- Synchronization is All You Need: Exocentric-to-Egocentric Transfer for Temporal Action Segmentation with Unlabeled Synchronized Video Pairs We consider the problem of transferring a temporal action segmentation system initially designed for exocentric (fixed) cameras to an egocentric scenario, where wearable cameras capture video data. The conventional supervised approach requires the collection and labeling of a new set of egocentric videos to adapt the model, which is costly and time-consuming. Instead, we propose a novel methodology which performs the adaptation leveraging existing labeled exocentric videos and a new set of unlabeled, synchronized exocentric-egocentric video pairs, for which temporal action segmentation annotations do not need to be collected. We implement the proposed methodology with an approach based on knowledge distillation, which we investigate both at the feature and Temporal Action Segmentation model level. Experiments on Assembly101 and EgoExo4D demonstrate the effectiveness of the proposed method against classic unsupervised domain adaptation and temporal alignment approaches. Without bells and whistles, our best model performs on par with supervised approaches trained on labeled egocentric data, without ever seeing a single egocentric label, achieving a +15.99 improvement in the edit score (28.59 vs 12.60) on the Assembly101 dataset compared to a baseline model trained solely on exocentric data. In similar settings, our method also improves edit score by +3.32 on the challenging EgoExo4D benchmark. Code is available here: https://github.com/fpv-iplab/synchronization-is-all-you-need. 5 authors · Dec 5, 2023
11 KeySync: A Robust Approach for Leakage-free Lip Synchronization in High Resolution Lip synchronization, known as the task of aligning lip movements in an existing video with new input audio, is typically framed as a simpler variant of audio-driven facial animation. However, as well as suffering from the usual issues in talking head generation (e.g., temporal consistency), lip synchronization presents significant new challenges such as expression leakage from the input video and facial occlusions, which can severely impact real-world applications like automated dubbing, but are often neglected in existing works. To address these shortcomings, we present KeySync, a two-stage framework that succeeds in solving the issue of temporal consistency, while also incorporating solutions for leakage and occlusions using a carefully designed masking strategy. We show that KeySync achieves state-of-the-art results in lip reconstruction and cross-synchronization, improving visual quality and reducing expression leakage according to LipLeak, our novel leakage metric. Furthermore, we demonstrate the effectiveness of our new masking approach in handling occlusions and validate our architectural choices through several ablation studies. Code and model weights can be found at https://antonibigata.github.io/KeySync. 7 authors · May 1 5
- ResourceSync: Leveraging Sitemaps for Resource Synchronization Many applications need up-to-date copies of collections of changing Web resources. Such synchronization is currently achieved using ad-hoc or proprietary solutions. We propose ResourceSync, a general Web resource synchronization protocol that leverages XML Sitemaps. It provides a set of capabilities that can be combined in a modular manner to meet local or community requirements. We report on work to implement this protocol for arXiv.org and also provide an experimental prototype for the English Wikipedia as well as a client API. 7 authors · May 7, 2013
55 JavisDiT: Joint Audio-Video Diffusion Transformer with Hierarchical Spatio-Temporal Prior Synchronization This paper introduces JavisDiT, a novel Joint Audio-Video Diffusion Transformer designed for synchronized audio-video generation (JAVG). Built upon the powerful Diffusion Transformer (DiT) architecture, JavisDiT is able to generate high-quality audio and video content simultaneously from open-ended user prompts. To ensure optimal synchronization, we introduce a fine-grained spatio-temporal alignment mechanism through a Hierarchical Spatial-Temporal Synchronized Prior (HiST-Sypo) Estimator. This module extracts both global and fine-grained spatio-temporal priors, guiding the synchronization between the visual and auditory components. Furthermore, we propose a new benchmark, JavisBench, consisting of 10,140 high-quality text-captioned sounding videos spanning diverse scenes and complex real-world scenarios. Further, we specifically devise a robust metric for evaluating the synchronization between generated audio-video pairs in real-world complex content. Experimental results demonstrate that JavisDiT significantly outperforms existing methods by ensuring both high-quality generation and precise synchronization, setting a new standard for JAVG tasks. Our code, model, and dataset will be made publicly available at https://javisdit.github.io/. 11 authors · Mar 30 4
