- Extremely Small BERT Models from Mixed-Vocabulary Training Pretrained language models like BERT have achieved good results on NLP tasks, but are impractical on resource-limited devices due to memory footprint. A large fraction of this footprint comes from the input embeddings with large input vocabulary and embedding dimensions. Existing knowledge distillation methods used for model compression cannot be directly applied to train student models with reduced vocabulary sizes. To this end, we propose a distillation method to align the teacher and student embeddings via mixed-vocabulary training. Our method compresses BERT-LARGE to a task-agnostic model with smaller vocabulary and hidden dimensions, which is an order of magnitude smaller than other distilled BERT models and offers a better size-accuracy trade-off on language understanding benchmarks as well as a practical dialogue task. 4 authors · Sep 25, 2019
5 Multi-Task Contrastive Learning for 8192-Token Bilingual Text Embeddings We introduce a novel suite of state-of-the-art bilingual text embedding models that are designed to support English and another target language. These models are capable of processing lengthy text inputs with up to 8192 tokens, making them highly versatile for a range of natural language processing tasks such as text retrieval, clustering, and semantic textual similarity (STS) calculations. By focusing on bilingual models and introducing a unique multi-task learning objective, we have significantly improved the model performance on STS tasks, which outperforms the capabilities of existing multilingual models in both target language understanding and cross-lingual evaluation tasks. Moreover, our bilingual models are more efficient, requiring fewer parameters and less memory due to their smaller vocabulary needs. Furthermore, we have expanded the Massive Text Embedding Benchmark (MTEB) to include benchmarks for German and Spanish embedding models. This integration aims to stimulate further research and advancement in text embedding technologies for these languages. 19 authors · Feb 26, 2024
1 KR-BERT: A Small-Scale Korean-Specific Language Model Since the appearance of BERT, recent works including XLNet and RoBERTa utilize sentence embedding models pre-trained by large corpora and a large number of parameters. Because such models have large hardware and a huge amount of data, they take a long time to pre-train. Therefore it is important to attempt to make smaller models that perform comparatively. In this paper, we trained a Korean-specific model KR-BERT, utilizing a smaller vocabulary and dataset. Since Korean is one of the morphologically rich languages with poor resources using non-Latin alphabets, it is also important to capture language-specific linguistic phenomena that the Multilingual BERT model missed. We tested several tokenizers including our BidirectionalWordPiece Tokenizer and adjusted the minimal span of tokens for tokenization ranging from sub-character level to character-level to construct a better vocabulary for our model. With those adjustments, our KR-BERT model performed comparably and even better than other existing pre-trained models using a corpus about 1/10 of the size. 5 authors · Aug 10, 2020
- KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications We present the KL3M tokenizers, a family of specialized tokenizers for legal, financial, and governmental text. Despite established work on tokenization, specialized tokenizers for professional domains remain understudied. Our paper offers two main contributions to this area. First, we introduce domain-specific BPE tokenizers for legal, financial, and governmental text. Our kl3m-004-128k-cased tokenizer uses 9-17% fewer tokens than GPT-4o and Llama3 for domain-specific documents, despite having a smaller vocabulary. For specialized terminology, our cased tokenizer is even more efficient, using up to 83% fewer tokens for legal terms and 39% fewer tokens for financial terms. Second, we develop character-level BPE tokenizers (4K, 8K, and 16K vocabulary sizes) for text correction tasks like OCR post-processing. These tokenizers keep consistent token boundaries between error-containing and correct text, making it easier for models to learn correction patterns. These tokenizers help professional applications by fitting more text in context windows, reducing computational needs, and preserving the meaning of domain-specific terms. Our analysis shows these efficiency gains directly benefit the processing of long legal and financial documents. We release all tokenizers and code through GitHub and Hugging Face to support further research in specialized tokenization. 3 authors · Mar 21
- Honey, I Shrunk the Language: Language Model Behavior at Reduced Scale In recent years, language models have drastically grown in size, and the abilities of these models have been shown to improve with scale. The majority of recent scaling laws studies focused on high-compute high-parameter count settings, leaving the question of when these abilities begin to emerge largely unanswered. In this paper, we investigate whether the effects of pre-training can be observed when the problem size is reduced, modeling a smaller, reduced-vocabulary language. We show the benefits of pre-training with masked language modeling (MLM) objective in models as small as 1.25M parameters, and establish a strong correlation between pre-training perplexity and downstream performance (GLUE benchmark). We examine downscaling effects, extending scaling laws to models as small as ~1M parameters. At this scale, we observe a break of the power law for compute-optimal models and show that the MLM loss does not scale smoothly with compute-cost (FLOPs) below 2.2 times 10^{15} FLOPs. We also find that adding layers does not always benefit downstream performance. 5 authors · May 26, 2023
1 Load What You Need: Smaller Versions of Multilingual BERT Pre-trained Transformer-based models are achieving state-of-the-art results on a variety of Natural Language Processing data sets. However, the size of these models is often a drawback for their deployment in real production applications. In the case of multilingual models, most of the parameters are located in the embeddings layer. Therefore, reducing the vocabulary size should have an important impact on the total number of parameters. In this paper, we propose to generate smaller models that handle fewer number of languages according to the targeted corpora. We present an evaluation of smaller versions of multilingual BERT on the XNLI data set, but we believe that this method may be applied to other multilingual transformers. The obtained results confirm that we can generate smaller models that keep comparable results, while reducing up to 45% of the total number of parameters. We compared our models with DistilmBERT (a distilled version of multilingual BERT) and showed that unlike language reduction, distillation induced a 1.7% to 6% drop in the overall accuracy on the XNLI data set. The presented models and code are publicly available. 3 authors · Oct 12, 2020
12 Transferable and Principled Efficiency for Open-Vocabulary Segmentation Recent success of pre-trained foundation vision-language models makes Open-Vocabulary Segmentation (OVS) possible. Despite the promising performance, this approach introduces heavy computational overheads for two challenges: 1) large model sizes of the backbone; 2) expensive costs during the fine-tuning. These challenges hinder this OVS strategy from being widely applicable and affordable in real-world scenarios. Although traditional methods such as model compression and efficient fine-tuning can address these challenges, they often rely on heuristics. This means that their solutions cannot be easily transferred and necessitate re-training on different models, which comes at a cost. In the context of efficient OVS, we target achieving performance that is comparable to or even better than prior OVS works based on large vision-language foundation models, by utilizing smaller models that incur lower training costs. The core strategy is to make our efficiency principled and thus seamlessly transferable from one OVS framework to others without further customization. Comprehensive experiments on diverse OVS benchmarks demonstrate our superior trade-off between segmentation accuracy and computation costs over previous works. Our code is available on https://github.com/Xujxyang/OpenTrans 4 authors · Apr 10, 2024 1
1 An Efficient Multilingual Language Model Compression through Vocabulary Trimming Multilingual language model (LM) have become a powerful tool in NLP especially for non-English languages. Nevertheless, model parameters of multilingual LMs remain large due to the larger embedding matrix of the vocabulary covering tokens in different languages. On the contrary, monolingual LMs can be trained in a target language with the language-specific vocabulary only, but this requires a large budget and availability of reliable corpora to achieve a high-quality LM from scratch. In this paper, we propose vocabulary-trimming (VT), a method to reduce a multilingual LM vocabulary to a target language by deleting irrelevant tokens from its vocabulary. In theory, VT can compress any existing multilingual LM to build monolingual LMs in any language covered by the multilingual LM. In our experiments, we show that VT can retain the original performance of the multilingual LM, while being smaller in size (in general around 50% of the original vocabulary size is enough) than the original multilingual LM. The evaluation is performed over four NLP tasks (two generative and two classification tasks) among four widely used multilingual LMs in seven languages. Finally, we show that this methodology can keep the best of both monolingual and multilingual worlds by keeping a small size as monolingual models without the need for specifically retraining them, and even limiting potentially harmful social biases. 3 authors · May 24, 2023 2
36 INDUS: Effective and Efficient Language Models for Scientific Applications Large language models (LLMs) trained on general domain corpora showed remarkable results on natural language processing (NLP) tasks. However, previous research demonstrated LLMs trained using domain-focused corpora perform better on specialized tasks. Inspired by this pivotal insight, we developed INDUS, a comprehensive suite of LLMs tailored for the Earth science, biology, physics, heliophysics, planetary sciences and astrophysics domains and trained using curated scientific corpora drawn from diverse data sources. The suite of models include: (1) an encoder model trained using domain-specific vocabulary and corpora to address natural language understanding tasks, (2) a contrastive-learning-based general text embedding model trained using a diverse set of datasets drawn from multiple sources to address information retrieval tasks and (3) smaller versions of these models created using knowledge distillation techniques to address applications which have latency or resource constraints. We also created three new scientific benchmark datasets namely, CLIMATE-CHANGE-NER (entity-recognition), NASA-QA (extractive QA) and NASA-IR (IR) to accelerate research in these multi-disciplinary fields. Finally, we show that our models outperform both general-purpose encoders (RoBERTa) and existing domain-specific encoders (SciBERT) on these new tasks as well as existing benchmark tasks in the domains of interest. 34 authors · May 17, 2024 1
- Fast Passage Re-ranking with Contextualized Exact Term Matching and Efficient Passage Expansion BERT-based information retrieval models are expensive, in both time (query latency) and computational resources (energy, hardware cost), making many of these models impractical especially under resource constraints. The reliance on a query encoder that only performs tokenization and on the pre-processing of passage representations at indexing, has allowed the recently proposed TILDE method to overcome the high query latency issue typical of BERT-based models. This however is at the expense of a lower effectiveness compared to other BERT-based re-rankers and dense retrievers. In addition, the original TILDE method is characterised by indexes with a very high memory footprint, as it expands each passage into the size of the BERT vocabulary. In this paper, we propose TILDEv2, a new model that stems from the original TILDE but that addresses its limitations. TILDEv2 relies on contextualized exact term matching with expanded passages. This requires to only store in the index the score of tokens that appear in the expanded passages (rather than all the vocabulary), thus producing indexes that are 99% smaller than those of TILDE. This matching mechanism also improves ranking effectiveness by 24%, without adding to the query latency. This makes TILDEv2 the state-of-the-art passage re-ranking method for CPU-only environments, capable of maintaining query latency below 100ms on commodity hardware. 2 authors · Aug 19, 2021
- Systematic Rectification of Language Models via Dead-end Analysis With adversarial or otherwise normal prompts, existing large language models (LLM) can be pushed to generate toxic discourses. One way to reduce the risk of LLMs generating undesired discourses is to alter the training of the LLM. This can be very restrictive due to demanding computation requirements. Other methods rely on rule-based or prompt-based token elimination, which are limited as they dismiss future tokens and the overall meaning of the complete discourse. Here, we center detoxification on the probability that the finished discourse is ultimately considered toxic. That is, at each point, we advise against token selections proportional to how likely a finished text from this point will be toxic. To this end, we formally extend the dead-end theory from the recent reinforcement learning (RL) literature to also cover uncertain outcomes. Our approach, called rectification, utilizes a separate but significantly smaller model for detoxification, which can be applied to diverse LLMs as long as they share the same vocabulary. Importantly, our method does not require access to the internal representations of the LLM, but only the token probability distribution at each decoding step. This is crucial as many LLMs today are hosted in servers and only accessible through APIs. When applied to various LLMs, including GPT-3, our approach significantly improves the generated discourse compared to the base LLMs and other techniques in terms of both the overall language and detoxification performance. 4 authors · Feb 27, 2023
- Is context all you need? Scaling Neural Sign Language Translation to Large Domains of Discourse Sign Language Translation (SLT) is a challenging task that aims to generate spoken language sentences from sign language videos, both of which have different grammar and word/gloss order. From a Neural Machine Translation (NMT) perspective, the straightforward way of training translation models is to use sign language phrase-spoken language sentence pairs. However, human interpreters heavily rely on the context to understand the conveyed information, especially for sign language interpretation, where the vocabulary size may be significantly smaller than their spoken language equivalent. Taking direct inspiration from how humans translate, we propose a novel multi-modal transformer architecture that tackles the translation task in a context-aware manner, as a human would. We use the context from previous sequences and confident predictions to disambiguate weaker visual cues. To achieve this we use complementary transformer encoders, namely: (1) A Video Encoder, that captures the low-level video features at the frame-level, (2) A Spotting Encoder, that models the recognized sign glosses in the video, and (3) A Context Encoder, which captures the context of the preceding sign sequences. We combine the information coming from these encoders in a final transformer decoder to generate spoken language translations. We evaluate our approach on the recently published large-scale BOBSL dataset, which contains ~1.2M sequences, and on the SRF dataset, which was part of the WMT-SLT 2022 challenge. We report significant improvements on state-of-the-art translation performance using contextual information, nearly doubling the reported BLEU-4 scores of baseline approaches. 3 authors · Aug 18, 2023
- Audio tagging with noisy labels and minimal supervision This paper introduces Task 2 of the DCASE2019 Challenge, titled "Audio tagging with noisy labels and minimal supervision". This task was hosted on the Kaggle platform as "Freesound Audio Tagging 2019". The task evaluates systems for multi-label audio tagging using a large set of noisy-labeled data, and a much smaller set of manually-labeled data, under a large vocabulary setting of 80 everyday sound classes. In addition, the proposed dataset poses an acoustic mismatch problem between the noisy train set and the test set due to the fact that they come from different web audio sources. This can correspond to a realistic scenario given by the difficulty in gathering large amounts of manually labeled data. We present the task setup, the FSDKaggle2019 dataset prepared for this scientific evaluation, and a baseline system consisting of a convolutional neural network. All these resources are freely available. 5 authors · Jun 7, 2019
- Large Vocabulary Size Improves Large Language Models This paper empirically investigates the relationship between subword vocabulary size and the performance of large language models (LLMs) to provide insights on how to define the vocabulary size. Experimental results show that larger vocabulary sizes lead to better performance in LLMs. Moreover, we consider a continual training scenario where a pre-trained language model is trained on a different target language. We introduce a simple method to use a new vocabulary instead of the pre-defined one. We show that using the new vocabulary outperforms the model with the vocabulary used in pre-training. 4 authors · Jun 24, 2024
- Mini Minds: Exploring Bebeshka and Zlata Baby Models In this paper, we describe the University of Lyon 2 submission to the Strict-Small track of the BabyLM competition. The shared task is created with an emphasis on small-scale language modelling from scratch on limited-size data and human language acquisition. Dataset released for the Strict-Small track has 10M words, which is comparable to children's vocabulary size. We approach the task with an architecture search, minimizing masked language modelling loss on the data of the shared task. Having found an optimal configuration, we introduce two small-size language models (LMs) that were submitted for evaluation, a 4-layer encoder with 8 attention heads and a 6-layer decoder model with 12 heads which we term Bebeshka and Zlata, respectively. Despite being half the scale of the baseline LMs, our proposed models achieve comparable performance. We further explore the applicability of small-scale language models in tasks involving moral judgment, aligning their predictions with human values. These findings highlight the potential of compact LMs in addressing practical language understanding tasks. 3 authors · Nov 6, 2023
- Can Small Language Models Learn, Unlearn, and Retain Noise Patterns? Small Language Models (SLMs) are generally considered to be more compact versions of large language models (LLMs), typically having fewer than 7 billion parameters. This study investigates the ability of small language models to learn, retain, and subsequently eliminate noise that is typically not found on the internet, where most pretraining datasets are sourced. For this, four pre-trained SLMs were utilized: Olmo 1B, Qwen1.5 1.8B, Gemma 2B, and Phi2 2.7B. The models were instruction-tuned without noise and tested for task execution with in-context learning. Afterward, noise patterns were introduced to evaluate the models' learning and unlearning capabilities. We evaluated the models' performance at various training levels. Phi consistently excelled with word-level noise but performed the worst with character-level noise. Despite being the smallest with approximately 1 billion parameters, Olmo performed consistently well on tasks. 3 authors · Jul 1, 2024
- Faster Learned Sparse Retrieval with Block-Max Pruning Learned sparse retrieval systems aim to combine the effectiveness of contextualized language models with the scalability of conventional data structures such as inverted indexes. Nevertheless, the indexes generated by these systems exhibit significant deviations from the ones that use traditional retrieval models, leading to a discrepancy in the performance of existing query optimizations that were specifically developed for traditional structures. These disparities arise from structural variations in query and document statistics, including sub-word tokenization, leading to longer queries, smaller vocabularies, and different score distributions within posting lists. This paper introduces Block-Max Pruning (BMP), an innovative dynamic pruning strategy tailored for indexes arising in learned sparse retrieval environments. BMP employs a block filtering mechanism to divide the document space into small, consecutive document ranges, which are then aggregated and sorted on the fly, and fully processed only as necessary, guided by a defined safe early termination criterion or based on approximate retrieval requirements. Through rigorous experimentation, we show that BMP substantially outperforms existing dynamic pruning strategies, offering unparalleled efficiency in safe retrieval contexts and improved tradeoffs between precision and efficiency in approximate retrieval tasks. 3 authors · May 2, 2024
57 Scaling Laws with Vocabulary: Larger Models Deserve Larger Vocabularies Research on scaling large language models (LLMs) has primarily focused on model parameters and training data size, overlooking the role of vocabulary size. % Intuitively, larger vocabularies enable more efficient tokenization by representing sentences with fewer tokens, but they also increase the risk of under-fitting representations for rare tokens. We investigate how vocabulary size impacts LLM scaling laws by training models ranging from 33M to 3B parameters on up to 500B characters with various vocabulary configurations. We propose three complementary approaches for predicting the compute-optimal vocabulary size: IsoFLOPs analysis, derivative estimation, and parametric fit of the loss function. Our approaches converge on the same result that the optimal vocabulary size depends on the available compute budget and that larger models deserve larger vocabularies. However, most LLMs use too small vocabulary sizes. For example, we predict that the optimal vocabulary size of Llama2-70B should have been at least 216K, 7 times larger than its vocabulary of 32K. We validate our predictions empirically by training models with 3B parameters across different FLOPs budgets. Adopting our predicted optimal vocabulary size consistently improves downstream performance over commonly used vocabulary sizes. By increasing the vocabulary size from the conventional 32K to 43K, we improve performance on ARC-Challenge from 29.1 to 32.0 with the same 2.3e21 FLOPs. Our work emphasizes the necessity of jointly considering model parameters and vocabulary size for efficient scaling. 8 authors · Jul 18, 2024 6
1 Answering Unseen Questions With Smaller Language Models Using Rationale Generation and Dense Retrieval When provided with sufficient explanatory context, smaller Language Models have been shown to exhibit strong reasoning ability on challenging short-answer question-answering tasks where the questions are unseen in training. We evaluate two methods for further improvement in this setting. Both methods focus on combining rationales generated by a larger Language Model with longer contexts created from a multi-hop dense retrieval system. The first method (RR) involves training a Rationale Ranking model to score both generated rationales and retrieved contexts with respect to relevance and truthfulness. We then use the scores to derive combined contexts from both knowledge sources using a number of combinatory strategies. For the second method (RATD) we utilise retrieval-augmented training datasets developed by Hartill et al. 2023 to train a smaller Reasoning model such that it becomes proficient at utilising relevant information from longer text sequences that may be only partially evidential and frequently contain many irrelevant sentences. We find that both methods significantly improve results. Our single best Reasoning model materially improves upon strong comparable prior baselines for unseen evaluation datasets (StrategyQA 58.9 rightarrow 61.7 acc., CommonsenseQA 63.6 rightarrow 72.7 acc., ARC-DA 31.6 rightarrow 52.1 F1, IIRC 25.5 rightarrow 27.3 F1) and a version utilising our prior knowledge of each type of question in selecting a context combination strategy does even better. Our proposed models also generally outperform direct prompts against much larger models (BLOOM 175B and StableVicuna 13B) in both few-shot chain-of-thought and standard few-shot settings. 4 authors · Aug 9, 2023
- Developing and Evaluating Tiny to Medium-Sized Turkish BERT Models This study introduces and evaluates tiny, mini, small, and medium-sized uncased Turkish BERT models, aiming to bridge the research gap in less-resourced languages. We trained these models on a diverse dataset encompassing over 75GB of text from multiple sources and tested them on several tasks, including mask prediction, sentiment analysis, news classification, and, zero-shot classification. Despite their smaller size, our models exhibited robust performance, including zero-shot task, while ensuring computational efficiency and faster execution times. Our findings provide valuable insights into the development and application of smaller language models, especially in the context of the Turkish language. 3 authors · Jul 26, 2023
1 Heaps' law and Heaps functions in tagged texts: Evidences of their linguistic relevance We study the relationship between vocabulary size and text length in a corpus of 75 literary works in English, authored by six writers, distinguishing between the contributions of three grammatical classes (or ``tags,'' namely, {\it nouns}, {\it verbs}, and {\it others}), and analyze the progressive appearance of new words of each tag along each individual text. While the power-law relation prescribed by Heaps' law is satisfactorily fulfilled by total vocabulary sizes and text lengths, the appearance of new words in each text is on the whole well described by the average of random shufflings of the text, which does not obey a power law. Deviations from this average, however, are statistically significant and show a systematic trend across the corpus. Specifically, they reveal that the appearance of new words along each text is predominantly retarded with respect to the average of random shufflings. Moreover, different tags are shown to add systematically distinct contributions to this tendency, with {\it verbs} and {\it others} being respectively more and less retarded than the mean trend, and {\it nouns} following instead this overall mean. These statistical systematicities are likely to point to the existence of linguistically relevant information stored in the different variants of Heaps' law, a feature that is still in need of extensive assessment. 2 authors · Jan 7, 2020
