparse=is_sparse) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.norm2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
class ModifiedPlamoDecoder(PlamoDecoder): |
|
def __init__(self, config: PlamoConfig) -> None: |
|
nn.Module.__init__(self) |
|
self.layers = nn.ModuleList( |
|
[ |
|
ModifiedPlamoDecoderLayer( |
|
config, is_sparse=is_sparse(config, layer_idx) |
|
) |
|
for layer_idx in range(config.num_hidden_layers) |
|
] |
|
) |
|
|
|
|
|
class PlamoBiModel(PlamoModel): |
|
_no_split_modules = ["ModifiedPlamoDecoderLayer"] |
|
|
|
def __init__(self, config: PlamoConfig): |
|
PlamoPreTrainedModel.__init__(self, config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding( |
|
config.vocab_size, config.hidden_size, self.padding_idx |
|
) |
|
|
|
self.layers = ModifiedPlamoDecoder(config) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.gradient_checkpointing = False |
|
self._attn_implementation = config._attn_implementation |
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[PlamoCache] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
assert input_ids is not None |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
else: |
|
raise ValueError( |
|
"You have to specify either decoder_input_ids or decoder_inputs_embeds" |
|
) |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0].sequence_length() |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device |
|
position_ids = torch.arange( |
|
past_key_values_length, |
|
seq_length + past_key_values_length, |
|
dtype=torch.long, |
|
device=device, |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if self._attn_implementation == "sdpa" and not output_attentions: |
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
) |
|
else: |
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
sliding_window=self.config.sliding_window, |
|
) |
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
use_cache = False |
|
|
|
out = self.layers( |
|
DecoderInput( |
|
hidden_states, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
output_hidden_states, |
|
output_attentions, |
|
use_cache, |
|
self.gradient_checkpointing, |
|
) |
|
) |
|
|
|
assert isinstance(out, DecoderOutput) |
|
hidden_states = out.hidden_states |
|
all_hidden_states = out.all_hidden_states |
|
all_self_attns = out.all_self_attns |
|
next_decoder_cache = out.next_decoder_cache |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
if output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
def _tokenize( |
|
self, |
|
texts: List[str], |
|
tokenizer: AutoTokenizer, |
|
add_special_tokens: bool = True, |
|
) -> BatchEncoding: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.padding_side = "left" |
|
|
|
return tokenizer( |
|
texts, |
|
return_tensors="pt", |
|
truncation=True, |
|
padding=True, |
|
max_length=self.config.max_length, |
|
add_special_tokens=add_special_tokens, |
|
) |
|
|
|
def _tokenize_with_instruction( |
|
self, |
|
sentences: List[str], |
|
tokenizer: AutoTokenizer, |
|
instruction: str, |
|
add_special_tokens: bool = True, |
|
) -> Tuple[BatchEncoding, torch.Tensor]: |
|
sentence_features = self._tokenize( |
|
sentences, tokenizer, add_special_tokens=False |
|
) |
|
|
|
sentences_with_instruction = [instruction + sentence for sentence in sentences] |
|
sentence_features_with_instruction = self._tokenize( |
|
sentences_with_instruction, tokenizer, add_special_tokens |
|
) |
|
|
|
embed_mask_list = [] |
|
for i in range(len(sentences)): |
|
n_tokens = int(sentence_features["attention_mask"][i].sum().item()) |
|
mask = torch.zeros_like( |
|
sentence_features_with_instruction["attention_mask"][i] |
|
) |
|
if n_tokens > 0: |
|
mask[-n_tokens:] = torch.ones(n_tokens, dtype=mask.dtype) |
|
embed_mask_list.append(mask.unsqueeze(0)) |
|
embed_mask = torch.cat(embed_mask_list, dim=0) |
|
|
|
return sentence_features_with_instruction, embed_mask |
|
|
|
def _mean_pooling( |
|
self, |
|
sentence_features: BatchEncoding, |
|
last_hidden_state: torch.Tensor, |
|
embed_mask: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
if embed_mask is None: |
|
mask = sentence_features["attention_mask"] |
|
else: |
|
mask = embed_mask |
|
sum_hidden = ( |
|
last_hidden_state * mask.unsqueeze(-1).type_as(last_hidden_state) |
|
).sum(dim=1) |
|
lengths = mask.sum(dim=1, keepdim=True).clamp(min=1) |
|
return sum_hidden / lengths |
|
|
|
def encode( |
|
self, |
|
sentences: Union[str, List[str]], |
|
tokenizer: AutoTokenizer, |
|
instruction: str, |
|
) -> torch.Tensor: |
|
if isinstance(sentences, str): |
|
sentences = [sentences] |
|
|
|
sentence_features, embed_mask = self._tokenize_with_instruction( |
|
sentences, |
|
tokenizer, |
|
instruction=instruction, |
|
) |
|
sentence_features = sentence_features.to(self.device) |
|
embed_mask = embed_mask.to(self.device) |
|
|
|
reps = self(**sentence_features) |
|
return self._mean_pooling(sentence_features, reps.last_hidden_state, embed_mask) |
|
|
|
def encode_document( |
|
self, |
|
sentences: Union[str, List[str]], |
|
tokenizer: AutoTokenizer, |
|
) -> torch.Tensor: |
|
default_document_instruction = "" |
|
return self.encode(sentences, tokenizer, default_document_instruction) |
|
|
|
def encode_query( |
|
self, |
|
sentences: Union[str, List[str]], |
|
tokenizer: AutoTokenizer, |
|
) -> torch.Tensor: |
|
default_query_instruction = "次の文章に対して、関連する文章を検索してください: " |
|
return self.encode(sentences, tokenizer, default_query_instruction) |
|
|