2 SyncTalk: The Devil is in the Synchronization for Talking Head Synthesis Achieving high synchronization in the synthesis of realistic, speech-driven talking head videos presents a significant challenge. Traditional Generative Adversarial Networks (GAN) struggle to maintain consistent facial identity, while Neural Radiance Fields (NeRF) methods, although they can address this issue, often produce mismatched lip movements, inadequate facial expressions, and unstable head poses. A lifelike talking head requires synchronized coordination of subject identity, lip movements, facial expressions, and head poses. The absence of these synchronizations is a fundamental flaw, leading to unrealistic and artificial outcomes. To address the critical issue of synchronization, identified as the "devil" in creating realistic talking heads, we introduce SyncTalk. This NeRF-based method effectively maintains subject identity, enhancing synchronization and realism in talking head synthesis. SyncTalk employs a Face-Sync Controller to align lip movements with speech and innovatively uses a 3D facial blendshape model to capture accurate facial expressions. Our Head-Sync Stabilizer optimizes head poses, achieving more natural head movements. The Portrait-Sync Generator restores hair details and blends the generated head with the torso for a seamless visual experience. Extensive experiments and user studies demonstrate that SyncTalk outperforms state-of-the-art methods in synchronization and realism. We recommend watching the supplementary video: https://ziqiaopeng.github.io/synctalk 9 authors · Nov 29, 2023
2 Diff2Lip: Audio Conditioned Diffusion Models for Lip-Synchronization The task of lip synchronization (lip-sync) seeks to match the lips of human faces with different audio. It has various applications in the film industry as well as for creating virtual avatars and for video conferencing. This is a challenging problem as one needs to simultaneously introduce detailed, realistic lip movements while preserving the identity, pose, emotions, and image quality. Many of the previous methods trying to solve this problem suffer from image quality degradation due to a lack of complete contextual information. In this paper, we present Diff2Lip, an audio-conditioned diffusion-based model which is able to do lip synchronization in-the-wild while preserving these qualities. We train our model on Voxceleb2, a video dataset containing in-the-wild talking face videos. Extensive studies show that our method outperforms popular methods like Wav2Lip and PC-AVS in Fr\'echet inception distance (FID) metric and Mean Opinion Scores (MOS) of the users. We show results on both reconstruction (same audio-video inputs) as well as cross (different audio-video inputs) settings on Voxceleb2 and LRW datasets. Video results and code can be accessed from our project page ( https://soumik-kanad.github.io/diff2lip ). 4 authors · Aug 18, 2023 1
1 VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild We present VideoReTalking, a new system to edit the faces of a real-world talking head video according to input audio, producing a high-quality and lip-syncing output video even with a different emotion. Our system disentangles this objective into three sequential tasks: (1) face video generation with a canonical expression; (2) audio-driven lip-sync; and (3) face enhancement for improving photo-realism. Given a talking-head video, we first modify the expression of each frame according to the same expression template using the expression editing network, resulting in a video with the canonical expression. This video, together with the given audio, is then fed into the lip-sync network to generate a lip-syncing video. Finally, we improve the photo-realism of the synthesized faces through an identity-aware face enhancement network and post-processing. We use learning-based approaches for all three steps and all our modules can be tackled in a sequential pipeline without any user intervention. Furthermore, our system is a generic approach that does not need to be retrained to a specific person. Evaluations on two widely-used datasets and in-the-wild examples demonstrate the superiority of our framework over other state-of-the-art methods in terms of lip-sync accuracy and visual quality. 9 authors · Nov 27, 2022
- SayAnything: Audio-Driven Lip Synchronization with Conditional Video Diffusion Recent advances in diffusion models have led to significant progress in audio-driven lip synchronization. However, existing methods typically rely on constrained audio-visual alignment priors or multi-stage learning of intermediate representations to force lip motion synthesis. This leads to complex training pipelines and limited motion naturalness. In this paper, we present SayAnything, a conditional video diffusion framework that directly synthesizes lip movements from audio input while preserving speaker identity. Specifically, we propose three specialized modules including identity preservation module, audio guidance module, and editing control module. Our novel design effectively balances different condition signals in the latent space, enabling precise control over appearance, motion, and region-specific generation without requiring additional supervision signals or intermediate representations. Extensive experiments demonstrate that SayAnything generates highly realistic videos with improved lip-teeth coherence, enabling unseen characters to say anything, while effectively generalizing to animated characters. 9 authors · Feb 17