10 The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants We present Belebele, a multiple-choice machine reading comprehension (MRC) dataset spanning 122 language variants. Significantly expanding the language coverage of natural language understanding (NLU) benchmarks, this dataset enables the evaluation of text models in high-, medium-, and low-resource languages. Each question is based on a short passage from the Flores-200 dataset and has four multiple-choice answers. The questions were carefully curated to discriminate between models with different levels of general language comprehension. The English dataset on its own proves difficult enough to challenge state-of-the-art language models. Being fully parallel, this dataset enables direct comparison of model performance across all languages. We use this dataset to evaluate the capabilities of multilingual masked language models (MLMs) and large language models (LLMs). We present extensive results and find that despite significant cross-lingual transfer in English-centric LLMs, much smaller MLMs pretrained on balanced multilingual data still understand far more languages. We also observe that larger vocabulary size and conscious vocabulary construction correlate with better performance on low-resource languages. Overall, Belebele opens up new avenues for evaluating and analyzing the multilingual capabilities of NLP systems. 10 authors · Aug 31, 2023
- Reasoning or Simply Next Token Prediction? A Benchmark for Stress-Testing Large Language Models We propose MMLU-SR, a novel dataset designed to measure the true comprehension abilities of Large Language Models (LLMs) by challenging their performance in question-answering tasks with modified terms. We reasoned that an agent that ``truly'' understands a concept can still evaluate it when key terms are replaced by suitably defined alternate terms, and sought to differentiate such comprehension from mere text replacement. In our study, we modified standardized test questions by replacing a key term with a dummy word along with its definition. The key term could be in the context of questions, answers, or both questions and answers. Notwithstanding the high scores achieved by recent popular LLMs on the MMLU leaderboard, we found a substantial reduction in model performance after such replacement, suggesting poor comprehension. This new benchmark provides a rigorous benchmark for testing true model comprehension, and poses a challenge to the broader scientific community. 5 authors · Jun 15, 2024
1 Text Data Augmentation in Low-Resource Settings via Fine-Tuning of Large Language Models The in-context learning ability of large language models (LLMs) enables them to generalize to novel downstream tasks with relatively few labeled examples. However, they require enormous computational resources to be deployed. Alternatively, smaller models can solve specific tasks if fine-tuned with enough labeled examples. These examples, however, are expensive to obtain. In pursuit of the best of both worlds, we study the annotation and generation of fine-tuning training data via fine-tuned teacher LLMs to improve the downstream performance of much smaller models. In four text classification and two text generation tasks, we find that both data generation and annotation dramatically improve the respective downstream model's performance, occasionally necessitating only a minor fraction of the original training dataset. 2 authors · Oct 2, 2023
- Spanish Legalese Language Model and Corpora There are many Language Models for the English language according to its worldwide relevance. However, for the Spanish language, even if it is a widely spoken language, there are very few Spanish Language Models which result to be small and too general. Legal slang could be think of a Spanish variant on its own as it is very complicated in vocabulary, semantics and phrase understanding. For this work we gathered legal-domain corpora from different sources, generated a model and evaluated against Spanish general domain tasks. The model provides reasonable results in those tasks. 4 authors · Oct 23, 2021
26 Improving Text Embeddings for Smaller Language Models Using Contrastive Fine-tuning While Large Language Models show remarkable performance in natural language understanding, their resource-intensive nature makes them less accessible. In contrast, smaller language models such as MiniCPM offer more sustainable scalability, but often underperform without specialized optimization. In this paper, we explore the enhancement of smaller language models through the improvement of their text embeddings. We select three language models, MiniCPM, Phi-2, and Gemma, to conduct contrastive fine-tuning on the NLI dataset. Our results demonstrate that this fine-tuning method enhances the quality of text embeddings for all three models across various benchmarks, with MiniCPM showing the most significant improvements of an average 56.33\% performance gain. The contrastive fine-tuning code is publicly available at https://github.com/trapoom555/Language-Model-STS-CFT. 3 authors · Aug 1, 2024 6
- Key-Element-Informed sLLM Tuning for Document Summarization Remarkable advances in large language models (LLMs) have enabled high-quality text summarization. However, this capability is currently accessible only through LLMs of substantial size or proprietary LLMs with usage fees. In response, smaller-scale LLMs (sLLMs) of easy accessibility and low costs have been extensively studied, yet they often suffer from missing key information and entities, i.e., low relevance, in particular, when input documents are long. We hence propose a key-element-informed instruction tuning for summarization, so-called KEITSum, which identifies key elements in documents and instructs sLLM to generate summaries capturing these key elements. Experimental results on dialogue and news datasets demonstrate that sLLM with KEITSum indeed provides high-quality summarization with higher relevance and less hallucinations, competitive to proprietary LLM. 5 authors · Jun 7, 2024
- Improving Pre-trained Language Model Sensitivity via Mask Specific losses: A case study on Biomedical NER Adapting language models (LMs) to novel domains is often achieved through fine-tuning a pre-trained LM (PLM) on domain-specific data. Fine-tuning introduces new knowledge into an LM, enabling it to comprehend and efficiently perform a target domain task. Fine-tuning can however be inadvertently insensitive if it ignores the wide array of disparities (e.g in word meaning) between source and target domains. For instance, words such as chronic and pressure may be treated lightly in social conversations, however, clinically, these words are usually an expression of concern. To address insensitive fine-tuning, we propose Mask Specific Language Modeling (MSLM), an approach that efficiently acquires target domain knowledge by appropriately weighting the importance of domain-specific terms (DS-terms) during fine-tuning. MSLM jointly masks DS-terms and generic words, then learns mask-specific losses by ensuring LMs incur larger penalties for inaccurately predicting DS-terms compared to generic words. Results of our analysis show that MSLM improves LMs sensitivity and detection of DS-terms. We empirically show that an optimal masking rate not only depends on the LM, but also on the dataset and the length of sequences. Our proposed masking strategy outperforms advanced masking strategies such as span- and PMI-based masking. 5 authors · Mar 26, 2024
34 TinyStories: How Small Can Language Models Be and Still Speak Coherent English? Language models (LMs) are powerful tools for natural language processing, but they often struggle to produce coherent and fluent text when they are small. Models with around 125M parameters such as GPT-Neo (small) or GPT-2 (small) can rarely generate coherent and consistent English text beyond a few words even after extensive training. This raises the question of whether the emergence of the ability to produce coherent English text only occurs at larger scales (with hundreds of millions of parameters or more) and complex architectures (with many layers of global attention). In this work, we introduce TinyStories, a synthetic dataset of short stories that only contain words that a typical 3 to 4-year-olds usually understand, generated by GPT-3.5 and GPT-4. We show that TinyStories can be used to train and evaluate LMs that are much smaller than the state-of-the-art models (below 10 million total parameters), or have much simpler architectures (with only one transformer block), yet still produce fluent and consistent stories with several paragraphs that are diverse and have almost perfect grammar, and demonstrate reasoning capabilities. We also introduce a new paradigm for the evaluation of language models: We suggest a framework which uses GPT-4 to grade the content generated by these models as if those were stories written by students and graded by a (human) teacher. This new paradigm overcomes the flaws of standard benchmarks which often requires the model's output to be very structures, and moreover provides a multidimensional score for the model, providing scores for different capabilities such as grammar, creativity and consistency. We hope that TinyStories can facilitate the development, analysis and research of LMs, especially for low-resource or specialized domains, and shed light on the emergence of language capabilities in LMs. 2 authors · May 12, 2023 9
1 Cross-model Control: Improving Multiple Large Language Models in One-time Training The number of large language models (LLMs) with varying parameter scales and vocabularies is increasing. While they deliver powerful performance, they also face a set of common optimization needs to meet specific requirements or standards, such as instruction following or avoiding the output of sensitive information from the real world. However, how to reuse the fine-tuning outcomes of one model to other models to reduce training costs remains a challenge. To bridge this gap, we introduce Cross-model Control (CMC), a method that improves multiple LLMs in one-time training with a portable tiny language model. Specifically, we have observed that the logit shift before and after fine-tuning is remarkably similar across different models. Based on this insight, we incorporate a tiny language model with a minimal number of parameters. By training alongside a frozen template LLM, the tiny model gains the capability to alter the logits output by the LLMs. To make this tiny language model applicable to models with different vocabularies, we propose a novel token mapping strategy named PM-MinED. We have conducted extensive experiments on instruction tuning and unlearning tasks, demonstrating the effectiveness of CMC. Our code is available at https://github.com/wujwyi/CMC. 8 authors · Oct 23, 2024
- Prompts as Auto-Optimized Training Hyperparameters: Training Best-in-Class IR Models from Scratch with 10 Gold Labels We develop a method for training small-scale (under 100M parameter) neural information retrieval models with as few as 10 gold relevance labels. The method depends on generating synthetic queries for documents using a language model (LM), and the key step is that we automatically optimize the LM prompt that is used to generate these queries based on training quality. In experiments with the BIRCO benchmark, we find that models trained with our method outperform RankZephyr and are competitive with RankLLama, both of which are 7B parameter models trained on over 100K labels. These findings point to the power of automatic prompt optimization for synthetic dataset generation. 10 authors · Jun 17, 2024
- Too Much Information: Keeping Training Simple for BabyLMs This paper details the work of the University of Groningen for the BabyLM Challenge. We follow the idea that, like babies, language models should be introduced to simpler concepts first and build off of that knowledge to understand more complex concepts. We examine this strategy of simple-then-complex through a variety of lenses, namely context size, vocabulary, and overall linguistic complexity of the data. We find that only one, context size, is truly beneficial to training a language model. However this simple change to context size gives us improvements of 2 points on average on (Super)GLUE tasks, 1 point on MSGS tasks, and 12\% on average on BLiMP tasks. Our context-limited model outperforms the baseline that was trained on 10times the amount of data. 2 authors · Nov 3, 2023
- Large Language Model Inference with Lexical Shortlisting Large language model (LLM) inference is computation and memory intensive, so we adapt lexical shortlisting to it hoping to improve both. While lexical shortlisting is well-explored in tasks like machine translation, it requires modifications before being suitable for LLMs as the intended applications vary significantly. Our work studies two heuristics to shortlist sub-vocabulary at LLM inference time: Unicode-based script filtering and corpus-based selection. We explore different LLM families and sizes, and we find that lexical shortlisting can reduce the memory usage of some models by nearly 50\% and has an upper bound of 25\% improvement in generation speed. In this pilot study, we also identify the drawbacks of such vocabulary selection methods and propose avenues for future research. 4 authors · Nov 16, 2023
- Large Pre-Trained Models with Extra-Large Vocabularies: A Contrastive Analysis of Hebrew BERT Models and a New One to Outperform Them All We present a new pre-trained language model (PLM) for modern Hebrew, termed AlephBERTGimmel, which employs a much larger vocabulary (128K items) than standard Hebrew PLMs before. We perform a contrastive analysis of this model against all previous Hebrew PLMs (mBERT, heBERT, AlephBERT) and assess the effects of larger vocabularies on task performance. Our experiments show that larger vocabularies lead to fewer splits, and that reducing splits is better for model performance, across different tasks. All in all this new model achieves new SOTA on all available Hebrew benchmarks, including Morphological Segmentation, POS Tagging, Full Morphological Analysis, NER, and Sentiment Analysis. Subsequently we advocate for PLMs that are larger not only in terms of number of layers or training data, but also in terms of their vocabulary. We release the new model publicly for unrestricted use. 9 authors · Nov 28, 2022
- Small Language Models for Application Interactions: A Case Study We study the efficacy of Small Language Models (SLMs) in facilitating application usage through natural language interactions. Our focus here is on a particular internal application used in Microsoft for cloud supply chain fulfilment. Our experiments show that small models can outperform much larger ones in terms of both accuracy and running time, even when fine-tuned on small datasets. Alongside these results, we also highlight SLM-based system design considerations. 5 authors · May 23, 2024
1 It's Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners When scaled to hundreds of billions of parameters, pretrained language models such as GPT-3 (Brown et al., 2020) achieve remarkable few-shot performance. However, enormous amounts of compute are required for training and applying such big models, resulting in a large carbon footprint and making it difficult for researchers and practitioners to use them. We show that performance similar to GPT-3 can be obtained with language models that are much "greener" in that their parameter count is several orders of magnitude smaller. This is achieved by converting textual inputs into cloze questions that contain a task description, combined with gradient-based optimization; exploiting unlabeled data gives further improvements. We identify key factors required for successful natural language understanding with small language models. 2 authors · Sep 15, 2020
- Emergent Abilities in Reduced-Scale Generative Language Models Large language models can solve new tasks without task-specific fine-tuning. This ability, also known as in-context learning (ICL), is considered an emergent ability and is primarily seen in large language models with billions of parameters. This study investigates if such emergent properties are strictly tied to model size or can be demonstrated by smaller models trained on reduced-scale data. To explore this, we simplify pre-training data and pre-train 36 causal language models with parameters varying from 1 million to 165 million parameters. We show that models trained on this simplified pre-training data demonstrate enhanced zero-shot capabilities across various tasks in simplified language, achieving performance comparable to that of pre-trained models six times larger on unrestricted language. This suggests that downscaling the language allows zero-shot learning capabilities to emerge in models with limited size. Additionally, we find that these smaller models pre-trained on simplified data demonstrate a power law relationship between the evaluation loss and the three scaling factors: compute, dataset size, and model size. 4 authors · Apr 2, 2024
2 Dr. LLaMA: Improving Small Language Models in Domain-Specific QA via Generative Data Augmentation Large Language Models (LLMs) have made significant strides in natural language processing but face challenges in terms of computational expense and inefficiency as they grow in size, especially in domain-specific tasks. Small Language Models (SLMs), on the other hand, often struggle in these tasks due to limited capacity and training data. In this paper, we introduce Dr. LLaMA, a method for improving SLMs through generative data augmentation using LLMs, focusing on medical question-answering tasks and the PubMedQA dataset. Our findings indicate that LLMs effectively refine and diversify existing question-answer pairs, resulting in improved performance of a much smaller model on domain-specific QA datasets after fine-tuning. This study highlights the challenges of using LLMs for domain-specific question answering and suggests potential research directions to address these limitations, ultimately aiming to create more efficient and capable models for specialized applications. We have also made our code available for interested researchers 4 authors · May 12, 2023 1
- Scaling BERT Models for Turkish Automatic Punctuation and Capitalization Correction This paper investigates the effectiveness of BERT based models for automated punctuation and capitalization corrections in Turkish texts across five distinct model sizes. The models are designated as Tiny, Mini, Small, Medium, and Base. The design and capabilities of each model are tailored to address the specific challenges of the Turkish language, with a focus on optimizing performance while minimizing computational overhead. The study presents a systematic comparison of the performance metrics precision, recall, and F1 score of each model, offering insights into their applicability in diverse operational contexts. The results demonstrate a significant improvement in text readability and accuracy as model size increases, with the Base model achieving the highest correction precision. This research provides a comprehensive guide for selecting the appropriate model size based on specific user needs and computational resources, establishing a framework for deploying these models in real-world applications to enhance the quality of written Turkish. 4 authors · Dec 3, 2024 1
- mALBERT: Is a Compact Multilingual BERT Model Still Worth It? Within the current trend of Pretained Language Models (PLM), emerge more and more criticisms about the ethical andecological impact of such models. In this article, considering these critical remarks, we propose to focus on smallermodels, such as compact models like ALBERT, which are more ecologically virtuous than these PLM. However,PLMs enable huge breakthroughs in Natural Language Processing tasks, such as Spoken and Natural LanguageUnderstanding, classification, Question--Answering tasks. PLMs also have the advantage of being multilingual, and,as far as we know, a multilingual version of compact ALBERT models does not exist. Considering these facts, wepropose the free release of the first version of a multilingual compact ALBERT model, pre-trained using Wikipediadata, which complies with the ethical aspect of such a language model. We also evaluate the model against classicalmultilingual PLMs in classical NLP tasks. Finally, this paper proposes a rare study on the subword tokenizationimpact on language performances. 3 authors · Mar 27, 2024
- XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models Large multilingual language models typically rely on a single vocabulary shared across 100+ languages. As these models have increased in parameter count and depth, vocabulary size has remained largely unchanged. This vocabulary bottleneck limits the representational capabilities of multilingual models like XLM-R. In this paper, we introduce a new approach for scaling to very large multilingual vocabularies by de-emphasizing token sharing between languages with little lexical overlap and assigning vocabulary capacity to achieve sufficient coverage for each individual language. Tokenizations using our vocabulary are typically more semantically meaningful and shorter compared to XLM-R. Leveraging this improved vocabulary, we train XLM-V, a multilingual language model with a one million token vocabulary. XLM-V outperforms XLM-R on every task we tested on ranging from natural language inference (XNLI), question answering (MLQA, XQuAD, TyDiQA), and named entity recognition (WikiAnn) to low-resource tasks (Americas NLI, MasakhaNER). 8 authors · Jan 25, 2023
87 Textbooks Are All You Need II: phi-1.5 technical report We continue the investigation into the power of smaller Transformer-based language models as initiated by TinyStories -- a 10 million parameter model that can produce coherent English -- and the follow-up work on phi-1, a 1.3 billion parameter model with Python coding performance close to the state-of-the-art. The latter work proposed to use existing Large Language Models (LLMs) to generate ``textbook quality" data as a way to enhance the learning process compared to traditional web data. We follow the ``Textbooks Are All You Need" approach, focusing this time on common sense reasoning in natural language, and create a new 1.3 billion parameter model named phi-1.5, with performance on natural language tasks comparable to models 5x larger, and surpassing most non-frontier LLMs on more complex reasoning tasks such as grade-school mathematics and basic coding. More generally, phi-1.5 exhibits many of the traits of much larger LLMs, both good -- such as the ability to ``think step by step" or perform some rudimentary in-context learning -- and bad, including hallucinations and the potential for toxic and biased generations -- encouragingly though, we are seeing improvement on that front thanks to the absence of web data. We open-source phi-1.5 to promote further research on these urgent topics. 6 authors · Sep 11, 2023 5
- A Comprehensive Survey of Small Language Models in the Era of Large Language Models: Techniques, Enhancements, Applications, Collaboration with LLMs, and Trustworthiness Large language models (LLM) have demonstrated emergent abilities in text generation, question answering, and reasoning, facilitating various tasks and domains. Despite their proficiency in various tasks, LLMs like LaPM 540B and Llama-3.1 405B face limitations due to large parameter sizes and computational demands, often requiring cloud API use which raises privacy concerns, limits real-time applications on edge devices, and increases fine-tuning costs. Additionally, LLMs often underperform in specialized domains such as healthcare and law due to insufficient domain-specific knowledge, necessitating specialized models. Therefore, Small Language Models (SLMs) are increasingly favored for their low inference latency, cost-effectiveness, efficient development, and easy customization and adaptability. These models are particularly well-suited for resource-limited environments and domain knowledge acquisition, addressing LLMs' challenges and proving ideal for applications that require localized data handling for privacy, minimal inference latency for efficiency, and domain knowledge acquisition through lightweight fine-tuning. The rising demand for SLMs has spurred extensive research and development. However, a comprehensive survey investigating issues related to the definition, acquisition, application, enhancement, and reliability of SLM remains lacking, prompting us to conduct a detailed survey on these topics. The definition of SLMs varies widely, thus to standardize, we propose defining SLMs by their capability to perform specialized tasks and suitability for resource-constrained settings, setting boundaries based on the minimal size for emergent abilities and the maximum size sustainable under resource constraints. For other aspects, we provide a taxonomy of relevant models/methods and develop general frameworks for each category to enhance and utilize SLMs effectively. 14 authors · Nov 3, 2024
1 Knowledge-Augmented Reasoning Distillation for Small Language Models in Knowledge-Intensive Tasks Large Language Models (LLMs) have shown promising performance in knowledge-intensive reasoning tasks that require a compound understanding of knowledge. However, deployment of the LLMs in real-world applications can be challenging due to their high computational requirements and concerns on data privacy. Previous studies have focused on building task-specific small language models (LMs) by fine-tuning them with labeled data or distilling LLMs. However, these approaches are ill-suited for knowledge-intensive reasoning tasks due to the limited capacity of small LMs in memorizing the knowledge required. Motivated by our theoretical analysis on memorization, we propose Knowledge-Augmented Reasoning Distillation (KARD), a novel method that fine-tunes small LMs to generate rationales with augmented knowledge retrieved from an external knowledge base. Moreover, we further propose a neural reranker to obtain documents relevant to rationale generation. We empirically show that KARD significantly improves the performance of small T5 and Flan-T5 models on the challenging knowledge-intensive reasoning datasets, namely MedQA-USMLE and StrategyQA. Notably, our method makes the 250M models achieve superior performance against the fine-tuned 3B models, having 12 times larger parameters, on both MedQA-USMLE and StrategyQA benchmarks. 5 authors · May 28, 2023
- Train More Parameters But Mind Their Placement: Insights into Language Adaptation with PEFT Smaller LLMs still face significant challenges even in medium-resourced languages, particularly when it comes to language-specific knowledge -- a problem not easily resolved with machine-translated data. In this case study on Icelandic, we aim to enhance the generation performance of an LLM by specialising it using unstructured text corpora. A key focus is on preventing interference with the models' capabilities of handling longer context during this adaptation. Through ablation studies using various parameter-efficient fine-tuning (PEFT) methods and setups, we find that increasing the number of trainable parameters leads to better and more robust language adaptation. LoRAs placed in the feed-forward layers and bottleneck adapters show promising results with sufficient parameters, while prefix tuning and (IA)3 are not suitable. Although improvements are consistent in 0-shot summarisation, some adapted models struggle with longer context lengths, an issue that can be mitigated by adapting only the final layers. 1 authors · Dec 17, 2024
- MFAQ: a Multilingual FAQ Dataset In this paper, we present the first multilingual FAQ dataset publicly available. We collected around 6M FAQ pairs from the web, in 21 different languages. Although this is significantly larger than existing FAQ retrieval datasets, it comes with its own challenges: duplication of content and uneven distribution of topics. We adopt a similar setup as Dense Passage Retrieval (DPR) and test various bi-encoders on this dataset. Our experiments reveal that a multilingual model based on XLM-RoBERTa achieves the best results, except for English. Lower resources languages seem to learn from one another as a multilingual model achieves a higher MRR than language-specific ones. Our qualitative analysis reveals the brittleness of the model on simple word changes. We publicly release our dataset, model and training script. 4 authors · Sep 27, 2021
- textTOvec: Deep Contextualized Neural Autoregressive Topic Models of Language with Distributed Compositional Prior We address two challenges of probabilistic topic modelling in order to better estimate the probability of a word in a given context, i.e., P(word|context): (1) No Language Structure in Context: Probabilistic topic models ignore word order by summarizing a given context as a "bag-of-word" and consequently the semantics of words in the context is lost. The LSTM-LM learns a vector-space representation of each word by accounting for word order in local collocation patterns and models complex characteristics of language (e.g., syntax and semantics), while the TM simultaneously learns a latent representation from the entire document and discovers the underlying thematic structure. We unite two complementary paradigms of learning the meaning of word occurrences by combining a TM (e.g., DocNADE) and a LM in a unified probabilistic framework, named as ctx-DocNADE. (2) Limited Context and/or Smaller training corpus of documents: In settings with a small number of word occurrences (i.e., lack of context) in short text or data sparsity in a corpus of few documents, the application of TMs is challenging. We address this challenge by incorporating external knowledge into neural autoregressive topic models via a language modelling approach: we use word embeddings as input of a LSTM-LM with the aim to improve the word-topic mapping on a smaller and/or short-text corpus. The proposed DocNADE extension is named as ctx-DocNADEe. We present novel neural autoregressive topic model variants coupled with neural LMs and embeddings priors that consistently outperform state-of-the-art generative TMs in terms of generalization (perplexity), interpretability (topic coherence) and applicability (retrieval and classification) over 6 long-text and 8 short-text datasets from diverse domains. 4 authors · Oct 9, 2018
- ToddlerBERTa: Exploiting BabyBERTa for Grammar Learning and Language Understanding We present ToddlerBERTa, a BabyBERTa-like language model, exploring its capabilities through five different models with varied hyperparameters. Evaluating on BLiMP, SuperGLUE, MSGS, and a Supplement benchmark from the BabyLM challenge, we find that smaller models can excel in specific tasks, while larger models perform well with substantial data. Despite training on a smaller dataset, ToddlerBERTa demonstrates commendable performance, rivalling the state-of-the-art RoBERTa-base. The model showcases robust language understanding, even with single-sentence pretraining, and competes with baselines that leverage broader contextual information. Our work provides insights into hyperparameter choices, and data utilization, contributing to the advancement of language models. 1 authors · Aug 30, 2023 2
- Give your Text Representation Models some Love: the Case for Basque Word embeddings and pre-trained language models allow to build rich representations of text and have enabled improvements across most NLP tasks. Unfortunately they are very expensive to train, and many small companies and research groups tend to use models that have been pre-trained and made available by third parties, rather than building their own. This is suboptimal as, for many languages, the models have been trained on smaller (or lower quality) corpora. In addition, monolingual pre-trained models for non-English languages are not always available. At best, models for those languages are included in multilingual versions, where each language shares the quota of substrings and parameters with the rest of the languages. This is particularly true for smaller languages such as Basque. In this paper we show that a number of monolingual models (FastText word embeddings, FLAIR and BERT language models) trained with larger Basque corpora produce much better results than publicly available versions in downstream NLP tasks, including topic classification, sentiment classification, PoS tagging and NER. This work sets a new state-of-the-art in those tasks for Basque. All benchmarks and models used in this work are publicly available. 7 authors · Mar 31, 2020
- Targeted Multilingual Adaptation for Low-resource Language Families The "massively-multilingual" training of multilingual models is known to limit their utility in any one language, and they perform particularly poorly on low-resource languages. However, there is evidence that low-resource languages can benefit from targeted multilinguality, where the model is trained on closely related languages. To test this approach more rigorously, we systematically study best practices for adapting a pre-trained model to a language family. Focusing on the Uralic family as a test case, we adapt XLM-R under various configurations to model 15 languages; we then evaluate the performance of each experimental setting on two downstream tasks and 11 evaluation languages. Our adapted models significantly outperform mono- and multilingual baselines. Furthermore, a regression analysis of hyperparameter effects reveals that adapted vocabulary size is relatively unimportant for low-resource languages, and that low-resource languages can be aggressively up-sampled during training at little detriment to performance in high-resource languages. These results introduce new best practices for performing language adaptation in a targeted setting. 5 authors · May 20, 2024
44 A Survey of Small Language Models Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources, making them ideal for various settings including on-device, mobile, edge devices, among many others. In this article, we present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques. We propose a novel taxonomy for categorizing the methods used to optimize SLMs, including model compression, pruning, and quantization techniques. We summarize the benchmark datasets that are useful for benchmarking SLMs along with the evaluation metrics commonly used. Additionally, we highlight key open challenges that remain to be addressed. Our survey aims to serve as a valuable resource for researchers and practitioners interested in developing and deploying small yet efficient language models. 28 authors · Oct 25, 2024 3
3 Distributed Representations of Words and Phrases and their Compositionality The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible. 5 authors · Oct 16, 2013
- CLIMB: Curriculum Learning for Infant-inspired Model Building We describe our team's contribution to the STRICT-SMALL track of the BabyLM Challenge. The challenge requires training a language model from scratch using only a relatively small training dataset of ten million words. We experiment with three variants of cognitively-motivated curriculum learning and analyze their effect on the performance of the model on linguistic evaluation tasks. In the vocabulary curriculum, we analyze methods for constraining the vocabulary in the early stages of training to simulate cognitively more plausible learning curves. In the data curriculum experiments, we vary the order of the training instances based on i) infant-inspired expectations and ii) the learning behavior of the model. In the objective curriculum, we explore different variations of combining the conventional masked language modeling task with a more coarse-grained word class prediction task to reinforce linguistic generalization capabilities. Our results did not yield consistent improvements over our own non-curriculum learning baseline across a range of linguistic benchmarks; however, we do find marginal gains on select tasks. Our analysis highlights key takeaways for specific combinations of tasks and settings which benefit from our proposed curricula. We moreover determine that careful selection of model architecture, and training hyper-parameters yield substantial improvements over the default baselines provided by the BabyLM challenge. 7 authors · Nov 15, 2023
- Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Compared to monolingual models, cross-lingual models usually require a more expressive vocabulary to represent all languages adequately. We find that many languages are under-represented in recent cross-lingual language models due to the limited vocabulary capacity. To this end, we propose an algorithm VoCap to determine the desired vocabulary capacity of each language. However, increasing the vocabulary size significantly slows down the pre-training speed. In order to address the issues, we propose k-NN-based target sampling to accelerate the expensive softmax. Our experiments show that the multilingual vocabulary learned with VoCap benefits cross-lingual language model pre-training. Moreover, k-NN-based target sampling mitigates the side-effects of increasing the vocabulary size while achieving comparable performance and faster pre-training speed. The code and the pretrained multilingual vocabularies are available at https://github.com/bozheng-hit/VoCapXLM. 8 authors · Sep 15, 2021
1 Scaling LLM Pre-training with Vocabulary Curriculum Modern language models rely on static vocabularies, fixed before pretraining, in contrast to the adaptive vocabulary acquisition observed in human language learning. To bridge this gap, we introduce vocabulary curriculum learning, an approach that improves pretraining efficiency with log-linear scaling gains relative to vocabulary size. Our method alternates between entropy-guided vocabulary expansion and model optimization, enabling models to learn transferable representations across diverse tokenization granularities. This approach naturally gives rise to an optimal computation allocation pattern: longer tokens capture predictable content, while shorter tokens focus on more complex, harder-to-predict contexts. Experiments on small-scale GPT models demonstrate improved scaling efficiency, reinforcing the effectiveness of dynamic tokenization. We release our code to support further research and plan to extend our experiments to larger models and diverse domains. 1 authors · Feb 25 2
- Vocabulary Expansion for Low-resource Cross-lingual Transfer Large language models (LLMs) have shown remarkable capabilities in many languages beyond English. Yet, LLMs require more inference steps when generating non-English text due to their reliance on English-centric tokenizers, vocabulary, and pre-training data, resulting in higher usage costs to non-English speakers. Vocabulary expansion with target language tokens is a widely used cross-lingual vocabulary adaptation approach to remedy this issue. Despite its effectiveness in inference speedup, the majority of previous work has focused on high-resource settings assuming access to a substantial amount of target language data to effectively initialize the embeddings of the new tokens and adapt the LLM to the target language. However, vocabulary expansion for LLMs in low-resource settings (i.e. languages and compute) has yet to be explored. In this paper, we investigate sample-efficient adaptation strategies from different angles, including target vocabulary size and initialization methods, and the amount of target data available for adaptation. Extensive experiments across typologically diverse languages, tasks and models show that simpler heuristic-based embedding initialization is more efficient and robust to changes in target vocabulary size and adaptation data in low-resource settings, outperforming a popular random initialization and a more sophisticated state-of-the-art approach that relies on external data and model. 3 authors · Jun 17, 2024 2
- Some Like It Small: Czech Semantic Embedding Models for Industry Applications This article focuses on the development and evaluation of Small-sized Czech sentence embedding models. Small models are important components for real-time industry applications in resource-constrained environments. Given the limited availability of labeled Czech data, alternative approaches, including pre-training, knowledge distillation, and unsupervised contrastive fine-tuning, are investigated. Comprehensive intrinsic and extrinsic analyses are conducted, showcasing the competitive performance of our models compared to significantly larger counterparts, with approximately 8 times smaller size and 5 times faster speed than conventional Base-sized models. To promote cooperation and reproducibility, both the models and the evaluation pipeline are made publicly accessible. Ultimately, this article presents practical applications of the developed sentence embedding models in Seznam.cz, the Czech search engine. These models have effectively replaced previous counterparts, enhancing the overall search experience for instance, in organic search, featured snippets, and image search. This transition has yielded improved performance. 4 authors · Nov 23, 2023
2 How Easily do Irrelevant Inputs Skew the Responses of Large Language Models? By leveraging the retrieval of information from external knowledge databases, Large Language Models (LLMs) exhibit enhanced capabilities for accomplishing many knowledge-intensive tasks. However, due to the inherent flaws of current retrieval systems, there might exist irrelevant information within those retrieving top-ranked passages. In this work, we present a comprehensive investigation into the robustness of LLMs to different types of irrelevant information under various conditions. We initially introduce a framework to construct high-quality irrelevant information that ranges from semantically unrelated, partially related, and related to questions. Furthermore, our analysis demonstrates that the constructed irrelevant information not only scores highly on similarity metrics, being highly retrieved by existing systems, but also bears semantic connections to the context. Our investigation reveals that current LLMs still face challenges in discriminating highly semantically related information and can be easily distracted by these irrelevant yet misleading contents. Besides, we also find that current solutions for handling irrelevant information have limitations in improving the robustness of LLMs to such distractions. Resources are available at https://github.com/Di-viner/LLM-Robustness-to-Irrelevant-Information. 6 authors · Apr 4, 2024
- Heaps' Law in GPT-Neo Large Language Model Emulated Corpora Heaps' law is an empirical relation in text analysis that predicts vocabulary growth as a function of corpus size. While this law has been validated in diverse human-authored text corpora, its applicability to large language model generated text remains unexplored. This study addresses this gap, focusing on the emulation of corpora using the suite of GPT-Neo large language models. To conduct our investigation, we emulated corpora of PubMed abstracts using three different parameter sizes of the GPT-Neo model. Our emulation strategy involved using the initial five words of each PubMed abstract as a prompt and instructing the model to expand the content up to the original abstract's length. Our findings indicate that the generated corpora adhere to Heaps' law. Interestingly, as the GPT-Neo model size grows, its generated vocabulary increasingly adheres to Heaps' law as as observed in human-authored text. To further improve the richness and authenticity of GPT-Neo outputs, future iterations could emphasize enhancing model size or refining the model architecture to curtail vocabulary repetition. 3 authors · Nov 10, 2023
23 Is It Really Long Context if All You Need Is Retrieval? Towards Genuinely Difficult Long Context NLP Improvements in language models' capabilities have pushed their applications towards longer contexts, making long-context evaluation and development an active research area. However, many disparate use-cases are grouped together under the umbrella term of "long-context", defined simply by the total length of the model's input, including - for example - Needle-in-a-Haystack tasks, book summarization, and information aggregation. Given their varied difficulty, in this position paper we argue that conflating different tasks by their context length is unproductive. As a community, we require a more precise vocabulary to understand what makes long-context tasks similar or different. We propose to unpack the taxonomy of long-context based on the properties that make them more difficult with longer contexts. We propose two orthogonal axes of difficulty: (I) Diffusion: How hard is it to find the necessary information in the context? (II) Scope: How much necessary information is there to find? We survey the literature on long-context, provide justification for this taxonomy as an informative descriptor, and situate the literature with respect to it. We conclude that the most difficult and interesting settings, whose necessary information is very long and highly diffused within the input, is severely under-explored. By using a descriptive vocabulary and discussing the relevant properties of difficulty in long-context, we can implement more informed research in this area. We call for a careful design of tasks and benchmarks with distinctly long context, taking into account the characteristics that make it qualitatively different from shorter context. 6 authors · Jun 29, 2024 1
- TinyLLM: Learning a Small Student from Multiple Large Language Models Transferring the reasoning capability from stronger large language models (LLMs) to smaller ones has been quite appealing, as smaller LLMs are more flexible to deploy with less expense. Among the existing solutions, knowledge distillation stands out due to its outstanding efficiency and generalization. However, existing methods suffer from several drawbacks, including limited knowledge diversity and the lack of rich contextual information. To solve the problems and facilitate the learning of compact language models, we propose TinyLLM, a novel knowledge distillation paradigm to learn a small student LLM from multiple large teacher LLMs. In particular, we encourage the student LLM to not only generate the correct answers but also understand the rationales behind these answers. Given that different LLMs possess diverse reasoning skills, we guide the student model to assimilate knowledge from various teacher LLMs. We further introduce an in-context example generator and a teacher-forcing Chain-of-Thought strategy to ensure that the rationales are accurate and grounded in contextually appropriate scenarios. Extensive experiments on six datasets across two reasoning tasks demonstrate the superiority of our method. Results show that TinyLLM can outperform large teacher LLMs significantly, despite having a considerably smaller model size. 5 authors · Feb 7, 2024
3 DRAMA: Diverse Augmentation from Large Language Models to Smaller Dense Retrievers Large language models (LLMs) have demonstrated strong effectiveness and robustness while fine-tuned as dense retrievers. However, their large parameter size brings significant inference time computational challenges, including high encoding costs for large-scale corpora and increased query latency, limiting their practical deployment. While smaller retrievers offer better efficiency, they often fail to generalize effectively with limited supervised fine-tuning data. In this work, we introduce DRAMA, a training framework that leverages LLMs to train smaller generalizable dense retrievers. In particular, we adopt pruned LLMs as the backbone and train on diverse LLM-augmented data in a single-stage contrastive learning setup. Experiments show that DRAMA offers better multilingual and long-context capabilities than traditional encoder-based retrievers, and achieves strong performance across multiple tasks and languages. These highlight the potential of connecting the training of smaller retrievers with the growing advancements in LLMs, bridging the gap between efficiency and generalization. 6 authors · Feb 25
- Tiny Titans: Can Smaller Large Language Models Punch Above Their Weight in the Real World for Meeting Summarization? Large Language Models (LLMs) have demonstrated impressive capabilities to solve a wide range of tasks without being explicitly fine-tuned on task-specific datasets. However, deploying LLMs in the real world is not trivial, as it requires substantial computing resources. In this paper, we investigate whether smaller, compact LLMs are a good alternative to the comparatively Larger LLMs2 to address significant costs associated with utilizing LLMs in the real world. In this regard, we study the meeting summarization task in a real-world industrial environment and conduct extensive experiments by comparing the performance of fine-tuned compact LLMs (e.g., FLAN-T5, TinyLLaMA, LiteLLaMA) with zero-shot larger LLMs (e.g., LLaMA-2, GPT-3.5, PaLM-2). We observe that most smaller LLMs, even after fine-tuning, fail to outperform larger zero-shot LLMs in meeting summarization datasets. However, a notable exception is FLAN-T5 (780M parameters), which performs on par or even better than many zero-shot Larger LLMs (from 7B to above 70B parameters), while being significantly smaller. This makes compact LLMs like FLAN-T5 a suitable cost-efficient solution for real-world industrial deployment. 5 authors · Feb 1, 2024
- Enriching Word Vectors with Subword Information Continuous word representations, trained on large unlabeled corpora are useful for many natural language processing tasks. Popular models that learn such representations ignore the morphology of words, by assigning a distinct vector to each word. This is a limitation, especially for languages with large vocabularies and many rare words. In this paper, we propose a new approach based on the skipgram model, where each word is represented as a bag of character n-grams. A vector representation is associated to each character n-gram; words being represented as the sum of these representations. Our method is fast, allowing to train models on large corpora quickly and allows us to compute word representations for words that did not appear in the training data. We evaluate our word representations on nine different languages, both on word similarity and analogy tasks. By comparing to recently proposed morphological word representations, we show that our vectors achieve state-of-the-art performance on these tasks. 4 authors · Jul 15, 2016
4 Patience is all you need! An agentic system for performing scientific literature review Large language models (LLMs) have grown in their usage to provide support for question answering across numerous disciplines. The models on their own have already shown promise for answering basic questions, however fail quickly where expert domain knowledge is required or the question is nuanced. Scientific research often involves searching for relevant literature, distilling pertinent information from that literature and analysing how the findings support or contradict one another. The information is often encapsulated in the full text body of research articles, rather than just in the abstracts. Statements within these articles frequently require the wider article context to be fully understood. We have built an LLM-based system that performs such search and distillation of information encapsulated in scientific literature, and we evaluate our keyword based search and information distillation system against a set of biology related questions from previously released literature benchmarks. We demonstrate sparse retrieval methods exhibit results close to state of the art without the need for dense retrieval, with its associated infrastructure and complexity overhead. We also show how to increase the coverage of relevant documents for literature review generation. 2 authors · Mar 28 1
- Sicilian Translator: A Recipe for Low-Resource NMT With 17,000 pairs of Sicilian-English translated sentences, Arba Sicula developed the first neural machine translator for the Sicilian language. Using small subword vocabularies, we trained small Transformer models with high dropout parameters and achieved BLEU scores in the upper 20s. Then we supplemented our dataset with backtranslation and multilingual translation and pushed our scores into the mid 30s. We also attribute our success to incorporating theoretical information in our dataset. Prior to training, we biased the subword vocabulary towards the desinences one finds in a textbook. And we included textbook exercises in our dataset. 1 authors · Oct 5, 2021
13 MaLA-500: Massive Language Adaptation of Large Language Models Large language models have advanced the state of the art in natural language processing. However, their predominant design for English or a limited set of languages creates a substantial gap in their effectiveness for low-resource languages. To bridge this gap, we introduce MaLA-500, a novel large language model designed to cover an extensive range of 534 languages. To train MaLA-500, we employ vocabulary extension and continued pretraining on LLaMA 2 with Glot500-c. Our experiments on SIB-200 show that MaLA-500 achieves state-of-the-art in-context learning results. We release MaLA-500 at https://huggingface.co/MaLA-LM 5 authors · Jan 24, 2024 1
- Call for Papers -- The BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus We present the call for papers for the BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus. This shared task is intended for participants with an interest in small scale language modeling, human language acquisition, low-resource NLP, and cognitive modeling. In partnership with CoNLL and CMCL, we provide a platform for approaches to pretraining with a limited-size corpus sourced from data inspired by the input to children. The task has three tracks, two of which restrict the training data to pre-released datasets of 10M and 100M words and are dedicated to explorations of approaches such as architectural variations, self-supervised objectives, or curriculum learning. The final track only restricts the amount of text used, allowing innovation in the choice of the data, its domain, and even its modality (i.e., data from sources other than text is welcome). We will release a shared evaluation pipeline which scores models on a variety of benchmarks and tasks, including targeted syntactic evaluations and natural language understanding. 6 authors · Jan 27, 2023
1 Telecom Language Models: Must They Be Large? The increasing interest in Large Language Models (LLMs) within the telecommunications sector underscores their potential to revolutionize operational efficiency. However, the deployment of these sophisticated models is often hampered by their substantial size and computational demands, raising concerns about their viability in resource-constrained environments. Addressing this challenge, recent advancements have seen the emergence of small language models that surprisingly exhibit performance comparable to their larger counterparts in many tasks, such as coding and common-sense reasoning. Phi-2, a compact yet powerful model, exemplifies this new wave of efficient small language models. This paper conducts a comprehensive evaluation of Phi-2's intrinsic understanding of the telecommunications domain. Recognizing the scale-related limitations, we enhance Phi-2's capabilities through a Retrieval-Augmented Generation approach, meticulously integrating an extensive knowledge base specifically curated with telecom standard specifications. The enhanced Phi-2 model demonstrates a profound improvement in accuracy, answering questions about telecom standards with a precision that closely rivals the more resource-intensive GPT-3.5. The paper further explores the refined capabilities of Phi-2 in addressing problem-solving scenarios within the telecom sector, highlighting its potential and limitations. 3 authors · Mar 7, 2024