- A Quadratic Synchronization Rule for Distributed Deep Learning In distributed deep learning with data parallelism, synchronizing gradients at each training step can cause a huge communication overhead, especially when many nodes work together to train large models. Local gradient methods, such as Local SGD, address this issue by allowing workers to compute locally for H steps without synchronizing with others, hence reducing communication frequency. While H has been viewed as a hyperparameter to trade optimization efficiency for communication cost, recent research indicates that setting a proper H value can lead to generalization improvement. Yet, selecting a proper H is elusive. This work proposes a theory-grounded method for determining H, named the Quadratic Synchronization Rule (QSR), which recommends dynamically setting H in proportion to 1{eta^2} as the learning rate eta decays over time. Extensive ImageNet experiments on ResNet and ViT show that local gradient methods with QSR consistently improve the test accuracy over other synchronization strategies. Compared with the standard data parallel training, QSR enables Local AdamW on ViT-B to cut the training time on 16 or 64 GPUs down from 26.7 to 20.2 hours or from 8.6 to 5.5 hours and, at the same time, achieves 1.16% or 0.84% higher top-1 validation accuracy. 5 authors · Oct 22, 2023
- Robust Angular Synchronization via Directed Graph Neural Networks The angular synchronization problem aims to accurately estimate (up to a constant additive phase) a set of unknown angles theta_1, dots, theta_nin[0, 2pi) from m noisy measurements of their offsets theta_i-theta_j ;mod ; 2pi. Applications include, for example, sensor network localization, phase retrieval, and distributed clock synchronization. An extension of the problem to the heterogeneous setting (dubbed k-synchronization) is to estimate k groups of angles simultaneously, given noisy observations (with unknown group assignment) from each group. Existing methods for angular synchronization usually perform poorly in high-noise regimes, which are common in applications. In this paper, we leverage neural networks for the angular synchronization problem, and its heterogeneous extension, by proposing GNNSync, a theoretically-grounded end-to-end trainable framework using directed graph neural networks. In addition, new loss functions are devised to encode synchronization objectives. Experimental results on extensive data sets demonstrate that GNNSync attains competitive, and often superior, performance against a comprehensive set of baselines for the angular synchronization problem and its extension, validating the robustness of GNNSync even at high noise levels. 4 authors · Oct 9, 2023
- Deep learning-based stereo camera multi-video synchronization Stereo vision is essential for many applications. Currently, the synchronization of the streams coming from two cameras is done using mostly hardware. A software-based synchronization method would reduce the cost, weight and size of the entire system and allow for more flexibility when building such systems. With this goal in mind, we present here a comparison of different deep learning-based systems and prove that some are efficient and generalizable enough for such a task. This study paves the way to a production ready software-based video synchronization system. 5 authors · Mar 22, 2023
- On the Audio-visual Synchronization for Lip-to-Speech Synthesis Most lip-to-speech (LTS) synthesis models are trained and evaluated under the assumption that the audio-video pairs in the dataset are perfectly synchronized. In this work, we show that the commonly used audio-visual datasets, such as GRID, TCD-TIMIT, and Lip2Wav, can have data asynchrony issues. Training lip-to-speech with such datasets may further cause the model asynchrony issue -- that is, the generated speech and the input video are out of sync. To address these asynchrony issues, we propose a synchronized lip-to-speech (SLTS) model with an automatic synchronization mechanism (ASM) to correct data asynchrony and penalize model asynchrony. We further demonstrate the limitation of the commonly adopted evaluation metrics for LTS with asynchronous test data and introduce an audio alignment frontend before the metrics sensitive to time alignment for better evaluation. We compare our method with state-of-the-art approaches on conventional and time-aligned metrics to show the benefits of synchronization training. 2 authors · Mar 1, 2023