- TartuNLP @ AXOLOTL-24: Leveraging Classifier Output for New Sense Detection in Lexical Semantics We present our submission to the AXOLOTL-24 shared task. The shared task comprises two subtasks: identifying new senses that words gain with time (when comparing newer and older time periods) and producing the definitions for the identified new senses. We implemented a conceptually simple and computationally inexpensive solution to both subtasks. We trained adapter-based binary classification models to match glosses with usage examples and leveraged the probability output of the models to identify novel senses. The same models were used to match examples of novel sense usages with Wiktionary definitions. Our submission attained third place on the first subtask and the first place on the second subtask. 2 authors · Jul 4, 2024
- Bilingual BSARD: Extending Statutory Article Retrieval to Dutch Statutory article retrieval plays a crucial role in making legal information more accessible to both laypeople and legal professionals. Multilingual countries like Belgium present unique challenges for retrieval models due to the need for handling legal issues in multiple languages. Building on the Belgian Statutory Article Retrieval Dataset (BSARD) in French, we introduce the bilingual version of this dataset, bBSARD. The dataset contains parallel Belgian statutory articles in both French and Dutch, along with legal questions from BSARD and their Dutch translation. Using bBSARD, we conduct extensive benchmarking of retrieval models available for Dutch and French. Our benchmarking setup includes lexical models, zero-shot dense models, and fine-tuned small foundation models. Our experiments show that BM25 remains a competitive baseline compared to many zero-shot dense models in both languages. We also observe that while proprietary models outperform open alternatives in the zero-shot setting, they can be matched or surpassed by fine-tuning small language-specific models. Our dataset and evaluation code are publicly available. 4 authors · Dec 10, 2024
- Language Models for Text Classification: Is In-Context Learning Enough? Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings. An advantage of these models over more standard approaches based on fine-tuning is the ability to understand instructions written in natural language (prompts), which helps them generalise better to different tasks and domains without the need for specific training data. This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances. However, existing research is limited in scale and lacks understanding of how text generation models combined with prompting techniques compare to more established methods for text classification such as fine-tuning masked language models. In this paper, we address this research gap by performing a large-scale evaluation study for 16 text classification datasets covering binary, multiclass, and multilabel problems. In particular, we compare zero- and few-shot approaches of large language models to fine-tuning smaller language models. We also analyse the results by prompt, classification type, domain, and number of labels. In general, the results show how fine-tuning smaller and more efficient language models can still outperform few-shot approaches of larger language models, which have room for improvement when it comes to text classification. 2 authors · Mar 26, 2024
- Fine-tuning Smaller Language Models for Question Answering over Financial Documents Recent research has shown that smaller language models can acquire substantial reasoning abilities when fine-tuned with reasoning exemplars crafted by a significantly larger teacher model. We explore this paradigm for the financial domain, focusing on the challenge of answering questions that require multi-hop numerical reasoning over financial texts. We assess the performance of several smaller models that have been fine-tuned to generate programs that encode the required financial reasoning and calculations. Our findings demonstrate that these fine-tuned smaller models approach the performance of the teacher model. To provide a granular analysis of model performance, we propose an approach to investigate the specific student model capabilities that are enhanced by fine-tuning. Our empirical analysis indicates that fine-tuning refines the student models ability to express and apply the required financial concepts along with adapting the entity extraction for the specific data format. In addition, we hypothesize and demonstrate that comparable financial reasoning capability can be induced using relatively smaller datasets. 5 authors · Aug 22, 2024
- Polling Latent Opinions: A Method for Computational Sociolinguistics Using Transformer Language Models Text analysis of social media for sentiment, topic analysis, and other analysis depends initially on the selection of keywords and phrases that will be used to create the research corpora. However, keywords that researchers choose may occur infrequently, leading to errors that arise from using small samples. In this paper, we use the capacity for memorization, interpolation, and extrapolation of Transformer Language Models such as the GPT series to learn the linguistic behaviors of a subgroup within larger corpora of Yelp reviews. We then use prompt-based queries to generate synthetic text that can be analyzed to produce insights into specific opinions held by the populations that the models were trained on. Once learned, more specific sentiment queries can be made of the model with high levels of accuracy when compared to traditional keyword searches. We show that even in cases where a specific keyphrase is limited or not present at all in the training corpora, the GPT is able to accurately generate large volumes of text that have the correct sentiment. 4 authors · Apr 15, 2022
- Multilingual Controllable Transformer-Based Lexical Simplification Text is by far the most ubiquitous source of knowledge and information and should be made easily accessible to as many people as possible; however, texts often contain complex words that hinder reading comprehension and accessibility. Therefore, suggesting simpler alternatives for complex words without compromising meaning would help convey the information to a broader audience. This paper proposes mTLS, a multilingual controllable Transformer-based Lexical Simplification (LS) system fined-tuned with the T5 model. The novelty of this work lies in the use of language-specific prefixes, control tokens, and candidates extracted from pre-trained masked language models to learn simpler alternatives for complex words. The evaluation results on three well-known LS datasets -- LexMTurk, BenchLS, and NNSEval -- show that our model outperforms the previous state-of-the-art models like LSBert and ConLS. Moreover, further evaluation of our approach on the part of the recent TSAR-2022 multilingual LS shared-task dataset shows that our model performs competitively when compared with the participating systems for English LS and even outperforms the GPT-3 model on several metrics. Moreover, our model obtains performance gains also for Spanish and Portuguese. 2 authors · Jul 5, 2023 1
5 Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes Deploying large language models (LLMs) is challenging because they are memory inefficient and compute-intensive for practical applications. In reaction, researchers train smaller task-specific models by either finetuning with human labels or distilling using LLM-generated labels. However, finetuning and distillation require large amounts of training data to achieve comparable performance to LLMs. We introduce Distilling step-by-step, a new mechanism that (a) trains smaller models that outperform LLMs, and (b) achieves so by leveraging less training data needed by finetuning or distillation. Our method extracts LLM rationales as additional supervision for training small models within a multi-task framework. We present three findings across 4 NLP benchmarks: First, compared to both finetuning and distillation, our mechanism achieves better performance with much fewer labeled/unlabeled training examples. Second, compared to few-shot prompted LLMs, we achieve better performance using substantially smaller model sizes. Third, we reduce both the model size and the amount of data required to outperform LLMs; our finetuned 770M T5 model outperforms the few-shot prompted 540B PaLM model using only 80% of available data on a benchmark, whereas standard finetuning the same T5 model struggles to match even by using 100% of the dataset. We release the code at: https://github.com/google-research/distilling-step-by-step . 9 authors · May 3, 2023
1 Efficient Medical Question Answering with Knowledge-Augmented Question Generation In the expanding field of language model applications, medical knowledge representation remains a significant challenge due to the specialized nature of the domain. Large language models, such as GPT-4, obtain reasonable scores on medical question answering tasks, but smaller models are far behind. In this work, we introduce a method to improve the proficiency of a small language model in the medical domain by employing a two-fold approach. We first fine-tune the model on a corpus of medical textbooks. Then, we use GPT-4 to generate questions similar to the downstream task, prompted with textbook knowledge, and use them to fine-tune the model. Additionally, we introduce ECN-QA, a novel medical question answering dataset containing ``progressive questions'' composed of related sequential questions. We show the benefits of our training strategy on this dataset. The study's findings highlight the potential of small language models in the medical domain when appropriately fine-tuned. The code and weights are available at https://github.com/raidium-med/MQG. 6 authors · May 23, 2024
- A Llama walks into the 'Bar': Efficient Supervised Fine-Tuning for Legal Reasoning in the Multi-state Bar Exam Legal reasoning tasks present unique challenges for large language models (LLMs) due to the complexity of domain-specific knowledge and reasoning processes. This paper investigates how effectively smaller language models (Llama 2 7B and Llama 3 8B) can be fine-tuned with a limited dataset of 1,514 Multi-state Bar Examination (MBE) questions to improve legal question answering accuracy. We evaluate these models on the 2022 MBE questions licensed from JD Advising, the same dataset used in the 'GPT-4 passes the Bar exam' study. Our methodology involves collecting approximately 200 questions per legal domain across 7 domains. We distill the dataset using Llama 3 (70B) to transform explanations into a structured IRAC (Issue, Rule, Application, Conclusion) format as a guided reasoning process to see if it results in better performance over the non-distilled dataset. We compare the non-fine-tuned models against their supervised fine-tuned (SFT) counterparts, trained for different sample sizes per domain, to study the effect on accuracy and prompt adherence. We also analyse option selection biases and their mitigation following SFT. In addition, we consolidate the performance across multiple variables: prompt type (few-shot vs zero-shot), answer ordering (chosen-option first vs generated-explanation first), response format (Numbered list vs Markdown vs JSON), and different decoding temperatures. Our findings show that domain-specific SFT helps some model configurations achieve close to human baseline performance, despite limited computational resources and a relatively small dataset. We release both the gathered SFT dataset and the family of Supervised Fine-tuned (SFT) adapters optimised for MBE performance. This establishes a practical lower bound on resources needed towards achieving effective legal question answering in smaller LLMs. 4 authors · Apr 7
- Mr. TyDi: A Multi-lingual Benchmark for Dense Retrieval We present Mr. TyDi, a multi-lingual benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages, designed to evaluate ranking with learned dense representations. The goal of this resource is to spur research in dense retrieval techniques in non-English languages, motivated by recent observations that existing techniques for representation learning perform poorly when applied to out-of-distribution data. As a starting point, we provide zero-shot baselines for this new dataset based on a multi-lingual adaptation of DPR that we call "mDPR". Experiments show that although the effectiveness of mDPR is much lower than BM25, dense representations nevertheless appear to provide valuable relevance signals, improving BM25 results in sparse-dense hybrids. In addition to analyses of our results, we also discuss future challenges and present a research agenda in multi-lingual dense retrieval. Mr. TyDi can be downloaded at https://github.com/castorini/mr.tydi. 4 authors · Aug 19, 2021
- Musical Word Embedding: Bridging the Gap between Listening Contexts and Music Word embedding pioneered by Mikolov et al. is a staple technique for word representations in natural language processing (NLP) research which has also found popularity in music information retrieval tasks. Depending on the type of text data for word embedding, however, vocabulary size and the degree of musical pertinence can significantly vary. In this work, we (1) train the distributed representation of words using combinations of both general text data and music-specific data and (2) evaluate the system in terms of how they associate listening contexts with musical compositions. 4 authors · Jul 23, 2020
- The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes Information Retrieval using dense low-dimensional representations recently became popular and showed out-performance to traditional sparse-representations like BM25. However, no previous work investigated how dense representations perform with large index sizes. We show theoretically and empirically that the performance for dense representations decreases quicker than sparse representations for increasing index sizes. In extreme cases, this can even lead to a tipping point where at a certain index size sparse representations outperform dense representations. We show that this behavior is tightly connected to the number of dimensions of the representations: The lower the dimension, the higher the chance for false positives, i.e. returning irrelevant documents. 2 authors · Dec 28, 2020
5 Enhancing Code Generation for Low-Resource Languages: No Silver Bullet The advent of Large Language Models (LLMs) has significantly advanced the field of automated code generation. LLMs rely on large and diverse datasets to learn syntax, semantics, and usage patterns of programming languages. For low-resource languages (i.e., niche programming languages characterized by the scarcity of training data), the limited availability of such data hampers the models' ability to generalize effectively, resulting in poorer code generation performance as compared to high-resource languages. For this reason, there is a quest for techniques able to close this performance gap. We present an empirical study investigating the effectiveness of several approaches for boosting LLMs' performance on low-resource languages, namely: (i) a classic fine-tuning, which is however capped in size by the scarcity of training data; (ii) three variants of in-context learning, with prompts crafted to provide the LLM with additional information about the low-resource language (e.g., few-shot examples showcasing features of the targeted language); and (iii) a pre-training objective teaching the model how to translate between high- and low-resource languages. The context of our study are two low-resource languages (R and Racket) and six LLMs having different architectures and sizes. Our findings reveal that a fine-tuning is usually the best choice for smaller LLMs, possibly due to the fact that even a small dataset is sufficient to train their limited number of parameters. With the increase in size of the models, in-context learning becomes more and more effective, representing a safe and cheap bet (i.e., it always helps, but with different magnitudes). Differently, very large LLMs may deteriorate their performance on low-resource languages when fine-tuning is performed, possibly due to the lack of enough data needed to effectively update their weights. 3 authors · Jan 31 2
4 Fietje: An open, efficient LLM for Dutch This paper introduces Fietje, a family of small language models (SLMs) specifically designed for the Dutch language. The model is based on Phi 2, an English-centric model of 2.7 billion parameters. Fietje demonstrated competitive results with larger language models upon its release. A core emphasis of this work is transparency and reproducibility: Fietje is fully open-source, with model weights, datasets, training, and evaluation code all publicly accessible. The paper discusses the performance of Fietje and many other models on an extensive evaluation suite of benchmarks on reasoning, sentiment analysis, world knowledge, linguistic acceptability and word sense disambiguation. Evaluation results illustrate the rapid progress in the field of LLMs, where recent small models outperform older, larger models that were fine-tuned for Dutch. This trend signals an exciting future for Dutch language processing, suggesting that even compact LLMs are becoming increasingly capable. Furthermore, ongoing and future efforts to adapt LLMs to Dutch are poised to enhance these models even further, broadening their applicability and accessibility. Fietje is only an intermediate step in improving accessibility to language technology for users of the Dutch language. 1 authors · Dec 19, 2024 3
- Generation with Dynamic Vocabulary We introduce a new dynamic vocabulary for language models. It can involve arbitrary text spans during generation. These text spans act as basic generation bricks, akin to tokens in the traditional static vocabularies. We show that, the ability to generate multi-tokens atomically improve both generation quality and efficiency (compared to the standard language model, the MAUVE metric is increased by 25%, the latency is decreased by 20%). The dynamic vocabulary can be deployed in a plug-and-play way, thus is attractive for various downstream applications. For example, we demonstrate that dynamic vocabulary can be applied to different domains in a training-free manner. It also helps to generate reliable citations in question answering tasks (substantially enhancing citation results without compromising answer accuracy). 5 authors · Oct 10, 2024
2 Show Me How It's Done: The Role of Explanations in Fine-Tuning Language Models Our research demonstrates the significant benefits of using fine-tuning with explanations to enhance the performance of language models. Unlike prompting, which maintains the model's parameters, fine-tuning allows the model to learn and update its parameters during a training phase. In this study, we applied fine-tuning to various sized language models using data that contained explanations of the output rather than merely presenting the answers. We found that even smaller language models with as few as 60 million parameters benefited substantially from this approach. Interestingly, our results indicated that the detailed explanations were more beneficial to smaller models than larger ones, with the latter gaining nearly the same advantage from any form of explanation, irrespective of its length. Additionally, we demonstrate that the inclusion of explanations enables the models to solve tasks that they were not able to solve without explanations. Lastly, we argue that despite the challenging nature of adding explanations, samples that contain explanations not only reduce the volume of data required for training but also promote a more effective generalization by the model. In essence, our findings suggest that fine-tuning with explanations significantly bolsters the performance of large language models. 4 authors · Feb 12, 2024
2 ConMeC: A Dataset for Metonymy Resolution with Common Nouns Metonymy plays an important role in our daily communication. People naturally think about things using their most salient properties or commonly related concepts. For example, by saying "The bus decided to skip our stop today," we actually mean that the bus driver made the decision, not the bus. Prior work on metonymy resolution has mainly focused on named entities. However, metonymy involving common nouns (such as desk, baby, and school) is also a frequent and challenging phenomenon. We argue that NLP systems should be capable of identifying the metonymic use of common nouns in context. We create a new metonymy dataset ConMeC, which consists of 6,000 sentences, where each sentence is paired with a target common noun and annotated by humans to indicate whether that common noun is used metonymically or not in that context. We also introduce a chain-of-thought based prompting method for detecting metonymy using large language models (LLMs). We evaluate our LLM-based pipeline, as well as a supervised BERT model on our dataset and three other metonymy datasets. Our experimental results demonstrate that LLMs could achieve performance comparable to the supervised BERT model on well-defined metonymy categories, while still struggling with instances requiring nuanced semantic understanding. Our dataset is publicly available at: https://github.com/SaptGhosh/ConMeC. 2 authors · Feb 9
- Forget NLI, Use a Dictionary: Zero-Shot Topic Classification for Low-Resource Languages with Application to Luxembourgish In NLP, zero-shot classification (ZSC) is the task of assigning labels to textual data without any labeled examples for the target classes. A common method for ZSC is to fine-tune a language model on a Natural Language Inference (NLI) dataset and then use it to infer the entailment between the input document and the target labels. However, this approach faces certain challenges, particularly for languages with limited resources. In this paper, we propose an alternative solution that leverages dictionaries as a source of data for ZSC. We focus on Luxembourgish, a low-resource language spoken in Luxembourg, and construct two new topic relevance classification datasets based on a dictionary that provides various synonyms, word translations and example sentences. We evaluate the usability of our dataset and compare it with the NLI-based approach on two topic classification tasks in a zero-shot manner. Our results show that by using the dictionary-based dataset, the trained models outperform the ones following the NLI-based approach for ZSC. While we focus on a single low-resource language in this study, we believe that the efficacy of our approach can also transfer to other languages where such a dictionary is available. 3 authors · Apr 5, 2024
- Pre-training LLMs using human-like development data corpus Pre-trained Large Language Models (LLMs) have shown success in a diverse set of language inference and understanding tasks. The pre-training stage of LLMs looks at a large corpus of raw textual data. The BabyLM shared task compares LLM pre-training to human language acquisition, where the number of tokens seen by 13-year-old kids is magnitudes smaller than the number of tokens seen by LLMs. In this work, we pre-train and evaluate LLMs on their ability to learn contextual word representations using roughly the same number of tokens as seen by children. We provide a strong set of baselines; with different architectures, evaluation of changes in performance across epochs, and reported pre-training metrics for the strict small and strict tracks of the task. We also try to loosely replicate the RoBERTa baseline given by the task organizers to observe the training robustness to hyperparameter selection and replicability. We provide the submission details to the strict and strict-small tracks in this report. 3 authors · Nov 8, 2023
- Goldfish: Monolingual Language Models for 350 Languages For many low-resource languages, the only available language models are large multilingual models trained on many languages simultaneously. However, using FLORES perplexity as a metric, we find that these models perform worse than bigrams for many languages (e.g. 24% of languages in XGLM 4.5B; 43% in BLOOM 7.1B). To facilitate research that focuses on low-resource languages, we pre-train and release Goldfish, a suite of monolingual autoregressive Transformer language models up to 125M parameters for 350 languages. The Goldfish reach lower FLORES perplexities than BLOOM, XGLM, and MaLA-500 on 98 of 204 FLORES languages, despite each Goldfish model being over 10x smaller. However, the Goldfish significantly underperform larger multilingual models on reasoning benchmarks, suggesting that for low-resource languages, multilinguality primarily improves general reasoning abilities rather than basic text generation. We release models trained on 5MB (350 languages), 10MB (288 languages), 100MB (166 languages), and 1GB (83 languages) of text data where available. The Goldfish models are available as baselines, fine-tuning sources, or augmentations to existing models in low-resource NLP research, and they are further useful for crosslinguistic studies requiring maximally comparable models across languages. 4 authors · Aug 19, 2024
1 Optimizing Byte-level Representation for End-to-end ASR We propose a novel approach to optimizing a byte-level representation for end-to-end automatic speech recognition (ASR). Byte-level representation is often used by large scale multilingual ASR systems when the character set of the supported languages is large. The compactness and universality of byte-level representation allow the ASR models to use smaller output vocabularies and therefore, provide more flexibility. UTF-8 is a commonly used byte-level representation for multilingual ASR, but it is not designed to optimize machine learning tasks directly. By using auto-encoder and vector quantization, we show that we can optimize a byte-level representation for ASR and achieve better accuracy. Our proposed framework can incorporate information from different modalities, and provides an error correction mechanism. In an English/Mandarin dictation task, we show that a bilingual ASR model built with this approach can outperform UTF-8 representation by 5% relative in error rate. 5 authors · Jun 13, 2024
- Neural Machine Translation with Byte-Level Subwords Almost all existing machine translation models are built on top of character-based vocabularies: characters, subwords or words. Rare characters from noisy text or character-rich languages such as Japanese and Chinese however can unnecessarily take up vocabulary slots and limit its compactness. Representing text at the level of bytes and using the 256 byte set as vocabulary is a potential solution to this issue. High computational cost has however prevented it from being widely deployed or used in practice. In this paper, we investigate byte-level subwords, specifically byte-level BPE (BBPE), which is compacter than character vocabulary and has no out-of-vocabulary tokens, but is more efficient than using pure bytes only is. We claim that contextualizing BBPE embeddings is necessary, which can be implemented by a convolutional or recurrent layer. Our experiments show that BBPE has comparable performance to BPE while its size is only 1/8 of that for BPE. In the multilingual setting, BBPE maximizes vocabulary sharing across many languages and achieves better translation quality. Moreover, we show that BBPE enables transferring models between languages with non-overlapping character sets. 3 authors · Sep 7, 2019
1 From Tokens to Words: On the Inner Lexicon of LLMs Natural language is composed of words, but modern large language models (LLMs) process sub-words as input. A natural question raised by this discrepancy is whether LLMs encode words internally, and if so how. We present evidence that LLMs engage in an intrinsic detokenization process, where sub-word sequences are combined into coherent whole-word representations at their last token. Our experiments show that this process primarily takes place within the early and middle layers of the model. We further demonstrate its robustness to arbitrary splits (e.g., "cats" to "ca" and "ts"), typos, and importantly-to out-of-vocabulary words: when feeding the last token internal representations of such words to the model as input, it can "understand" them as the complete word despite never seeing such representations as input during training. Our findings suggest that LLMs maintain a latent vocabulary beyond the tokenizer's scope. These insights provide a practical, finetuning-free application for expanding the vocabulary of pre-trained models. By enabling the addition of new vocabulary words, we reduce input length and inference iterations, which reduces both space and model latency, with little to no loss in model accuracy. 4 authors · Oct 8, 2024 1
2 Large Language Models Only Pass Primary School Exams in Indonesia: A Comprehensive Test on IndoMMLU Large language models have made significant advancements in natural language processing (NLP), exhibiting human performance across various classic NLP tasks. These tasks, however, focus on structure and semantics, and few are designed to assess reasoning abilities and real-world knowledge, which are increasingly vital given that these models are trained on extensive textual data and information. While prior research primarily focuses on English, in this work, we gather a collection of exam problems from primary school to university entrance tests in Indonesia, and evaluate whether large language models can pass the exams. We obtain 14,906 questions across 63 tasks and levels, with 46\% of the questions focusing on assessing proficiency in the Indonesian language and knowledge of nine local languages and cultures in Indonesia. Our empirical evaluations show that GPT-3.5 only manages to pass the Indonesian primary school level, with limited knowledge of the Indonesian local languages and cultures. Other smaller models such as BLOOMZ and Falcon fail the exams. 4 authors · Oct 7, 2023
37 RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture There are two common ways in which developers are incorporating proprietary and domain-specific data when building applications of Large Language Models (LLMs): Retrieval-Augmented Generation (RAG) and Fine-Tuning. RAG augments the prompt with the external data, while fine-Tuning incorporates the additional knowledge into the model itself. However, the pros and cons of both approaches are not well understood. In this paper, we propose a pipeline for fine-tuning and RAG, and present the tradeoffs of both for multiple popular LLMs, including Llama2-13B, GPT-3.5, and GPT-4. Our pipeline consists of multiple stages, including extracting information from PDFs, generating questions and answers, using them for fine-tuning, and leveraging GPT-4 for evaluating the results. We propose metrics to assess the performance of different stages of the RAG and fine-Tuning pipeline. We conduct an in-depth study on an agricultural dataset. Agriculture as an industry has not seen much penetration of AI, and we study a potentially disruptive application - what if we could provide location-specific insights to a farmer? Our results show the effectiveness of our dataset generation pipeline in capturing geographic-specific knowledge, and the quantitative and qualitative benefits of RAG and fine-tuning. We see an accuracy increase of over 6 p.p. when fine-tuning the model and this is cumulative with RAG, which increases accuracy by 5 p.p. further. In one particular experiment, we also demonstrate that the fine-tuned model leverages information from across geographies to answer specific questions, increasing answer similarity from 47% to 72%. Overall, the results point to how systems built using LLMs can be adapted to respond and incorporate knowledge across a dimension that is critical for a specific industry, paving the way for further applications of LLMs in other industrial domains. 22 authors · Jan 16, 2024 1
95 TinyLlama: An Open-Source Small Language Model We present TinyLlama, a compact 1.1B language model pretrained on around 1 trillion tokens for approximately 3 epochs. Building on the architecture and tokenizer of Llama 2, TinyLlama leverages various advances contributed by the open-source community (e.g., FlashAttention), achieving better computational efficiency. Despite its relatively small size, TinyLlama demonstrates remarkable performance in a series of downstream tasks. It significantly outperforms existing open-source language models with comparable sizes. Our model checkpoints and code are publicly available on GitHub at https://github.com/jzhang38/TinyLlama. 4 authors · Jan 4, 2024 14
15 NoLiMa: Long-Context Evaluation Beyond Literal Matching Recent large language models (LLMs) support long contexts ranging from 128K to 1M tokens. A popular method for evaluating these capabilities is the needle-in-a-haystack (NIAH) test, which involves retrieving a "needle" (relevant information) from a "haystack" (long irrelevant context). Extensions of this approach include increasing distractors, fact chaining, and in-context reasoning. However, in these benchmarks, models can exploit existing literal matches between the needle and haystack to simplify the task. To address this, we introduce NoLiMa, a benchmark extending NIAH with a carefully designed needle set, where questions and needles have minimal lexical overlap, requiring models to infer latent associations to locate the needle within the haystack. We evaluate 12 popular LLMs that claim to support contexts of at least 128K tokens. While they perform well in short contexts (<1K), performance degrades significantly as context length increases. At 32K, for instance, 10 models drop below 50% of their strong short-length baselines. Even GPT-4o, one of the top-performing exceptions, experiences a reduction from an almost-perfect baseline of 99.3% to 69.7%. Our analysis suggests these declines stem from the increased difficulty the attention mechanism faces in longer contexts when literal matches are absent, making it harder to retrieve relevant information. 7 authors · Feb 7 2
2 Fast Vocabulary Transfer for Language Model Compression Real-world business applications require a trade-off between language model performance and size. We propose a new method for model compression that relies on vocabulary transfer. We evaluate the method on various vertical domains and downstream tasks. Our results indicate that vocabulary transfer can be effectively used in combination with other compression techniques, yielding a significant reduction in model size and inference time while marginally compromising on performance. 4 authors · Feb 15, 2024 2
1 Discovering the Hidden Vocabulary of DALLE-2 We discover that DALLE-2 seems to have a hidden vocabulary that can be used to generate images with absurd prompts. For example, it seems that Apoploe vesrreaitais means birds and Contarra ccetnxniams luryca tanniounons (sometimes) means bugs or pests. We find that these prompts are often consistent in isolation but also sometimes in combinations. We present our black-box method to discover words that seem random but have some correspondence to visual concepts. This creates important security and interpretability challenges. 2 authors · May 31, 2022
12 SlimLM: An Efficient Small Language Model for On-Device Document Assistance While small language models (SLMs) show promises for mobile deployment, their real-world performance and applications on smartphones remains underexplored. We present SlimLM, a series of SLMs optimized for document assistance tasks on mobile devices. Through extensive experiments on a Samsung Galaxy S24, we identify the optimal trade-offs between model size (ranging from 125M to 7B parameters), context length, and inference time for efficient on-device processing. SlimLM is pre-trained on SlimPajama-627B and fine-tuned on DocAssist, our constructed dataset for summarization, question answering and suggestion tasks. Our smallest model demonstrates efficient performance on S24, while larger variants offer enhanced capabilities within mobile constraints. We evaluate SlimLM against existing SLMs, showing comparable or superior performance and offering a benchmark for future research in on-device language models. We also provide an Android application, offering practical insights into SLM deployment. Our findings provide valuable insights and illuminate the capabilities of running advanced language models on high-end smartphones, potentially reducing server costs and enhancing privacy through on-device processing. 6 authors · Nov 14, 2024 2
2 Cendol: Open Instruction-tuned Generative Large Language Models for Indonesian Languages Large language models (LLMs) show remarkable human-like capability in various domains and languages. However, a notable quality gap arises in low-resource languages, e.g., Indonesian indigenous languages, rendering them ineffective and inefficient in such linguistic contexts. To bridge this quality gap, we introduce Cendol, a collection of Indonesian LLMs encompassing both decoder-only and encoder-decoder architectures across a range of model sizes. We highlight Cendol's effectiveness across a diverse array of tasks, attaining 20% improvement, and demonstrate its capability to generalize to unseen tasks and indigenous languages of Indonesia. Furthermore, Cendol models showcase improved human favorability despite their limitations in capturing indigenous knowledge and cultural values in Indonesia. In addition, we discuss the shortcomings of parameter-efficient tunings, such as LoRA, for language adaptation. Alternatively, we propose the usage of vocabulary adaptation to enhance efficiency. Lastly, we evaluate the safety of Cendol and showcase that safety in pre-training in one language such as English is transferable to low-resource languages, such as Indonesian, even without RLHF and safety fine-tuning. 16 authors · Apr 9, 2024
1 Greed is All You Need: An Evaluation of Tokenizer Inference Methods While subword tokenizers such as BPE and WordPiece are typically used to build vocabularies for NLP models, the method of decoding text into a sequence of tokens from these vocabularies is often left unspecified, or ill-suited to the method in which they were constructed. We provide a controlled analysis of seven tokenizer inference methods across four different algorithms and three vocabulary sizes, performed on a novel intrinsic evaluation suite we curated for English, combining measures rooted in morphology, cognition, and information theory. We show that for the most commonly used tokenizers, greedy inference performs surprisingly well; and that SaGe, a recently-introduced contextually-informed tokenizer, outperforms all others on morphological alignment. 4 authors · Mar 2, 2024
229 SmolLM2: When Smol Goes Big -- Data-Centric Training of a Small Language Model While large language models have facilitated breakthroughs in many applications of artificial intelligence, their inherent largeness makes them computationally expensive and challenging to deploy in resource-constrained settings. In this paper, we document the development of SmolLM2, a state-of-the-art "small" (1.7 billion parameter) language model (LM). To attain strong performance, we overtrain SmolLM2 on ~11 trillion tokens of data using a multi-stage training process that mixes web text with specialized math, code, and instruction-following data. We additionally introduce new specialized datasets (FineMath, Stack-Edu, and SmolTalk) at stages where we found existing datasets to be problematically small or low-quality. To inform our design decisions, we perform both small-scale ablations as well as a manual refinement process that updates the dataset mixing rates at each stage based on the performance at the previous stage. Ultimately, we demonstrate that SmolLM2 outperforms other recent small LMs including Qwen2.5-1.5B and Llama3.2-1B. To facilitate future research on LM development as well as applications of small LMs, we release both SmolLM2 as well as all of the datasets we prepared in the course of this project. 22 authors · Feb 4 6
- Evaluation of Word Embeddings for the Social Sciences Word embeddings are an essential instrument in many NLP tasks. Most available resources are trained on general language from Web corpora or Wikipedia dumps. However, word embeddings for domain-specific language are rare, in particular for the social science domain. Therefore, in this work, we describe the creation and evaluation of word embedding models based on 37,604 open-access social science research papers. In the evaluation, we compare domain-specific and general language models for (i) language coverage, (ii) diversity, and (iii) semantic relationships. We found that the created domain-specific model, even with a relatively small vocabulary size, covers a large part of social science concepts, their neighborhoods are diverse in comparison to more general models. Across all relation types, we found a more extensive coverage of semantic relationships. 3 authors · Feb 13, 2023
- Exploring the Representation of Word Meanings in Context: A Case Study on Homonymy and Synonymy This paper presents a multilingual study of word meaning representations in context. We assess the ability of both static and contextualized models to adequately represent different lexical-semantic relations, such as homonymy and synonymy. To do so, we created a new multilingual dataset that allows us to perform a controlled evaluation of several factors such as the impact of the surrounding context or the overlap between words, conveying the same or different senses. A systematic assessment on four scenarios shows that the best monolingual models based on Transformers can adequately disambiguate homonyms in context. However, as they rely heavily on context, these models fail at representing words with different senses when occurring in similar sentences. Experiments are performed in Galician, Portuguese, English, and Spanish, and both the dataset (with more than 3,000 evaluation items) and new models are freely released with this study. 1 authors · Jun 25, 2021
- SweCTRL-Mini: a data-transparent Transformer-based large language model for controllable text generation in Swedish We present SweCTRL-Mini, a large Swedish language model that can be used for inference and fine-tuning on a single consumer-grade GPU. The model is based on the CTRL architecture by Keskar, McCann, Varshney, Xiong, and Socher (2019), which means that users of the SweCTRL-Mini model can control the genre of the generated text by inserting special tokens in the generation prompts. SweCTRL-Mini is trained on a subset of the Swedish part of the mC4 corpus and a set of Swedish novels. In this article, we provide (1) a detailed account of the utilized training data and text pre-processing steps, to the extent that it is possible to check whether a specific phrase/source was a part of the training data, and (2) an evaluation of the model on both discriminative tasks, using automatic evaluation methods, and generative tasks, using human referees. We also compare the generative capabilities of the model with those of GPT-3. SweCTRL-Mini is fully open and available for download. 2 authors · Apr 27, 2023
- Lexical Generalization Improves with Larger Models and Longer Training While fine-tuned language models perform well on many tasks, they were also shown to rely on superficial surface features such as lexical overlap. Excessive utilization of such heuristics can lead to failure on challenging inputs. We analyze the use of lexical overlap heuristics in natural language inference, paraphrase detection, and reading comprehension (using a novel contrastive dataset), and find that larger models are much less susceptible to adopting lexical overlap heuristics. We also find that longer training leads models to abandon lexical overlap heuristics. Finally, we provide evidence that the disparity between models size has its source in the pre-trained model 3 authors · Oct 23, 2022
1 How BPE Affects Memorization in Transformers Training data memorization in NLP can both be beneficial (e.g., closed-book QA) and undesirable (personal data extraction). In any case, successful model training requires a non-trivial amount of memorization to store word spellings, various linguistic idiosyncrasies and common knowledge. However, little is known about what affects the memorization behavior of NLP models, as the field tends to focus on the equally important question of generalization. In this work, we demonstrate that the size of the subword vocabulary learned by Byte-Pair Encoding (BPE) greatly affects both ability and tendency of standard Transformer models to memorize training data, even when we control for the number of learned parameters. We find that with a large subword vocabulary size, Transformer models fit random mappings more easily and are more vulnerable to membership inference attacks. Similarly, given a prompt, Transformer-based language models with large subword vocabularies reproduce the training data more often. We conjecture this effect is caused by reduction in the sequences' length that happens as the BPE vocabulary grows. Our findings can allow a more informed choice of hyper-parameters, that is better tailored for a particular use-case. 3 authors · Oct 6, 2021
- Is LLM the Silver Bullet to Low-Resource Languages Machine Translation? Low-Resource Languages (LRLs) present significant challenges in natural language processing due to their limited linguistic resources and underrepresentation in standard datasets. While recent advancements in Large Language Models (LLMs) and Neural Machine Translation (NMT) have substantially improved translation capabilities for high-resource languages, performance disparities persist for LRLs, particularly impacting privacy-sensitive and resource-constrained scenarios. This paper systematically evaluates the limitations of current LLMs across 200 languages using benchmarks such as FLORES-200. We also explore alternative data sources, including news articles and bilingual dictionaries, and demonstrate how knowledge distillation from large pre-trained models can significantly improve smaller LRL translations. Additionally, we investigate various fine-tuning strategies, revealing that incremental enhancements markedly reduce performance gaps on smaller LLMs. 9 authors · Mar 31
- PaRaDe: Passage Ranking using Demonstrations with Large Language Models Recent studies show that large language models (LLMs) can be instructed to effectively perform zero-shot passage re-ranking, in which the results of a first stage retrieval method, such as BM25, are rated and reordered to improve relevance. In this work, we improve LLM-based re-ranking by algorithmically selecting few-shot demonstrations to include in the prompt. Our analysis investigates the conditions where demonstrations are most helpful, and shows that adding even one demonstration is significantly beneficial. We propose a novel demonstration selection strategy based on difficulty rather than the commonly used semantic similarity. Furthermore, we find that demonstrations helpful for ranking are also effective at question generation. We hope our work will spur more principled research into question generation and passage ranking. 11 authors · Oct 22, 2023
- Connecting a French Dictionary from the Beginning of the 20th Century to Wikidata The Petit Larousse illustr\'e is a French dictionary first published in 1905. Its division in two main parts on language and on history and geography corresponds to a major milestone in French lexicography as well as a repository of general knowledge from this period. Although the value of many entries from 1905 remains intact, some descriptions now have a dimension that is more historical than contemporary. They are nonetheless significant to analyze and understand cultural representations from this time. A comparison with more recent information or a verification of these entries would require a tedious manual work. In this paper, we describe a new lexical resource, where we connected all the dictionary entries of the history and geography part to current data sources. For this, we linked each of these entries to a wikidata identifier. Using the wikidata links, we can automate more easily the identification, comparison, and verification of historically-situated representations. We give a few examples on how to process wikidata identifiers and we carried out a small analysis of the entities described in the dictionary to outline possible applications. The resource, i.e. the annotation of 20,245 dictionary entries with wikidata links, is available from GitHub url{https://github.com/pnugues/petit_larousse_1905/ 1 authors · Jun 22, 2022
2 Native vs Non-Native Language Prompting: A Comparative Analysis Large language models (LLMs) have shown remarkable abilities in different fields, including standard Natural Language Processing (NLP) tasks. To elicit knowledge from LLMs, prompts play a key role, consisting of natural language instructions. Most open and closed source LLMs are trained on available labeled and unlabeled resources--digital content such as text, images, audio, and videos. Hence, these models have better knowledge for high-resourced languages but struggle with low-resourced languages. Since prompts play a crucial role in understanding their capabilities, the language used for prompts remains an important research question. Although there has been significant research in this area, it is still limited, and less has been explored for medium to low-resourced languages. In this study, we investigate different prompting strategies (native vs. non-native) on 11 different NLP tasks associated with 12 different Arabic datasets (9.7K data points). In total, we conducted 197 experiments involving 3 LLMs, 12 datasets, and 3 prompting strategies. Our findings suggest that, on average, the non-native prompt performs the best, followed by mixed and native prompts. 6 authors · Sep 11, 2024
- CompoundPiece: Evaluating and Improving Decompounding Performance of Language Models While many languages possess processes of joining two or more words to create compound words, previous studies have been typically limited only to languages with excessively productive compound formation (e.g., German, Dutch) and there is no public dataset containing compound and non-compound words across a large number of languages. In this work, we systematically study decompounding, the task of splitting compound words into their constituents, at a wide scale. We first address the data gap by introducing a dataset of 255k compound and non-compound words across 56 diverse languages obtained from Wiktionary. We then use this dataset to evaluate an array of Large Language Models (LLMs) on the decompounding task. We find that LLMs perform poorly, especially on words which are tokenized unfavorably by subword tokenization. We thus introduce a novel methodology to train dedicated models for decompounding. The proposed two-stage procedure relies on a fully self-supervised objective in the first stage, while the second, supervised learning stage optionally fine-tunes the model on the annotated Wiktionary data. Our self-supervised models outperform the prior best unsupervised decompounding models by 13.9% accuracy on average. Our fine-tuned models outperform all prior (language-specific) decompounding tools. Furthermore, we use our models to leverage decompounding during the creation of a subword tokenizer, which we refer to as CompoundPiece. CompoundPiece tokenizes compound words more favorably on average, leading to improved performance on decompounding over an otherwise equivalent model using SentencePiece tokenization. 3 authors · May 23, 2023
2 BLEnD: A Benchmark for LLMs on Everyday Knowledge in Diverse Cultures and Languages Large language models (LLMs) often lack culture-specific knowledge of daily life, especially across diverse regions and non-English languages. Existing benchmarks for evaluating LLMs' cultural sensitivities are limited to a single language or collected from online sources such as Wikipedia, which do not reflect the mundane everyday lifestyles of diverse regions. That is, information about the food people eat for their birthday celebrations, spices they typically use, musical instruments youngsters play, or the sports they practice in school is common cultural knowledge but uncommon in easily collected online sources, especially for underrepresented cultures. To address this issue, we introduce BLEnD, a hand-crafted benchmark designed to evaluate LLMs' everyday knowledge across diverse cultures and languages. BLEnD comprises 52.6k question-answer pairs from 16 countries/regions, in 13 different languages, including low-resource ones such as Amharic, Assamese, Azerbaijani, Hausa, and Sundanese. We construct the benchmark to include two formats of questions: short-answer and multiple-choice. We show that LLMs perform better for cultures that are highly represented online, with a maximum 57.34% difference in GPT-4, the best-performing model, in the short-answer format. For cultures represented by mid-to-high-resource languages, LLMs perform better in their local languages, but for cultures represented by low-resource languages, LLMs perform better in English than the local languages. We make our dataset publicly available at: https://github.com/nlee0212/BLEnD. 22 authors · Jun 14, 2024
- Visualizing the Obvious: A Concreteness-based Ensemble Model for Noun Property Prediction Neural language models encode rich knowledge about entities and their relationships which can be extracted from their representations using probing. Common properties of nouns (e.g., red strawberries, small ant) are, however, more challenging to extract compared to other types of knowledge because they are rarely explicitly stated in texts. We hypothesize this to mainly be the case for perceptual properties which are obvious to the participants in the communication. We propose to extract these properties from images and use them in an ensemble model, in order to complement the information that is extracted from language models. We consider perceptual properties to be more concrete than abstract properties (e.g., interesting, flawless). We propose to use the adjectives' concreteness score as a lever to calibrate the contribution of each source (text vs. images). We evaluate our ensemble model in a ranking task where the actual properties of a noun need to be ranked higher than other non-relevant properties. Our results show that the proposed combination of text and images greatly improves noun property prediction compared to powerful text-based language models. 5 authors · Oct 23, 2022
- Salient Phrase Aware Dense Retrieval: Can a Dense Retriever Imitate a Sparse One? Despite their recent popularity and well-known advantages, dense retrievers still lag behind sparse methods such as BM25 in their ability to reliably match salient phrases and rare entities in the query and to generalize to out-of-domain data. It has been argued that this is an inherent limitation of dense models. We rebut this claim by introducing the Salient Phrase Aware Retriever (SPAR), a dense retriever with the lexical matching capacity of a sparse model. We show that a dense Lexical Model {\Lambda} can be trained to imitate a sparse one, and SPAR is built by augmenting a standard dense retriever with {\Lambda}. Empirically, SPAR shows superior performance on a range of tasks including five question answering datasets, MS MARCO passage retrieval, as well as the EntityQuestions and BEIR benchmarks for out-of-domain evaluation, exceeding the performance of state-of-the-art dense and sparse retrievers. The code and models of SPAR are available at: https://github.com/facebookresearch/dpr-scale/tree/main/spar 9 authors · Oct 13, 2021