- MuseTalk: Real-Time High Quality Lip Synchronization with Latent Space Inpainting Achieving high-resolution, identity consistency, and accurate lip-speech synchronization in face visual dubbing presents significant challenges, particularly for real-time applications like live video streaming. We propose MuseTalk, which generates lip-sync targets in a latent space encoded by a Variational Autoencoder, enabling high-fidelity talking face video generation with efficient inference. Specifically, we project the occluded lower half of the face image and itself as an reference into a low-dimensional latent space and use a multi-scale U-Net to fuse audio and visual features at various levels. We further propose a novel sampling strategy during training, which selects reference images with head poses closely matching the target, allowing the model to focus on precise lip movement by filtering out redundant information. Additionally, we analyze the mechanism of lip-sync loss and reveal its relationship with input information volume. Extensive experiments show that MuseTalk consistently outperforms recent state-of-the-art methods in visual fidelity and achieves comparable lip-sync accuracy. As MuseTalk supports the online generation of face at 256x256 at more than 30 FPS with negligible starting latency, it paves the way for real-time applications. 9 authors · Oct 13, 2024
- PoseSync: Robust pose based video synchronization Pose based video sychronization can have applications in multiple domains such as gameplay performance evaluation, choreography or guiding athletes. The subject's actions could be compared and evaluated against those performed by professionals side by side. In this paper, we propose an end to end pipeline for synchronizing videos based on pose. The first step crops the region where the person present in the image followed by pose detection on the cropped image. This is followed by application of Dynamic Time Warping(DTW) on angle/ distance measures between the pose keypoints leading to a scale and shift invariant pose matching pipeline. 3 authors · Aug 24, 2023
9 MuVi: Video-to-Music Generation with Semantic Alignment and Rhythmic Synchronization Generating music that aligns with the visual content of a video has been a challenging task, as it requires a deep understanding of visual semantics and involves generating music whose melody, rhythm, and dynamics harmonize with the visual narratives. This paper presents MuVi, a novel framework that effectively addresses these challenges to enhance the cohesion and immersive experience of audio-visual content. MuVi analyzes video content through a specially designed visual adaptor to extract contextually and temporally relevant features. These features are used to generate music that not only matches the video's mood and theme but also its rhythm and pacing. We also introduce a contrastive music-visual pre-training scheme to ensure synchronization, based on the periodicity nature of music phrases. In addition, we demonstrate that our flow-matching-based music generator has in-context learning ability, allowing us to control the style and genre of the generated music. Experimental results show that MuVi demonstrates superior performance in both audio quality and temporal synchronization. The generated music video samples are available at https://muvi-v2m.github.io. 6 authors · Oct 16, 2024 2
- SyNDock: N Rigid Protein Docking via Learnable Group Synchronization The regulation of various cellular processes heavily relies on the protein complexes within a living cell, necessitating a comprehensive understanding of their three-dimensional structures to elucidate the underlying mechanisms. While neural docking techniques have exhibited promising outcomes in binary protein docking, the application of advanced neural architectures to multimeric protein docking remains uncertain. This study introduces SyNDock, an automated framework that swiftly assembles precise multimeric complexes within seconds, showcasing performance that can potentially surpass or be on par with recent advanced approaches. SyNDock possesses several appealing advantages not present in previous approaches. Firstly, SyNDock formulates multimeric protein docking as a problem of learning global transformations to holistically depict the placement of chain units of a complex, enabling a learning-centric solution. Secondly, SyNDock proposes a trainable two-step SE(3) algorithm, involving initial pairwise transformation and confidence estimation, followed by global transformation synchronization. This enables effective learning for assembling the complex in a globally consistent manner. Lastly, extensive experiments conducted on our proposed benchmark dataset demonstrate that SyNDock outperforms existing docking software in crucial performance metrics, including accuracy and runtime. For instance, it achieves a 4.5% improvement in performance and a remarkable millionfold acceleration in speed. 5 authors · May 23, 2023