- Embedding structure matters: Comparing methods to adapt multilingual vocabularies to new languages Pre-trained multilingual language models underpin a large portion of modern NLP tools outside of English. A strong baseline for specializing these models for specific languages is Language-Adaptive Pre-Training (LAPT). However, retaining a large cross-lingual vocabulary and embedding matrix comes at considerable excess computational cost during adaptation. In this study, we propose several simple techniques to replace a cross-lingual vocabulary with a compact, language-specific one. Namely, we address strategies for re-initializing the token embedding matrix after vocabulary specialization. We then provide a systematic experimental comparison of our techniques, in addition to the recently-proposed Focus method. We demonstrate that: 1) Embedding-replacement techniques in the monolingual transfer literature are inadequate for adapting multilingual models. 2) Replacing cross-lingual vocabularies with smaller specialized ones provides an efficient method to improve performance in low-resource languages. 3) Simple embedding re-initialization techniques based on script-wise sub-distributions rival techniques such as Focus, which rely on similarity scores obtained from an auxiliary model. 4 authors · Sep 9, 2023
- Artificial Intuition: Efficient Classification of Scientific Abstracts It is desirable to coarsely classify short scientific texts, such as grant or publication abstracts, for strategic insight or research portfolio management. These texts efficiently transmit dense information to experts possessing a rich body of knowledge to aid interpretation. Yet this task is remarkably difficult to automate because of brevity and the absence of context. To address this gap, we have developed a novel approach to generate and appropriately assign coarse domain-specific labels. We show that a Large Language Model (LLM) can provide metadata essential to the task, in a process akin to the augmentation of supplemental knowledge representing human intuition, and propose a workflow. As a pilot study, we use a corpus of award abstracts from the National Aeronautics and Space Administration (NASA). We develop new assessment tools in concert with established performance metrics. 6 authors · Jul 8, 2024
2 BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models Large Language Models (LLMs) like ChatGPT and GPT-4 are versatile and capable of addressing a diverse range of tasks. However, general LLMs, which are developed on open-domain data, may lack the domain-specific knowledge essential for tasks in vertical domains, such as legal, medical, etc. To address this issue, previous approaches either conduct continuous pre-training with domain-specific data or employ retrieval augmentation to support general LLMs. Unfortunately, these strategies are either cost-intensive or unreliable in practical applications. To this end, we present a novel framework named BLADE, which enhances Black-box LArge language models with small Domain-spEcific models. BLADE consists of a black-box LLM and a small domain-specific LM. The small LM preserves domain-specific knowledge and offers specialized insights, while the general LLM contributes robust language comprehension and reasoning capabilities. Specifically, our method involves three steps: 1) pre-training the small LM with domain-specific data, 2) fine-tuning this model using knowledge instruction data, and 3) joint Bayesian optimization of the general LLM and the small LM. Extensive experiments conducted on public legal and medical benchmarks reveal that BLADE significantly outperforms existing approaches. This shows the potential of BLADE as an effective and cost-efficient solution in adapting general LLMs for vertical domains. 8 authors · Mar 27, 2024
- MINERS: Multilingual Language Models as Semantic Retrievers Words have been represented in a high-dimensional vector space that encodes their semantic similarities, enabling downstream applications such as retrieving synonyms, antonyms, and relevant contexts. However, despite recent advances in multilingual language models (LMs), the effectiveness of these models' representations in semantic retrieval contexts has not been comprehensively explored. To fill this gap, this paper introduces the MINERS, a benchmark designed to evaluate the ability of multilingual LMs in semantic retrieval tasks, including bitext mining and classification via retrieval-augmented contexts. We create a comprehensive framework to assess the robustness of LMs in retrieving samples across over 200 diverse languages, including extremely low-resource languages in challenging cross-lingual and code-switching settings. Our results demonstrate that by solely retrieving semantically similar embeddings yields performance competitive with state-of-the-art approaches, without requiring any fine-tuning. 3 authors · Jun 11, 2024
- WinoDict: Probing language models for in-context word acquisition We introduce a new in-context learning paradigm to measure Large Language Models' (LLMs) ability to learn novel words during inference. In particular, we rewrite Winograd-style co-reference resolution problems by replacing the key concept word with a synthetic but plausible word that the model must understand to complete the task. Solving this task requires the model to make use of the dictionary definition of the new word given in the prompt. This benchmark addresses word acquisition, one important aspect of the diachronic degradation known to afflict LLMs. As LLMs are frozen in time at the moment they are trained, they are normally unable to reflect the way language changes over time. We show that the accuracy of LLMs compared to the original Winograd tasks decreases radically in our benchmark, thus identifying a limitation of current models and providing a benchmark to measure future improvements in LLMs ability to do in-context learning. 4 authors · Sep 25, 2022
- Learn Your Tokens: Word-Pooled Tokenization for Language Modeling Language models typically tokenize text into subwords, using a deterministic, hand-engineered heuristic of combining characters into longer surface-level strings such as 'ing' or whole words. Recent literature has repeatedly shown the limitations of such a tokenization strategy, particularly for documents not written in English and for representing numbers. On the other extreme, byte/character-level language models are much less restricted but suffer from increased sequence description lengths and a subsequent quadratic expansion in self-attention computation. Recent attempts to compress and limit these context lengths with fixed size convolutions is helpful but completely ignores the word boundary. This paper considers an alternative 'learn your tokens' scheme which utilizes the word boundary to pool bytes/characters into word representations, which are fed to the primary language model, before again decoding individual characters/bytes per word in parallel. We find that our moderately expressive and moderately fast end-to-end tokenizer outperform by over 300% both subwords and byte/character models over the intrinsic language modeling metric of next-word prediction across datasets. It particularly outshines on rare words, outperforming by a factor of 30! We extensively study the language modeling setup for all three categories of tokenizers and theoretically analyze how our end-to-end models can also be a strong trade-off in efficiency and robustness. 4 authors · Oct 17, 2023
- Exploring the Word Sense Disambiguation Capabilities of Large Language Models Word Sense Disambiguation (WSD) is a historical task in computational linguistics that has received much attention over the years. However, with the advent of Large Language Models (LLMs), interest in this task (in its classical definition) has decreased. In this study, we evaluate the performance of various LLMs on the WSD task. We extend a previous benchmark (XL-WSD) to re-design two subtasks suitable for LLM: 1) given a word in a sentence, the LLM must generate the correct definition; 2) given a word in a sentence and a set of predefined meanings, the LLM must select the correct one. The extended benchmark is built using the XL-WSD and BabelNet. The results indicate that LLMs perform well in zero-shot learning but cannot surpass current state-of-the-art methods. However, a fine-tuned model with a medium number of parameters outperforms all other models, including the state-of-the-art. 4 authors · Mar 11
- Analyzing Cognitive Plausibility of Subword Tokenization Subword tokenization has become the de-facto standard for tokenization, although comparative evaluations of subword vocabulary quality across languages are scarce. Existing evaluation studies focus on the effect of a tokenization algorithm on the performance in downstream tasks, or on engineering criteria such as the compression rate. We present a new evaluation paradigm that focuses on the cognitive plausibility of subword tokenization. We analyze the correlation of the tokenizer output with the response time and accuracy of human performance on a lexical decision task. We compare three tokenization algorithms across several languages and vocabulary sizes. Our results indicate that the UnigramLM algorithm yields less cognitively plausible tokenization behavior and a worse coverage of derivational morphemes, in contrast with prior work. 2 authors · Oct 20, 2023
5 Ensemble-Instruct: Generating Instruction-Tuning Data with a Heterogeneous Mixture of LMs Using in-context learning (ICL) for data generation, techniques such as Self-Instruct (Wang et al., 2023) or the follow-up Alpaca (Taori et al., 2023) can train strong conversational agents with only a small amount of human supervision. One limitation of these approaches is that they resort to very large language models (around 175B parameters) that are also proprietary and non-public. Here we explore the application of such techniques to language models that are much smaller (around 10B--40B parameters) and have permissive licenses. We find the Self-Instruct approach to be less effective at these sizes and propose new ICL methods that draw on two main ideas: (a) Categorization and simplification of the ICL templates to make prompt learning easier for the LM, and (b) Ensembling over multiple LM outputs to help select high-quality synthetic examples. Our algorithm leverages the 175 Self-Instruct seed tasks and employs separate pipelines for instructions that require an input and instructions that do not. Empirical investigations with different LMs show that: (1) Our proposed method yields higher-quality instruction tuning data than Self-Instruct, (2) It improves performances of both vanilla and instruction-tuned LMs by significant margins, and (3) Smaller instruction-tuned LMs generate more useful outputs than their larger un-tuned counterparts. Our codebase is available at https://github.com/IBM/ensemble-instruct. 7 authors · Oct 21, 2023 2
4 Fine-Tuning LLaMA for Multi-Stage Text Retrieval The effectiveness of multi-stage text retrieval has been solidly demonstrated since before the era of pre-trained language models. However, most existing studies utilize models that predate recent advances in large language models (LLMs). This study seeks to explore potential improvements that state-of-the-art LLMs can bring. We conduct a comprehensive study, fine-tuning the latest LLaMA model both as a dense retriever (RepLLaMA) and as a pointwise reranker (RankLLaMA) for both passage retrieval and document retrieval using the MS MARCO datasets. Our findings demonstrate that the effectiveness of large language models indeed surpasses that of smaller models. Additionally, since LLMs can inherently handle longer contexts, they can represent entire documents holistically, obviating the need for traditional segmenting and pooling strategies. Furthermore, evaluations on BEIR demonstrate that our RepLLaMA-RankLLaMA pipeline exhibits strong zero-shot effectiveness. Model checkpoints from this study are available on HuggingFace. 5 authors · Oct 12, 2023
- CoT-Driven Framework for Short Text Classification: Enhancing and Transferring Capabilities from Large to Smaller Model Short Text Classification (STC) is crucial for processing and understanding the brief but substantial content prevalent on contemporary digital platforms. The STC encounters difficulties in grasping the semantic and syntactic intricacies, an issue that is apparent in traditional pre-trained language models. Although Graph Convolutional Networks enhance performance by integrating external knowledge bases, these methods are limited by the quality and extent of the knowledge applied. Recently, the emergence of Large Language Models (LLMs) and Chain-of-Thought (CoT) has significantly improved the performance of complex reasoning tasks. However, some studies have highlighted the limitations of their application in fundamental NLP tasks. Consequently, this study first employs CoT to investigate and enhance the capabilities of LLMs in STC tasks. We propose the Syntactic and Semantic Enrichment CoT (SSE-CoT) method, effectively decomposing the STC tasks into four distinct steps: (i) essential concept identification, (ii) common-sense knowledge retrieval, (iii) text rewriting, and (iv) classification. Furthermore, recognizing resource constraints in sectors like finance and healthcare, we then introduce the CoT-Driven Multi-Task Learning (CDMT) framework to extend these capabilities to smaller models. This framework begins by extracting rationales from LLMs and subsequently fine-tunes smaller models to optimize their performance. Extensive experimentation across six short-text benchmarks validated the efficacy of the proposed methods. In particular, SSE-CoT achieved state-of-the-art performance with substantial improvements on all datasets, particularly on the Ohsumed and TagMyNews datasets. 8 authors · Jan 6, 2024
- From Text Segmentation to Smart Chaptering: A Novel Benchmark for Structuring Video Transcriptions Text segmentation is a fundamental task in natural language processing, where documents are split into contiguous sections. However, prior research in this area has been constrained by limited datasets, which are either small in scale, synthesized, or only contain well-structured documents. In this paper, we address these limitations by introducing a novel benchmark YTSeg focusing on spoken content that is inherently more unstructured and both topically and structurally diverse. As part of this work, we introduce an efficient hierarchical segmentation model MiniSeg, that outperforms state-of-the-art baselines. Lastly, we expand the notion of text segmentation to a more practical "smart chaptering" task that involves the segmentation of unstructured content, the generation of meaningful segment titles, and a potential real-time application of the models. 2 authors · Feb 27, 2024
2 Rethinking Tokenization: Crafting Better Tokenizers for Large Language Models Tokenization significantly influences language models(LMs)' performance. This paper traces the evolution of tokenizers from word-level to subword-level, analyzing how they balance tokens and types to enhance model adaptability while controlling complexity. Despite subword tokenizers like Byte Pair Encoding (BPE) overcoming many word tokenizer limitations, they encounter difficulties in handling non-Latin languages and depend heavily on extensive training data and computational resources to grasp the nuances of multiword expressions (MWEs). This article argues that tokenizers, more than mere technical tools, should drawing inspiration from the cognitive science about human language processing. This study then introduces the "Principle of Least Effort" from cognitive science, that humans naturally seek to reduce cognitive effort, and discusses the benefits of this principle for tokenizer development. Based on this principle, the paper proposes that the Less-is-Better (LiB) model could be a new approach for LLM tokenizer. The LiB model can autonomously learn an integrated vocabulary consisting of subwords, words, and MWEs, which effectively reduces both the numbers of tokens and types. Comparative evaluations show that the LiB tokenizer outperforms existing word and BPE tokenizers, presenting an innovative method for tokenizer development, and hinting at the possibility of future cognitive science-based tokenizers being more efficient. 1 authors · Mar 1, 2024 3
1 Exploring Zero and Few-shot Techniques for Intent Classification Conversational NLU providers often need to scale to thousands of intent-classification models where new customers often face the cold-start problem. Scaling to so many customers puts a constraint on storage space as well. In this paper, we explore four different zero and few-shot intent classification approaches with this low-resource constraint: 1) domain adaptation, 2) data augmentation, 3) zero-shot intent classification using descriptions large language models (LLMs), and 4) parameter-efficient fine-tuning of instruction-finetuned language models. Our results show that all these approaches are effective to different degrees in low-resource settings. Parameter-efficient fine-tuning using T-few recipe (Liu et al., 2022) on Flan-T5 (Chang et al., 2022) yields the best performance even with just one sample per intent. We also show that the zero-shot method of prompting LLMs using intent descriptions 4 authors · May 11, 2023
- No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval Recent work has shown that small distilled language models are strong competitors to models that are orders of magnitude larger and slower in a wide range of information retrieval tasks. This has made distilled and dense models, due to latency constraints, the go-to choice for deployment in real-world retrieval applications. In this work, we question this practice by showing that the number of parameters and early query-document interaction play a significant role in the generalization ability of retrieval models. Our experiments show that increasing model size results in marginal gains on in-domain test sets, but much larger gains in new domains never seen during fine-tuning. Furthermore, we show that rerankers largely outperform dense ones of similar size in several tasks. Our largest reranker reaches the state of the art in 12 of the 18 datasets of the Benchmark-IR (BEIR) and surpasses the previous state of the art by 3 average points. Finally, we confirm that in-domain effectiveness is not a good indicator of zero-shot effectiveness. Code is available at https://github.com/guilhermemr04/scaling-zero-shot-retrieval.git 7 authors · Jun 6, 2022
4 Improving Multilingual Capabilities with Cultural and Local Knowledge in Large Language Models While Enhancing Native Performance Large Language Models (LLMs) have shown remarkable capabilities, but their development has primarily focused on English and other high-resource languages, leaving many languages underserved. We present our latest Hindi-English bi-lingual LLM Mantra-14B with ~3\% average improvement in benchmark scores over both languages, outperforming models twice its size. Using a curated dataset composed of English and Hindi instruction data of 485K samples, we instruction tuned models such as Qwen-2.5-14B-Instruct and Phi-4 to improve performance over both English and Hindi. Our experiments encompassing seven different LLMs of varying parameter sizes and over 140 training attempts with varying English-Hindi training data ratios demonstrated that it is possible to significantly improve multilingual performance without compromising native performance. Further, our approach avoids resource-intensive techniques like vocabulary expansion or architectural modifications, thus keeping the model size small. Our results indicate that modest fine-tuning with culturally and locally informed data can bridge performance gaps without incurring significant computational overhead. We release our training code, datasets, and models under mit and apache licenses to aid further research towards under-represented and low-resource languages. 8 authors · Apr 13
- Mapping Supervised Bilingual Word Embeddings from English to low-resource languages It is very challenging to work with low-resource languages due to the inadequate availability of data. Using a dictionary to map independently trained word embeddings into a shared vector space has proved to be very useful in learning bilingual embeddings in the past. Here we have tried to map individual embeddings of words in English and their corresponding translated words in low-resource languages like Estonian, Slovenian, Slovakian, and Hungarian. We have used a supervised learning approach. We report accuracy scores through various retrieval strategies which show that it is possible to approach challenging tasks in Natural Language Processing like machine translation for such languages, provided that we have at least some amount of proper bilingual data. We also conclude that we can follow an unsupervised learning path on monolingual text data as that is more suitable for low-resource languages. 1 authors · Oct 14, 2019
- LeXFiles and LegalLAMA: Facilitating English Multinational Legal Language Model Development In this work, we conduct a detailed analysis on the performance of legal-oriented pre-trained language models (PLMs). We examine the interplay between their original objective, acquired knowledge, and legal language understanding capacities which we define as the upstream, probing, and downstream performance, respectively. We consider not only the models' size but also the pre-training corpora used as important dimensions in our study. To this end, we release a multinational English legal corpus (LeXFiles) and a legal knowledge probing benchmark (LegalLAMA) to facilitate training and detailed analysis of legal-oriented PLMs. We release two new legal PLMs trained on LeXFiles and evaluate them alongside others on LegalLAMA and LexGLUE. We find that probing performance strongly correlates with upstream performance in related legal topics. On the other hand, downstream performance is mainly driven by the model's size and prior legal knowledge which can be estimated by upstream and probing performance. Based on these findings, we can conclude that both dimensions are important for those seeking the development of domain-specific PLMs. 5 authors · May 12, 2023
- Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation One of the challenges in information retrieval (IR) is the vocabulary mismatch problem, which happens when the terms between queries and documents are lexically different but semantically similar. While recent work has proposed to expand the queries or documents by enriching their representations with additional relevant terms to address this challenge, they usually require a large volume of query-document pairs to train an expansion model. In this paper, we propose an Unsupervised Document Expansion with Generation (UDEG) framework with a pre-trained language model, which generates diverse supplementary sentences for the original document without using labels on query-document pairs for training. For generating sentences, we further stochastically perturb their embeddings to generate more diverse sentences for document expansion. We validate our framework on two standard IR benchmark datasets. The results show that our framework significantly outperforms relevant expansion baselines for IR. 4 authors · May 3, 2021
- The Short Text Matching Model Enhanced with Knowledge via Contrastive Learning In recent years, short Text Matching tasks have been widely applied in the fields ofadvertising search and recommendation. The difficulty lies in the lack of semantic information and word ambiguity caused by the short length of the text. Previous works have introduced complement sentences or knowledge bases to provide additional feature information. However, these methods have not fully interacted between the original sentence and the complement sentence, and have not considered the noise issue that may arise from the introduction of external knowledge bases. Therefore, this paper proposes a short Text Matching model that combines contrastive learning and external knowledge. The model uses a generative model to generate corresponding complement sentences and uses the contrastive learning method to guide the model to obtain more semantically meaningful encoding of the original sentence. In addition, to avoid noise, we use keywords as the main semantics of the original sentence to retrieve corresponding knowledge words in the knowledge base, and construct a knowledge graph. The graph encoding model is used to integrate the knowledge base information into the model. Our designed model achieves state-of-the-art performance on two publicly available Chinese Text Matching datasets, demonstrating the effectiveness of our model. 7 authors · Apr 7, 2023
- CoLLEGe: Concept Embedding Generation for Large Language Models Current language models are unable to quickly learn new concepts on the fly, often requiring a more involved finetuning process to learn robustly. Prompting in-context is not robust to context distractions, and often fails to confer much information about the new concepts. Classic methods for few-shot word learning in NLP, relying on global word vectors, are less applicable to large language models. In this paper, we introduce a novel approach named CoLLEGe (Concept Learning with Language Embedding Generation) to modernize few-shot concept learning. CoLLEGe is a meta-learning framework capable of generating flexible embeddings for new concepts using a small number of example sentences or definitions. Our primary meta-learning objective is simply to facilitate a language model to make next word predictions in forthcoming sentences, making it compatible with language model pretraining. We design a series of tasks to test new concept learning in challenging real-world scenarios, including new word acquisition, definition inference, and verbal reasoning, and demonstrate that our method succeeds in each setting without task-specific training. 3 authors · Mar 22, 2024
- Tokenization Impacts Multilingual Language Modeling: Assessing Vocabulary Allocation and Overlap Across Languages Multilingual language models have recently gained attention as a promising solution for representing multiple languages in a single model. In this paper, we propose new criteria to evaluate the quality of lexical representation and vocabulary overlap observed in sub-word tokenizers. Our findings show that the overlap of vocabulary across languages can be actually detrimental to certain downstream tasks (POS, dependency tree labeling). In contrast, NER and sentence-level tasks (cross-lingual retrieval, NLI) benefit from sharing vocabulary. We also observe that the coverage of the language-specific tokens in the multilingual vocabulary significantly impacts the word-level tasks. Our study offers a deeper understanding of the role of tokenizers in multilingual language models and guidelines for future model developers to choose the most suitable tokenizer for their specific application before undertaking costly model pre-training 3 authors · May 26, 2023
- MessIRve: A Large-Scale Spanish Information Retrieval Dataset Information retrieval (IR) is the task of finding relevant documents in response to a user query. Although Spanish is the second most spoken native language, current IR benchmarks lack Spanish data, hindering the development of information access tools for Spanish speakers. We introduce MessIRve, a large-scale Spanish IR dataset with around 730 thousand queries from Google's autocomplete API and relevant documents sourced from Wikipedia. MessIRve's queries reflect diverse Spanish-speaking regions, unlike other datasets that are translated from English or do not consider dialectal variations. The large size of the dataset allows it to cover a wide variety of topics, unlike smaller datasets. We provide a comprehensive description of the dataset, comparisons with existing datasets, and baseline evaluations of prominent IR models. Our contributions aim to advance Spanish IR research and improve information access for Spanish speakers. 6 authors · Sep 9, 2024
1 Promptagator: Few-shot Dense Retrieval From 8 Examples Much recent research on information retrieval has focused on how to transfer from one task (typically with abundant supervised data) to various other tasks where supervision is limited, with the implicit assumption that it is possible to generalize from one task to all the rest. However, this overlooks the fact that there are many diverse and unique retrieval tasks, each targeting different search intents, queries, and search domains. In this paper, we suggest to work on Few-shot Dense Retrieval, a setting where each task comes with a short description and a few examples. To amplify the power of a few examples, we propose Prompt-base Query Generation for Retriever (Promptagator), which leverages large language models (LLM) as a few-shot query generator, and creates task-specific retrievers based on the generated data. Powered by LLM's generalization ability, Promptagator makes it possible to create task-specific end-to-end retrievers solely based on a few examples {without} using Natural Questions or MS MARCO to train %question generators or dual encoders. Surprisingly, LLM prompting with no more than 8 examples allows dual encoders to outperform heavily engineered models trained on MS MARCO like ColBERT v2 by more than 1.2 nDCG on average on 11 retrieval sets. Further training standard-size re-rankers using the same generated data yields another 5.0 point nDCG improvement. Our studies determine that query generation can be far more effective than previously observed, especially when a small amount of task-specific knowledge is given. 10 authors · Sep 23, 2022
- What Happens When Small Is Made Smaller? Exploring the Impact of Compression on Small Data Pretrained Language Models Compression techniques have been crucial in advancing machine learning by enabling efficient training and deployment of large-scale language models. However, these techniques have received limited attention in the context of low-resource language models, which are trained on even smaller amounts of data and under computational constraints, a scenario known as the "low-resource double-bind." This paper investigates the effectiveness of pruning, knowledge distillation, and quantization on an exclusively low-resourced, small-data language model, AfriBERTa. Through a battery of experiments, we assess the effects of compression on performance across several metrics beyond accuracy. Our study provides evidence that compression techniques significantly improve the efficiency and effectiveness of small-data language models, confirming that the prevailing beliefs regarding the effects of compression on large, heavily parameterized models hold true for less-parameterized, small-data models. 3 authors · Apr 6, 2024
- Sõnajaht: Definition Embeddings and Semantic Search for Reverse Dictionary Creation We present an information retrieval based reverse dictionary system using modern pre-trained language models and approximate nearest neighbors search algorithms. The proposed approach is applied to an existing Estonian language lexicon resource, S\~onaveeb (word web), with the purpose of enhancing and enriching it by introducing cross-lingual reverse dictionary functionality powered by semantic search. The performance of the system is evaluated using both an existing labeled English dataset of words and definitions that is extended to contain also Estonian and Russian translations, and a novel unlabeled evaluation approach that extracts the evaluation data from the lexicon resource itself using synonymy relations. Evaluation results indicate that the information retrieval based semantic search approach without any model training is feasible, producing median rank of 1 in the monolingual setting and median rank of 2 in the cross-lingual setting using the unlabeled evaluation approach, with models trained for cross-lingual retrieval and including Estonian in their training data showing superior performance in our particular task. 2 authors · Apr 30, 2024
- The Impact of Quantization on Retrieval-Augmented Generation: An Analysis of Small LLMs Post-training quantization reduces the computational demand of Large Language Models (LLMs) but can weaken some of their capabilities. Since LLM abilities emerge with scale, smaller LLMs are more sensitive to quantization. In this paper, we explore how quantization affects smaller LLMs' ability to perform retrieval-augmented generation (RAG), specifically in longer contexts. We chose personalization for evaluation because it is a challenging domain to perform using RAG as it requires long-context reasoning over multiple documents. We compare the original FP16 and the quantized INT4 performance of multiple 7B and 8B LLMs on two tasks while progressively increasing the number of retrieved documents to test how quantized models fare against longer contexts. To better understand the effect of retrieval, we evaluate three retrieval models in our experiments. Our findings reveal that if a 7B LLM performs the task well, quantization does not impair its performance and long-context reasoning capabilities. We conclude that it is possible to utilize RAG with quantized smaller LLMs. 3 authors · Jun 10, 2024
- Can Large Language Models Predict the Outcome of Judicial Decisions? Large Language Models (LLMs) have shown exceptional capabilities in Natural Language Processing (NLP) across diverse domains. However, their application in specialized tasks such as Legal Judgment Prediction (LJP) for low-resource languages like Arabic remains underexplored. In this work, we address this gap by developing an Arabic LJP dataset, collected and preprocessed from Saudi commercial court judgments. We benchmark state-of-the-art open-source LLMs, including LLaMA-3.2-3B and LLaMA-3.1-8B, under varying configurations such as zero-shot, one-shot, and fine-tuning using QLoRA. Additionally, we used a comprehensive evaluation framework combining quantitative metrics (BLEU and ROUGE) and qualitative assessments (Coherence, legal language, clarity). Our results demonstrate that fine-tuned smaller models achieve comparable performance to larger models in task-specific contexts while offering significant resource efficiency. Furthermore, we investigate the effects of prompt engineering and fine-tuning on model outputs, providing insights into performance variability and instruction sensitivity. By making the dataset, implementation code, and models publicly available, we establish a robust foundation for future research in Arabic legal NLP. 3 authors · Jan 15
13 DyVo: Dynamic Vocabularies for Learned Sparse Retrieval with Entities Learned Sparse Retrieval (LSR) models use vocabularies from pre-trained transformers, which often split entities into nonsensical fragments. Splitting entities can reduce retrieval accuracy and limits the model's ability to incorporate up-to-date world knowledge not included in the training data. In this work, we enhance the LSR vocabulary with Wikipedia concepts and entities, enabling the model to resolve ambiguities more effectively and stay current with evolving knowledge. Central to our approach is a Dynamic Vocabulary (DyVo) head, which leverages existing entity embeddings and an entity retrieval component that identifies entities relevant to a query or document. We use the DyVo head to generate entity weights, which are then merged with word piece weights to create joint representations for efficient indexing and retrieval using an inverted index. In experiments across three entity-rich document ranking datasets, the resulting DyVo model substantially outperforms state-of-the-art baselines. 6 authors · Oct 10, 2024 2
- Resolving Regular Polysemy in Named Entities Word sense disambiguation primarily addresses the lexical ambiguity of common words based on a predefined sense inventory. Conversely, proper names are usually considered to denote an ad-hoc real-world referent. Once the reference is decided, the ambiguity is purportedly resolved. However, proper names also exhibit ambiguities through appellativization, i.e., they act like common words and may denote different aspects of their referents. We proposed to address the ambiguities of proper names through the light of regular polysemy, which we formalized as dot objects. This paper introduces a combined word sense disambiguation (WSD) model for disambiguating common words against Chinese Wordnet (CWN) and proper names as dot objects. The model leverages the flexibility of a gloss-based model architecture, which takes advantage of the glosses and example sentences of CWN. We show that the model achieves competitive results on both common and proper nouns, even on a relatively sparse sense dataset. Aside from being a performant WSD tool, the model further facilitates the future development of the lexical resource. 5 authors · Jan 18, 2024
1 Using Zero-shot Prompting in the Automatic Creation and Expansion of Topic Taxonomies for Tagging Retail Banking Transactions This work presents an unsupervised method for automatically constructing and expanding topic taxonomies by using instruction-based fine-tuned LLMs (Large Language Models). We apply topic modeling and keyword extraction techniques to create initial topic taxonomies and LLMs to post-process the resulting terms and create a hierarchy. To expand an existing taxonomy with new terms, we use zero-shot prompting to find out where to add new nodes, which, to our knowledge, is the first work to present such an approach to taxonomy tasks. We use the resulting taxonomies to assign tags that characterize merchants from a retail bank dataset. To evaluate our work, we asked 12 volunteers to answer a two-part form in which we first assessed the quality of the taxonomies created and then the tags assigned to merchants based on that taxonomy. The evaluation revealed a coherence rate exceeding 90% for the chosen taxonomies, while the average coherence for merchant tagging surpassed 80%. 16 authors · Jan 7, 2024
- Mistral-SPLADE: LLMs for better Learned Sparse Retrieval Learned Sparse Retrievers (LSR) have evolved into an effective retrieval strategy that can bridge the gap between traditional keyword-based sparse retrievers and embedding-based dense retrievers. At its core, learned sparse retrievers try to learn the most important semantic keyword expansions from a query and/or document which can facilitate better retrieval with overlapping keyword expansions. LSR like SPLADE has typically been using encoder only models with MLM (masked language modeling) style objective in conjunction with known ways of retrieval performance improvement such as hard negative mining, distillation, etc. In this work, we propose to use decoder-only model for learning semantic keyword expansion. We posit, decoder only models that have seen much higher magnitudes of data are better equipped to learn keyword expansions needed for improved retrieval. We use Mistral as the backbone to develop our Learned Sparse Retriever similar to SPLADE and train it on a subset of sentence-transformer data which is often used for training text embedding models. Our experiments support the hypothesis that a sparse retrieval model based on decoder only large language model (LLM) surpasses the performance of existing LSR systems, including SPLADE and all its variants. The LLM based model (Echo-Mistral-SPLADE) now stands as a state-of-the-art learned sparse retrieval model on the BEIR text retrieval benchmark. 5 authors · Aug 20, 2024
- Embracing data abundance: BookTest Dataset for Reading Comprehension There is a practically unlimited amount of natural language data available. Still, recent work in text comprehension has focused on datasets which are small relative to current computing possibilities. This article is making a case for the community to move to larger data and as a step in that direction it is proposing the BookTest, a new dataset similar to the popular Children's Book Test (CBT), however more than 60 times larger. We show that training on the new data improves the accuracy of our Attention-Sum Reader model on the original CBT test data by a much larger margin than many recent attempts to improve the model architecture. On one version of the dataset our ensemble even exceeds the human baseline provided by Facebook. We then show in our own human study that there is still space for further improvement. 3 authors · Oct 4, 2016
- Exploring Small Language Models with Prompt-Learning Paradigm for Efficient Domain-Specific Text Classification Domain-specific text classification faces the challenge of scarce labeled data due to the high cost of manual labeling. Prompt-learning, known for its efficiency in few-shot scenarios, is proposed as an alternative to traditional fine-tuning methods. And besides, although large language models (LLMs) have gained prominence, small language models (SLMs, with under 1B parameters) offer significant customizability, adaptability, and cost-effectiveness for domain-specific tasks, given industry constraints. In this study, we investigate the potential of SLMs combined with prompt-learning paradigm for domain-specific text classification, specifically within customer-agent interactions in retail. Our evaluations show that, in few-shot settings when prompt-based model fine-tuning is possible, T5-base, a typical SLM with 220M parameters, achieve approximately 75% accuracy with limited labeled data (up to 15% of full data), which shows great potentials of SLMs with prompt-learning. Based on this, We further validate the effectiveness of active few-shot sampling and the ensemble strategy in the prompt-learning pipeline that contribute to a remarkable performance gain. Besides, in zero-shot settings with a fixed model, we underscore a pivotal observation that, although the GPT-3.5-turbo equipped with around 154B parameters garners an accuracy of 55.16%, the power of well designed prompts becomes evident when the FLAN-T5-large, a model with a mere 0.5% of GPT-3.5-turbo's parameters, achieves an accuracy exceeding 31% with the optimized prompt, a leap from its sub-18% performance with an unoptimized one. Our findings underscore the promise of prompt-learning in classification tasks with SLMs, emphasizing the benefits of active few-shot sampling, and ensemble strategies in few-shot settings, and the importance of prompt engineering in zero-shot settings. 3 authors · Sep 26, 2023
2 Making a MIRACL: Multilingual Information Retrieval Across a Continuum of Languages MIRACL (Multilingual Information Retrieval Across a Continuum of Languages) is a multilingual dataset we have built for the WSDM 2023 Cup challenge that focuses on ad hoc retrieval across 18 different languages, which collectively encompass over three billion native speakers around the world. These languages have diverse typologies, originate from many different language families, and are associated with varying amounts of available resources -- including what researchers typically characterize as high-resource as well as low-resource languages. Our dataset is designed to support the creation and evaluation of models for monolingual retrieval, where the queries and the corpora are in the same language. In total, we have gathered over 700k high-quality relevance judgments for around 77k queries over Wikipedia in these 18 languages, where all assessments have been performed by native speakers hired by our team. Our goal is to spur research that will improve retrieval across a continuum of languages, thus enhancing information access capabilities for diverse populations around the world, particularly those that have been traditionally underserved. This overview paper describes the dataset and baselines that we share with the community. The MIRACL website is live at http://miracl.ai/. 9 authors · Oct 18, 2022
- Probing Quantifier Comprehension in Large Language Models: Another Example of Inverse Scaling With their increasing size, large language models (LLMs) are becoming increasingly good at language understanding tasks. But even with high performance on specific downstream task, LLMs fail at simple linguistic tests for negation or quantifier understanding. Previous work on quantifier understanding in LLMs show inverse scaling in understanding few-type quantifiers. In this paper, we question the claims of of previous work and show that it is a result of inappropriate testing methodology. We also present alternate methods to measure quantifier comprehension in LLMs and show that LLMs are able to better understand the difference between the meaning of few-type and most-type quantifiers as their size increases, although they are not particularly good at it. We also observe inverse scaling for most-type quantifier understanding, which is contrary to human psycho-linguistic experiments and previous work, where the model's understanding of most-type quantifier gets worse as the model size increases. We do this evaluation on models ranging from 125M-175B parameters, which suggests that LLMs do not do as well as expected with quantifiers. We also discuss the possible reasons for this and the relevance of quantifier understanding in evaluating language understanding in LLMs. 1 authors · Jun 12, 2023
- Danish Foundation Models Large language models, sometimes referred to as foundation models, have transformed multiple fields of research. However, smaller languages risk falling behind due to high training costs and small incentives for large companies to train these models. To combat this, the Danish Foundation Models project seeks to provide and maintain open, well-documented, and high-quality foundation models for the Danish language. This is achieved through broad cooperation with public and private institutions, to ensure high data quality and applicability of the trained models. We present the motivation of the project, the current status, and future perspectives. 13 authors · Nov 13, 2023
- SMOL: Professionally translated parallel data for 115 under-represented languages We open-source SMOL (Set of Maximal Overall Leverage), a suite of training data to unlock translation for low-resource languages (LRLs). SMOL has been translated into 115 under-resourced languages, including many for which there exist no previous public resources, for a total of 6.1M translated tokens. SMOL comprises two sub-datasets, each carefully chosen for maximum impact given its size: SMOL-Sent, a set of sentences chosen for broad unique token coverage, and SMOL-Doc, a document-level source focusing on a broad topic coverage. They join the already released GATITOS for a trifecta of paragraph, sentence, and token-level content. We demonstrate that using SMOL to prompt or fine-tune Large Language Models yields robust ChrF improvements. In addition to translation, we provide factuality ratings and rationales for all documents in SMOL-Doc, yielding the first factuality datasets for most of these languages. 12 authors · Feb 17
- Few-NERD: A Few-Shot Named Entity Recognition Dataset Recently, considerable literature has grown up around the theme of few-shot named entity recognition (NER), but little published benchmark data specifically focused on the practical and challenging task. Current approaches collect existing supervised NER datasets and re-organize them to the few-shot setting for empirical study. These strategies conventionally aim to recognize coarse-grained entity types with few examples, while in practice, most unseen entity types are fine-grained. In this paper, we present Few-NERD, a large-scale human-annotated few-shot NER dataset with a hierarchy of 8 coarse-grained and 66 fine-grained entity types. Few-NERD consists of 188,238 sentences from Wikipedia, 4,601,160 words are included and each is annotated as context or a part of a two-level entity type. To the best of our knowledge, this is the first few-shot NER dataset and the largest human-crafted NER dataset. We construct benchmark tasks with different emphases to comprehensively assess the generalization capability of models. Extensive empirical results and analysis show that Few-NERD is challenging and the problem requires further research. We make Few-NERD public at https://ningding97.github.io/fewnerd/. 8 authors · May 16, 2021
2 MiniRAG: Towards Extremely Simple Retrieval-Augmented Generation The growing demand for efficient and lightweight Retrieval-Augmented Generation (RAG) systems has highlighted significant challenges when deploying Small Language Models (SLMs) in existing RAG frameworks. Current approaches face severe performance degradation due to SLMs' limited semantic understanding and text processing capabilities, creating barriers for widespread adoption in resource-constrained scenarios. To address these fundamental limitations, we present MiniRAG, a novel RAG system designed for extreme simplicity and efficiency. MiniRAG introduces two key technical innovations: (1) a semantic-aware heterogeneous graph indexing mechanism that combines text chunks and named entities in a unified structure, reducing reliance on complex semantic understanding, and (2) a lightweight topology-enhanced retrieval approach that leverages graph structures for efficient knowledge discovery without requiring advanced language capabilities. Our extensive experiments demonstrate that MiniRAG achieves comparable performance to LLM-based methods even when using SLMs while requiring only 25\% of the storage space. Additionally, we contribute a comprehensive benchmark dataset for evaluating lightweight RAG systems under realistic on-device scenarios with complex queries. We fully open-source our implementation and datasets at: https://github.com/HKUDS/MiniRAG. 4 authors · Jan 11
1 Contextualized Sparse Representations for Real-Time Open-Domain Question Answering Open-domain question answering can be formulated as a phrase retrieval problem, in which we can expect huge scalability and speed benefit but often suffer from low accuracy due to the limitation of existing phrase representation models. In this paper, we aim to improve the quality of each phrase embedding by augmenting it with a contextualized sparse representation (Sparc). Unlike previous sparse vectors that are term-frequency-based (e.g., tf-idf) or directly learned (only few thousand dimensions), we leverage rectified self-attention to indirectly learn sparse vectors in n-gram vocabulary space. By augmenting the previous phrase retrieval model (Seo et al., 2019) with Sparc, we show 4%+ improvement in CuratedTREC and SQuAD-Open. Our CuratedTREC score is even better than the best known retrieve & read model with at least 45x faster inference speed. 4 authors · Nov 7, 2019
3 Do We Still Need Clinical Language Models? Although recent advances in scaling large language models (LLMs) have resulted in improvements on many NLP tasks, it remains unclear whether these models trained primarily with general web text are the right tool in highly specialized, safety critical domains such as clinical text. Recent results have suggested that LLMs encode a surprising amount of medical knowledge. This raises an important question regarding the utility of smaller domain-specific language models. With the success of general-domain LLMs, is there still a need for specialized clinical models? To investigate this question, we conduct an extensive empirical analysis of 12 language models, ranging from 220M to 175B parameters, measuring their performance on 3 different clinical tasks that test their ability to parse and reason over electronic health records. As part of our experiments, we train T5-Base and T5-Large models from scratch on clinical notes from MIMIC III and IV to directly investigate the efficiency of clinical tokens. We show that relatively small specialized clinical models substantially outperform all in-context learning approaches, even when finetuned on limited annotated data. Further, we find that pretraining on clinical tokens allows for smaller, more parameter-efficient models that either match or outperform much larger language models trained on general text. We release the code and the models used under the PhysioNet Credentialed Health Data license and data use agreement. 10 authors · Feb 16, 2023
23 Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks? As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data. 3 authors · Nov 7, 2024 3
1 TCRA-LLM: Token Compression Retrieval Augmented Large Language Model for Inference Cost Reduction Since ChatGPT released its API for public use, the number of applications built on top of commercial large language models (LLMs) increase exponentially. One popular usage of such models is leveraging its in-context learning ability and generating responses given user queries leveraging knowledge obtained by retrieval augmentation. One problem of deploying commercial retrieval-augmented LLMs is the cost due to the additionally retrieved context that largely increases the input token size of the LLMs. To mitigate this, we propose a token compression scheme that includes two methods: summarization compression and semantic compression. The first method applies a T5-based model that is fine-tuned by datasets generated using self-instruct containing samples with varying lengths and reduce token size by doing summarization. The second method further compresses the token size by removing words with lower impact on the semantic. In order to adequately evaluate the effectiveness of the proposed methods, we propose and utilize a dataset called Food-Recommendation DB (FRDB) focusing on food recommendation for women around pregnancy period or infants. Our summarization compression can reduce 65% of the retrieval token size with further 0.3% improvement on the accuracy; semantic compression provides a more flexible way to trade-off the token size with performance, for which we can reduce the token size by 20% with only 1.6% of accuracy drop. 5 authors · Oct 24, 2023
9 Language Resources for Dutch Large Language Modelling Despite the rapid expansion of types of large language models, there remains a notable gap in models specifically designed for the Dutch language. This gap is not only a shortage in terms of pretrained Dutch models but also in terms of data, and benchmarks and leaderboards. This work provides a small step to improve the situation. First, we introduce two fine-tuned variants of the Llama 2 13B model. We first fine-tuned Llama 2 using Dutch-specific web-crawled data and subsequently refined this model further on multiple synthetic instruction and chat datasets. These datasets as well as the model weights are made available. In addition, we provide a leaderboard to keep track of the performance of (Dutch) models on a number of generation tasks, and we include results of a number of state-of-the-art models, including our own. Finally we provide a critical conclusion on what we believe is needed to push forward Dutch language models and the whole eco-system around the models. 1 authors · Dec 20, 2023 1
1 Do LLMs Understand User Preferences? Evaluating LLMs On User Rating Prediction Large Language Models (LLMs) have demonstrated exceptional capabilities in generalizing to new tasks in a zero-shot or few-shot manner. However, the extent to which LLMs can comprehend user preferences based on their previous behavior remains an emerging and still unclear research question. Traditionally, Collaborative Filtering (CF) has been the most effective method for these tasks, predominantly relying on the extensive volume of rating data. In contrast, LLMs typically demand considerably less data while maintaining an exhaustive world knowledge about each item, such as movies or products. In this paper, we conduct a thorough examination of both CF and LLMs within the classic task of user rating prediction, which involves predicting a user's rating for a candidate item based on their past ratings. We investigate various LLMs in different sizes, ranging from 250M to 540B parameters and evaluate their performance in zero-shot, few-shot, and fine-tuning scenarios. We conduct comprehensive analysis to compare between LLMs and strong CF methods, and find that zero-shot LLMs lag behind traditional recommender models that have the access to user interaction data, indicating the importance of user interaction data. However, through fine-tuning, LLMs achieve comparable or even better performance with only a small fraction of the training data, demonstrating their potential through data efficiency. 7 authors · May 10, 2023