- Learning Music-Dance Representations through Explicit-Implicit Rhythm Synchronization Although audio-visual representation has been proved to be applicable in many downstream tasks, the representation of dancing videos, which is more specific and always accompanied by music with complex auditory contents, remains challenging and uninvestigated. Considering the intrinsic alignment between the cadent movement of dancer and music rhythm, we introduce MuDaR, a novel Music-Dance Representation learning framework to perform the synchronization of music and dance rhythms both in explicit and implicit ways. Specifically, we derive the dance rhythms based on visual appearance and motion cues inspired by the music rhythm analysis. Then the visual rhythms are temporally aligned with the music counterparts, which are extracted by the amplitude of sound intensity. Meanwhile, we exploit the implicit coherence of rhythms implied in audio and visual streams by contrastive learning. The model learns the joint embedding by predicting the temporal consistency between audio-visual pairs. The music-dance representation, together with the capability of detecting audio and visual rhythms, can further be applied to three downstream tasks: (a) dance classification, (b) music-dance retrieval, and (c) music-dance retargeting. Extensive experiments demonstrate that our proposed framework outperforms other self-supervised methods by a large margin. 5 authors · Jul 7, 2022
- LLS: Local Learning Rule for Deep Neural Networks Inspired by Neural Activity Synchronization Training deep neural networks (DNNs) using traditional backpropagation (BP) presents challenges in terms of computational complexity and energy consumption, particularly for on-device learning where computational resources are limited. Various alternatives to BP, including random feedback alignment, forward-forward, and local classifiers, have been explored to address these challenges. These methods have their advantages, but they can encounter difficulties when dealing with intricate visual tasks or demand considerable computational resources. In this paper, we propose a novel Local Learning rule inspired by neural activity Synchronization phenomena (LLS) observed in the brain. LLS utilizes fixed periodic basis vectors to synchronize neuron activity within each layer, enabling efficient training without the need for additional trainable parameters. We demonstrate the effectiveness of LLS and its variations, LLS-M and LLS-MxM, on multiple image classification datasets, achieving accuracy comparable to BP with reduced computational complexity and minimal additional parameters. Furthermore, the performance of LLS on the Visual Wake Word (VWW) dataset highlights its suitability for on-device learning tasks, making it a promising candidate for edge hardware implementations. 3 authors · May 24, 2024
- Decentralised, Self-Organising Drone Swarms using Coupled Oscillators The problem of robotic synchronisation and coordination is a long-standing one. Combining autonomous, computerised systems with unpredictable real-world conditions can have consequences ranging from poor performance to collisions and damage. This paper proposes using coupled oscillators to create a drone swarm that is decentralised and self organising. This allows for greater flexibility and adaptiveness than a hard-coded swarm, with more resilience and scalability than a centralised system. Our method allows for a variable number of drones to spontaneously form a swarm and react to changing swarm conditions. Additionally, this method includes provisions to prevent communication interference between drones, and signal processing techniques to ensure a smooth and cohesive swarm. 3 authors · May 1
8 4Real-Video: Learning Generalizable Photo-Realistic 4D Video Diffusion We propose 4Real-Video, a novel framework for generating 4D videos, organized as a grid of video frames with both time and viewpoint axes. In this grid, each row contains frames sharing the same timestep, while each column contains frames from the same viewpoint. We propose a novel two-stream architecture. One stream performs viewpoint updates on columns, and the other stream performs temporal updates on rows. After each diffusion transformer layer, a synchronization layer exchanges information between the two token streams. We propose two implementations of the synchronization layer, using either hard or soft synchronization. This feedforward architecture improves upon previous work in three ways: higher inference speed, enhanced visual quality (measured by FVD, CLIP, and VideoScore), and improved temporal and viewpoint consistency (measured by VideoScore and Dust3R-Confidence). 10 authors · Dec 5, 2024 3
- Dynamical properties of a small heterogeneous chain network of neurons in discrete time We propose a novel nonlinear bidirectionally coupled heterogeneous chain network whose dynamics evolve in discrete time. The backbone of the model is a pair of popular map-based neuron models, the Chialvo and the Rulkov maps. This model is assumed to proximate the intricate dynamical properties of neurons in the widely complex nervous system. The model is first realized via various nonlinear analysis techniques: fixed point analysis, phase portraits, Jacobian matrix, and bifurcation diagrams. We observe the coexistence of chaotic and period-4 attractors. Various codimension-1 and -2 patterns for example saddle-node, period-doubling, Neimark-Sacker, double Neimark-Sacker, flip- and fold-Neimark Sacker, and 1:1 and 1:2 resonance are also explored. Furthermore, the study employs two synchronization measures to quantify how the oscillators in the network behave in tandem with each other over a long number of iterations. Finally, a time series analysis of the model is performed to investigate its complexity in terms of sample entropy. 4 authors · May 9, 2024
- Collective Dynamics from Stochastic Thermodynamics From a viewpoint of stochastic thermodynamics, we derive equations that describe the collective dynamics near the order-disorder transition in the globally coupled XY model and near the synchronization-desynchronization transition in the Kuramoto model. A new way of thinking is to interpret the deterministic time evolution of a macroscopic variable as an external operation to a thermodynamic system. We then find that the irreversible work determines the equation for the collective dynamics. When analyzing the Kuramoto model, we employ a generalized concept of irreversible work which originates from a non-equilibrium identity associated with steady state thermodynamics. 1 authors · Dec 30, 2014
- On the higher-order smallest ring star network of Chialvo neurons under diffusive couplings We put forward the dynamical study of a novel higher-order small network of Chialvo neurons arranged in a ring-star topology, with the neurons interacting via linear diffusive couplings. This model is perceived to imitate the nonlinear dynamical properties exhibited by a realistic nervous system where the neurons transfer information through higher-order multi-body interactions. We first analyze our model using the tools from nonlinear dynamics literature: fixed point analysis, Jacobian matrix, and bifurcation patterns. We observe the coexistence of chaotic attractors, and also an intriguing route to chaos starting from a fixed point, to period-doubling, to cyclic quasiperiodic closed invariant curves, to ultimately chaos. We numerically observe the existence of codimension-1 bifurcation patterns: saddle-node, period-doubling, and Neimark Sacker. We also qualitatively study the typical phase portraits of the system and numerically quantify chaos and complexity using the 0-1 test and sample entropy measure respectively. Finally, we study the collective behavior of the neurons in terms of two synchronization measures: the cross-correlation coefficient, and the Kuramoto order parameter. 4 authors · May 9, 2024
30 Streaming DiLoCo with overlapping communication: Towards a Distributed Free Lunch Training of large language models (LLMs) is typically distributed across a large number of accelerators to reduce training time. Since internal states and parameter gradients need to be exchanged at each and every single gradient step, all devices need to be co-located using low-latency high-bandwidth communication links to support the required high volume of exchanged bits. Recently, distributed algorithms like DiLoCo have relaxed such co-location constraint: accelerators can be grouped into ``workers'', where synchronizations between workers only occur infrequently. This in turn means that workers can afford being connected by lower bandwidth communication links without affecting learning quality. However, in these methods, communication across workers still requires the same peak bandwidth as before, as the synchronizations require all parameters to be exchanged across all workers. In this paper, we improve DiLoCo in three ways. First, we synchronize only subsets of parameters in sequence, rather than all at once, which greatly reduces peak bandwidth. Second, we allow workers to continue training while synchronizing, which decreases wall clock time. Third, we quantize the data exchanged by workers, which further reduces bandwidth across workers. By properly combining these modifications, we show experimentally that we can distribute training of billion-scale parameters and reach similar quality as before, but reducing required bandwidth by two orders of magnitude. 14 authors · Jan 30 7
- SyncFusion: Multimodal Onset-synchronized Video-to-Audio Foley Synthesis Sound design involves creatively selecting, recording, and editing sound effects for various media like cinema, video games, and virtual/augmented reality. One of the most time-consuming steps when designing sound is synchronizing audio with video. In some cases, environmental recordings from video shoots are available, which can aid in the process. However, in video games and animations, no reference audio exists, requiring manual annotation of event timings from the video. We propose a system to extract repetitive actions onsets from a video, which are then used - in conjunction with audio or textual embeddings - to condition a diffusion model trained to generate a new synchronized sound effects audio track. In this way, we leave complete creative control to the sound designer while removing the burden of synchronization with video. Furthermore, editing the onset track or changing the conditioning embedding requires much less effort than editing the audio track itself, simplifying the sonification process. We provide sound examples, source code, and pretrained models to faciliate reproducibility 6 authors · Oct 23, 2023
1 Artificial Kuramoto Oscillatory Neurons It has long been known in both neuroscience and AI that ``binding'' between neurons leads to a form of competitive learning where representations are compressed in order to represent more abstract concepts in deeper layers of the network. More recently, it was also hypothesized that dynamic (spatiotemporal) representations play an important role in both neuroscience and AI. Building on these ideas, we introduce Artificial Kuramoto Oscillatory Neurons (AKOrN) as a dynamical alternative to threshold units, which can be combined with arbitrary connectivity designs such as fully connected, convolutional, or attentive mechanisms. Our generalized Kuramoto updates bind neurons together through their synchronization dynamics. We show that this idea provides performance improvements across a wide spectrum of tasks such as unsupervised object discovery, adversarial robustness, calibrated uncertainty quantification, and reasoning. We believe that these empirical results show the importance of rethinking our assumptions at the most basic neuronal level of neural representation, and in particular show the importance of dynamical representations. 4 authors · Oct 17, 2024
- GestSync: Determining who is speaking without a talking head In this paper we introduce a new synchronisation task, Gesture-Sync: determining if a person's gestures are correlated with their speech or not. In comparison to Lip-Sync, Gesture-Sync is far more challenging as there is a far looser relationship between the voice and body movement than there is between voice and lip motion. We introduce a dual-encoder model for this task, and compare a number of input representations including RGB frames, keypoint images, and keypoint vectors, assessing their performance and advantages. We show that the model can be trained using self-supervised learning alone, and evaluate its performance on the LRS3 dataset. Finally, we demonstrate applications of Gesture-Sync for audio-visual synchronisation, and in determining who is the speaker in a crowd, without seeing their faces. The code, datasets and pre-trained models can be found at: https://www.robots.ox.ac.uk/~vgg/research/gestsync. 2 authors · Oct 8, 2023
1 Audio-Synchronized Visual Animation Current visual generation methods can produce high quality videos guided by texts. However, effectively controlling object dynamics remains a challenge. This work explores audio as a cue to generate temporally synchronized image animations. We introduce Audio Synchronized Visual Animation (ASVA), a task animating a static image to demonstrate motion dynamics, temporally guided by audio clips across multiple classes. To this end, we present AVSync15, a dataset curated from VGGSound with videos featuring synchronized audio visual events across 15 categories. We also present a diffusion model, AVSyncD, capable of generating dynamic animations guided by audios. Extensive evaluations validate AVSync15 as a reliable benchmark for synchronized generation and demonstrate our models superior performance. We further explore AVSyncDs potential in a variety of audio synchronized generation tasks, from generating full videos without a base image to controlling object motions with various sounds. We hope our established benchmark can open new avenues for controllable visual generation. More videos on project webpage https://lzhangbj.github.io/projects/asva/asva.html. 4 authors · Mar 8, 2024
- Single replica spin-glass phase detection using field variation and machine learning The Sherrington-Kirkpatrick spin-glass model used the replica symmetry method to find the phase transition of the system. In 1979-1980, Parisi proposed a solution based on replica symmetry breaking (RSB), which allowed him to identify the underlying phases of complex systems such as spin-glasses. Regardless of the method used for detection, the intrinsic phase of a system exists whether or not replicas are considered. We introduce a single replica method of spin-glass phase detection using the field's variation experienced by each spin in a system configuration. This method focuses on a single replica with quenched random couplings. Each spin inevitably observes a different field from the others. Our results show that the mean and variance of fields named "Spontaneous Configurational Field" experienced by spins are suitable indicators to explore different ferromagnetic, paramagnetic, and mixed phases. To classify different phases of the system with defined indicators we have developed an algorithm based on machine learning to analyze the desired samples. 4 authors · Nov 7, 2024
- Progress measures for grokking via mechanistic interpretability Neural networks often exhibit emergent behavior, where qualitatively new capabilities arise from scaling up the amount of parameters, training data, or training steps. One approach to understanding emergence is to find continuous progress measures that underlie the seemingly discontinuous qualitative changes. We argue that progress measures can be found via mechanistic interpretability: reverse-engineering learned behaviors into their individual components. As a case study, we investigate the recently-discovered phenomenon of ``grokking'' exhibited by small transformers trained on modular addition tasks. We fully reverse engineer the algorithm learned by these networks, which uses discrete Fourier transforms and trigonometric identities to convert addition to rotation about a circle. We confirm the algorithm by analyzing the activations and weights and by performing ablations in Fourier space. Based on this understanding, we define progress measures that allow us to study the dynamics of training and split training into three continuous phases: memorization, circuit formation, and cleanup. Our results show that grokking, rather than being a sudden shift, arises from the gradual amplification of structured mechanisms encoded in the weights, followed by the later removal of memorizing components. 5 authors · Jan 12, 2023
1 Artificial Intelligence for EEG Prediction: Applied Chaos Theory In the present research, we delve into the intricate realm of electroencephalogram (EEG) data analysis, focusing on sequence-to-sequence prediction of data across 32 EEG channels. The study harmoniously fuses the principles of applied chaos theory and dynamical systems theory to engender a novel feature set, enriching the representational capacity of our deep learning model. The endeavour's cornerstone is a transformer-based sequence-to-sequence architecture, calibrated meticulously to capture the non-linear and high-dimensional temporal dependencies inherent in EEG sequences. Through judicious architecture design, parameter initialisation strategies, and optimisation techniques, we have navigated the intricate balance between computational expediency and predictive performance. Our model stands as a vanguard in EEG data sequence prediction, demonstrating remarkable generalisability and robustness. The findings not only extend our understanding of EEG data dynamics but also unveil a potent analytical framework that can be adapted to diverse temporal sequence prediction tasks in neuroscience and beyond. 1 authors · Oct 3, 2023
- A brain basis of dynamical intelligence for AI and computational neuroscience The deep neural nets of modern artificial intelligence (AI) have not achieved defining features of biological intelligence, including abstraction, causal learning, and energy-efficiency. While scaling to larger models has delivered performance improvements for current applications, more brain-like capacities may demand new theories, models, and methods for designing artificial learning systems. Here, we argue that this opportunity to reassess insights from the brain should stimulate cooperation between AI research and theory-driven computational neuroscience (CN). To motivate a brain basis of neural computation, we present a dynamical view of intelligence from which we elaborate concepts of sparsity in network structure, temporal dynamics, and interactive learning. In particular, we suggest that temporal dynamics, as expressed through neural synchrony, nested oscillations, and flexible sequences, provide a rich computational layer for reading and updating hierarchical models distributed in long-term memory networks. Moreover, embracing agent-centered paradigms in AI and CN will accelerate our understanding of the complex dynamics and behaviors that build useful world models. A convergence of AI/CN theories and objectives will reveal dynamical principles of intelligence for brains and engineered learning systems. This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting. 3 authors · May 15, 2021
- EgoSonics: Generating Synchronized Audio for Silent Egocentric Videos We introduce EgoSonics, a method to generate semantically meaningful and synchronized audio tracks conditioned on silent egocentric videos. Generating audio for silent egocentric videos could open new applications in virtual reality, assistive technologies, or for augmenting existing datasets. Existing work has been limited to domains like speech, music, or impact sounds and cannot easily capture the broad range of audio frequencies found in egocentric videos. EgoSonics addresses these limitations by building on the strength of latent diffusion models for conditioned audio synthesis. We first encode and process audio and video data into a form that is suitable for generation. The encoded data is used to train our model to generate audio tracks that capture the semantics of the input video. Our proposed SyncroNet builds on top of ControlNet to provide control signals that enables temporal synchronization to the synthesized audio. Extensive evaluations show that our model outperforms existing work in audio quality, and in our newly proposed synchronization evaluation method. Furthermore, we demonstrate downstream applications of our model in improving video summarization. 2 authors · Jul 30, 2024