- Making Short-Form Videos Accessible with Hierarchical Video Summaries Short videos on platforms such as TikTok, Instagram Reels, and YouTube Shorts (i.e. short-form videos) have become a primary source of information and entertainment. Many short-form videos are inaccessible to blind and low vision (BLV) viewers due to their rapid visual changes, on-screen text, and music or meme-audio overlays. In our formative study, 7 BLV viewers who regularly watched short-form videos reported frequently skipping such inaccessible content. We present ShortScribe, a system that provides hierarchical visual summaries of short-form videos at three levels of detail to support BLV viewers in selecting and understanding short-form videos. ShortScribe allows BLV users to navigate between video descriptions based on their level of interest. To evaluate ShortScribe, we assessed description accuracy and conducted a user study with 10 BLV participants comparing ShortScribe to a baseline interface. When using ShortScribe, participants reported higher comprehension and provided more accurate summaries of video content. 6 authors · Feb 15, 2024
1 FastText.zip: Compressing text classification models We consider the problem of producing compact architectures for text classification, such that the full model fits in a limited amount of memory. After considering different solutions inspired by the hashing literature, we propose a method built upon product quantization to store word embeddings. While the original technique leads to a loss in accuracy, we adapt this method to circumvent quantization artefacts. Our experiments carried out on several benchmarks show that our approach typically requires two orders of magnitude less memory than fastText while being only slightly inferior with respect to accuracy. As a result, it outperforms the state of the art by a good margin in terms of the compromise between memory usage and accuracy. 6 authors · Dec 12, 2016
2 SLIM: Sparsified Late Interaction for Multi-Vector Retrieval with Inverted Indexes This paper introduces Sparsified Late Interaction for Multi-vector (SLIM) retrieval with inverted indexes. Multi-vector retrieval methods have demonstrated their effectiveness on various retrieval datasets, and among them, ColBERT is the most established method based on the late interaction of contextualized token embeddings of pre-trained language models. However, efficient ColBERT implementations require complex engineering and cannot take advantage of off-the-shelf search libraries, impeding their practical use. To address this issue, SLIM first maps each contextualized token vector to a sparse, high-dimensional lexical space before performing late interaction between these sparse token embeddings. We then introduce an efficient two-stage retrieval architecture that includes inverted index retrieval followed by a score refinement module to approximate the sparsified late interaction, which is fully compatible with off-the-shelf lexical search libraries such as Lucene. SLIM achieves competitive accuracy on MS MARCO Passages and BEIR compared to ColBERT while being much smaller and faster on CPUs. To our knowledge, we are the first to explore using sparse token representations for multi-vector retrieval. Source code and data are integrated into the Pyserini IR toolkit. 4 authors · Feb 13, 2023
1 Small-Text: Active Learning for Text Classification in Python We introduce small-text, an easy-to-use active learning library, which offers pool-based active learning for single- and multi-label text classification in Python. It features numerous pre-implemented state-of-the-art query strategies, including some that leverage the GPU. Standardized interfaces allow the combination of a variety of classifiers, query strategies, and stopping criteria, facilitating a quick mix and match, and enabling a rapid and convenient development of both active learning experiments and applications. With the objective of making various classifiers and query strategies accessible for active learning, small-text integrates several well-known machine learning libraries, namely scikit-learn, PyTorch, and Hugging Face transformers. The latter integrations are optionally installable extensions, so GPUs can be used but are not required. Using this new library, we investigate the performance of the recently published SetFit training paradigm, which we compare to vanilla transformer fine-tuning, finding that it matches the latter in classification accuracy while outperforming it in area under the curve. The library is available under the MIT License at https://github.com/webis-de/small-text, in version 1.3.0 at the time of writing. 4 authors · Jul 21, 2021
- Auto-tagging of Short Conversational Sentences using Transformer Methods The problem of categorizing short speech sentences according to their semantic features with high accuracy is a subject studied in natural language processing. In this study, a data set created with samples classified in 46 different categories was used. Examples consist of sentences taken from chat conversations between a company's customer representatives and the company's website visitors. The primary purpose is to automatically tag questions and requests from visitors in the most accurate way for 46 predetermined categories for use in a chat application to generate meaningful answers to the questions asked by the website visitors. For this, different BERT models and one GPT-2 model, pre-trained in Turkish, were preferred. The classification performances of the relevant models were analyzed in detail and reported accordingly. 8 authors · Jun 3, 2021
- Language Models are Crossword Solvers Crosswords are a form of word puzzle that require a solver to demonstrate a high degree of proficiency in natural language understanding, wordplay, reasoning, and world knowledge, along with adherence to character and length constraints. In this paper we tackle the challenge of solving crosswords with Large Language Models (LLMs). We demonstrate that the current generation of state-of-the art (SoTA) language models show significant competence at deciphering cryptic crossword clues, and outperform previously reported SoTA results by a factor of 2-3 in relevant benchmarks. We also develop a search algorithm that builds off this performance to tackle the problem of solving full crossword grids with LLMs for the very first time, achieving an accuracy of 93\% on New York Times crossword puzzles. Contrary to previous work in this area which concluded that LLMs lag human expert performance significantly, our research suggests this gap is a lot narrower. 4 authors · Jun 13, 2024
- ECtHR-PCR: A Dataset for Precedent Understanding and Prior Case Retrieval in the European Court of Human Rights In common law jurisdictions, legal practitioners rely on precedents to construct arguments, in line with the doctrine of stare decisis. As the number of cases grow over the years, prior case retrieval (PCR) has garnered significant attention. Besides lacking real-world scale, existing PCR datasets do not simulate a realistic setting, because their queries use complete case documents while only masking references to prior cases. The query is thereby exposed to legal reasoning not yet available when constructing an argument for an undecided case as well as spurious patterns left behind by citation masks, potentially short-circuiting a comprehensive understanding of case facts and legal principles. To address these limitations, we introduce a PCR dataset based on judgements from the European Court of Human Rights (ECtHR), which explicitly separate facts from arguments and exhibit precedential practices, aiding us to develop this PCR dataset to foster systems' comprehensive understanding. We benchmark different lexical and dense retrieval approaches with various negative sampling strategies, adapting them to deal with long text sequences using hierarchical variants. We found that difficulty-based negative sampling strategies were not effective for the PCR task, highlighting the need for investigation into domain-specific difficulty criteria. Furthermore, we observe performance of the dense models degrade with time and calls for further research into temporal adaptation of retrieval models. Additionally, we assess the influence of different views , Halsbury's and Goodhart's, in practice in ECtHR jurisdiction using PCR task. 3 authors · Mar 31, 2024
257 Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a phone. The innovation lies entirely in our dataset for training, a scaled-up version of the one used for phi-2, composed of heavily filtered web data and synthetic data. The model is also further aligned for robustness, safety, and chat format. We also provide some initial parameter-scaling results with a 7B and 14B models trained for 4.8T tokens, called phi-3-small and phi-3-medium, both significantly more capable than phi-3-mini (e.g., respectively 75% and 78% on MMLU, and 8.7 and 8.9 on MT-bench). 84 authors · Apr 22, 2024 42
1 Efficient Methods for Natural Language Processing: A Survey Getting the most out of limited resources allows advances in natural language processing (NLP) research and practice while being conservative with resources. Those resources may be data, time, storage, or energy. Recent work in NLP has yielded interesting results from scaling; however, using only scale to improve results means that resource consumption also scales. That relationship motivates research into efficient methods that require less resources to achieve similar results. This survey relates and synthesises methods and findings in those efficiencies in NLP, aiming to guide new researchers in the field and inspire the development of new methods. 18 authors · Aug 31, 2022
- Characterizing Verbatim Short-Term Memory in Neural Language Models When a language model is trained to predict natural language sequences, its prediction at each moment depends on a representation of prior context. What kind of information about the prior context can language models retrieve? We tested whether language models could retrieve the exact words that occurred previously in a text. In our paradigm, language models (transformers and an LSTM) processed English text in which a list of nouns occurred twice. We operationalized retrieval as the reduction in surprisal from the first to the second list. We found that the transformers retrieved both the identity and ordering of nouns from the first list. Further, the transformers' retrieval was markedly enhanced when they were trained on a larger corpus and with greater model depth. Lastly, their ability to index prior tokens was dependent on learned attention patterns. In contrast, the LSTM exhibited less precise retrieval, which was limited to list-initial tokens and to short intervening texts. The LSTM's retrieval was not sensitive to the order of nouns and it improved when the list was semantically coherent. We conclude that transformers implemented something akin to a working memory system that could flexibly retrieve individual token representations across arbitrary delays; conversely, the LSTM maintained a coarser and more rapidly-decaying semantic gist of prior tokens, weighted toward the earliest items. 3 authors · Oct 24, 2022
- Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard BEIR is a benchmark dataset for zero-shot evaluation of information retrieval models across 18 different domain/task combinations. In recent years, we have witnessed the growing popularity of a representation learning approach to building retrieval models, typically using pretrained transformers in a supervised setting. This naturally begs the question: How effective are these models when presented with queries and documents that differ from the training data? Examples include searching in different domains (e.g., medical or legal text) and with different types of queries (e.g., keywords vs. well-formed questions). While BEIR was designed to answer these questions, our work addresses two shortcomings that prevent the benchmark from achieving its full potential: First, the sophistication of modern neural methods and the complexity of current software infrastructure create barriers to entry for newcomers. To this end, we provide reproducible reference implementations that cover the two main classes of approaches: learned dense and sparse models. Second, there does not exist a single authoritative nexus for reporting the effectiveness of different models on BEIR, which has led to difficulty in comparing different methods. To remedy this, we present an official self-service BEIR leaderboard that provides fair and consistent comparisons of retrieval models. By addressing both shortcomings, our work facilitates future explorations in a range of interesting research questions that BEIR enables. 6 authors · Jun 12, 2023
- Siamese BERT-based Model for Web Search Relevance Ranking Evaluated on a New Czech Dataset Web search engines focus on serving highly relevant results within hundreds of milliseconds. Pre-trained language transformer models such as BERT are therefore hard to use in this scenario due to their high computational demands. We present our real-time approach to the document ranking problem leveraging a BERT-based siamese architecture. The model is already deployed in a commercial search engine and it improves production performance by more than 3%. For further research and evaluation, we release DaReCzech, a unique data set of 1.6 million Czech user query-document pairs with manually assigned relevance levels. We also release Small-E-Czech, an Electra-small language model pre-trained on a large Czech corpus. We believe this data will support endeavours both of search relevance and multilingual-focused research communities. 4 authors · Dec 3, 2021
- Does Corpus Quality Really Matter for Low-Resource Languages? The vast majority of non-English corpora are derived from automatically filtered versions of CommonCrawl. While prior work has identified major issues on the quality of these datasets (Kreutzer et al., 2021), it is not clear how this impacts downstream performance. Taking representation learning in Basque as a case study, we explore tailored crawling (manually identifying and scraping websites with high-quality content) as an alternative to filtering CommonCrawl. Our new corpus, called EusCrawl, is similar in size to the Basque portion of popular multilingual corpora like CC100 and mC4, yet it has a much higher quality according to native annotators. For instance, 66% of documents are rated as high-quality for EusCrawl, in contrast with <33% for both mC4 and CC100. Nevertheless, we obtain similar results on downstream NLU tasks regardless of the corpus used for pre-training. Our work suggests that NLU performance in low-resource languages is not primarily constrained by the quality of the data, and other factors like corpus size and domain coverage can play a more important role. 5 authors · Mar 15, 2022
9 Small Models, Big Impact: Efficient Corpus and Graph-Based Adaptation of Small Multilingual Language Models for Low-Resource Languages Low-resource languages (LRLs) face significant challenges in natural language processing (NLP) due to limited data. While current state-of-the-art large language models (LLMs) still struggle with LRLs, smaller multilingual models (mLMs) such as mBERT and XLM-R offer greater promise due to a better fit of their capacity to low training data sizes. This study systematically investigates parameter-efficient adapter-based methods for adapting mLMs to LRLs, evaluating three architectures: Sequential Bottleneck, Invertible Bottleneck, and Low-Rank Adaptation. Using unstructured text from GlotCC and structured knowledge from ConceptNet, we show that small adaptation datasets (e.g., up to 1 GB of free-text or a few MB of knowledge graph data) yield gains in intrinsic (masked language modeling) and extrinsic tasks (topic classification, sentiment analysis, and named entity recognition). We find that Sequential Bottleneck adapters excel in language modeling, while Invertible Bottleneck adapters slightly outperform other methods on downstream tasks due to better embedding alignment and larger parameter counts. Adapter-based methods match or outperform full fine-tuning while using far fewer parameters, and smaller mLMs prove more effective for LRLs than massive LLMs like LLaMA-3, GPT-4, and DeepSeek-R1-based distilled models. While adaptation improves performance, pre-training data size remains the dominant factor, especially for languages with extensive pre-training coverage. 4 authors · Feb 14 2
- Entailment as Few-Shot Learner Large pre-trained language models (LMs) have demonstrated remarkable ability as few-shot learners. However, their success hinges largely on scaling model parameters to a degree that makes it challenging to train and serve. In this paper, we propose a new approach, named as EFL, that can turn small LMs into better few-shot learners. The key idea of this approach is to reformulate potential NLP task into an entailment one, and then fine-tune the model with as little as 8 examples. We further demonstrate our proposed method can be: (i) naturally combined with an unsupervised contrastive learning-based data augmentation method; (ii) easily extended to multilingual few-shot learning. A systematic evaluation on 18 standard NLP tasks demonstrates that this approach improves the various existing SOTA few-shot learning methods by 12\%, and yields competitive few-shot performance with 500 times larger models, such as GPT-3. 5 authors · Apr 29, 2021
16 Optimizing LLMs for Italian: Reducing Token Fertility and Enhancing Efficiency Through Vocabulary Adaptation The number of pretrained Large Language Models (LLMs) is increasing steadily, though the majority are designed predominantly for the English language. While state-of-the-art LLMs can handle other languages, due to language contamination or some degree of multilingual pretraining data, they are not optimized for non-English languages, leading to inefficient encoding (high token "fertility") and slower inference speed. In this work, we thoroughly compare a variety of vocabulary adaptation techniques for optimizing English LLMs for the Italian language, and put forward Semantic Alignment Vocabulary Adaptation (SAVA), a novel method that leverages neural mapping for vocabulary substitution. SAVA achieves competitive performance across multiple downstream tasks, enhancing grounded alignment strategies. We adapt two LLMs: Mistral-7b-v0.1, reducing token fertility by 25\%, and Llama-3.1-8B, optimizing the vocabulary and reducing the number of parameters by 1 billion. We show that, following the adaptation of the vocabulary, these models can recover their performance with a relatively limited stage of continual training on the target language. Finally, we test the capabilities of the adapted models on various multi-choice and generative tasks. 9 authors · Apr 23 1
- SemRe-Rank: Improving Automatic Term Extraction By Incorporating Semantic Relatedness With Personalised PageRank Automatic Term Extraction deals with the extraction of terminology from a domain specific corpus, and has long been an established research area in data and knowledge acquisition. ATE remains a challenging task as it is known that there is no existing ATE methods that can consistently outperform others in any domain. This work adopts a refreshed perspective to this problem: instead of searching for such a 'one-size-fit-all' solution that may never exist, we propose to develop generic methods to 'enhance' existing ATE methods. We introduce SemRe-Rank, the first method based on this principle, to incorporate semantic relatedness - an often overlooked venue - into an existing ATE method to further improve its performance. SemRe-Rank incorporates word embeddings into a personalised PageRank process to compute 'semantic importance' scores for candidate terms from a graph of semantically related words (nodes), which are then used to revise the scores of candidate terms computed by a base ATE algorithm. Extensively evaluated with 13 state-of-the-art base ATE methods on four datasets of diverse nature, it is shown to have achieved widespread improvement over all base methods and across all datasets, with up to 15 percentage points when measured by the Precision in the top ranked K candidate terms (the average for a set of K's), or up to 28 percentage points in F1 measured at a K that equals to the expected real terms in the candidates (F1 in short). Compared to an alternative approach built on the well-known TextRank algorithm, SemRe-Rank can potentially outperform by up to 8 points in Precision at top K, or up to 17 points in F1. 3 authors · Nov 9, 2017
1 Topic Analysis of Superconductivity Literature by Semantic Non-negative Matrix Factorization We utilize a recently developed topic modeling method called SeNMFk, extending the standard Non-negative Matrix Factorization (NMF) methods by incorporating the semantic structure of the text, and adding a robust system for determining the number of topics. With SeNMFk, we were able to extract coherent topics validated by human experts. From these topics, a few are relatively general and cover broad concepts, while the majority can be precisely mapped to specific scientific effects or measurement techniques. The topics also differ by ubiquity, with only three topics prevalent in almost 40 percent of the abstract, while each specific topic tends to dominate a small subset of the abstracts. These results demonstrate the ability of SeNMFk to produce a layered and nuanced analysis of large scientific corpora. 4 authors · Dec 1, 2021
- Efficient Scientific Full Text Classification: The Case of EICAT Impact Assessments This study explores strategies for efficiently classifying scientific full texts using both small, BERT-based models and local large language models like Llama-3.1 8B. We focus on developing methods for selecting subsets of input sentences to reduce input size while simultaneously enhancing classification performance. To this end, we compile a novel dataset consisting of full-text scientific papers from the field of invasion biology, specifically addressing the impacts of invasive species. These papers are aligned with publicly available impact assessments created by researchers for the International Union for Conservation of Nature (IUCN). Through extensive experimentation, we demonstrate that various sources like human evidence annotations, LLM-generated annotations or explainability scores can be used to train sentence selection models that improve the performance of both encoder- and decoder-based language models while optimizing efficiency through the reduction in input length, leading to improved results even if compared to models like ModernBERT that are able to handle the complete text as input. Additionally, we find that repeated sampling of shorter inputs proves to be a very effective strategy that, at a slightly increased cost, can further improve classification performance. 2 authors · Feb 10
- Normalization of Lithuanian Text Using Regular Expressions Text Normalization is an integral part of any text-to-speech synthesis system. In a natural language text, there are elements such as numbers, dates, abbreviations, etc. that belong to other semiotic classes. They are called non-standard words (NSW) and need to be expanded into ordinary words. For this purpose, it is necessary to identify the semiotic class of each NSW. The taxonomy of semiotic classes adapted to the Lithuanian language is presented in the work. Sets of rules are created for detecting and expanding NSWs based on regular expressions. Experiments with three completely different data sets were performed and the accuracy was assessed. Causes of errors are explained and recommendations are given for the development of text normalization rules. 1 authors · Dec 29, 2023
- With Little Power Comes Great Responsibility Despite its importance to experimental design, statistical power (the probability that, given a real effect, an experiment will reject the null hypothesis) has largely been ignored by the NLP community. Underpowered experiments make it more difficult to discern the difference between statistical noise and meaningful model improvements, and increase the chances of exaggerated findings. By meta-analyzing a set of existing NLP papers and datasets, we characterize typical power for a variety of settings and conclude that underpowered experiments are common in the NLP literature. In particular, for several tasks in the popular GLUE benchmark, small test sets mean that most attempted comparisons to state of the art models will not be adequately powered. Similarly, based on reasonable assumptions, we find that the most typical experimental design for human rating studies will be underpowered to detect small model differences, of the sort that are frequently studied. For machine translation, we find that typical test sets of 2000 sentences have approximately 75% power to detect differences of 1 BLEU point. To improve the situation going forward, we give an overview of best practices for power analysis in NLP and release a series of notebooks to assist with future power analyses. 6 authors · Oct 13, 2020
10 SuperBPE: Space Travel for Language Models The assumption across nearly all language model (LM) tokenization schemes is that tokens should be subwords, i.e., contained within word boundaries. While providing a seemingly reasonable inductive bias, is this common practice limiting the potential of modern LMs? Whitespace is not a reliable delimiter of meaning, as evidenced by multi-word expressions (e.g., "by the way"), crosslingual variation in the number of words needed to express a concept (e.g., "spacesuit helmet" in German is "raumanzughelm"), and languages that do not use whitespace at all (e.g., Chinese). To explore the potential of tokenization beyond subwords, we introduce a "superword" tokenizer, SuperBPE, which incorporates a simple pretokenization curriculum into the byte-pair encoding (BPE) algorithm to first learn subwords, then superwords that bridge whitespace. This brings dramatic improvements in encoding efficiency: when fixing the vocabulary size to 200k, SuperBPE encodes a fixed piece of text with up to 33% fewer tokens than BPE on average. In experiments, we pretrain 8B transformer LMs from scratch while fixing the model size, vocabulary size, and train compute, varying *only* the algorithm for learning the vocabulary. Our model trained with SuperBPE achieves an average +4.0% absolute improvement over the BPE baseline across 30 downstream tasks (including +8.2% on MMLU), while simultaneously requiring 27% less compute at inference time. In analysis, we find that SuperBPE results in segmentations of text that are more uniform in per-token difficulty. Qualitatively, this may be because SuperBPE tokens often capture common multi-word expressions that function semantically as a single unit. SuperBPE is a straightforward, local modification to tokenization that improves both encoding efficiency and downstream performance, yielding better language models overall. 6 authors · Mar 17 1
- Retrieval Helps or Hurts? A Deeper Dive into the Efficacy of Retrieval Augmentation to Language Models While large language models (LMs) demonstrate remarkable performance, they encounter challenges in providing accurate responses when queried for information beyond their pre-trained memorization. Although augmenting them with relevant external information can mitigate these issues, failure to consider the necessity of retrieval may adversely affect overall performance. Previous research has primarily focused on examining how entities influence retrieval models and knowledge recall in LMs, leaving other aspects relatively unexplored. In this work, our goal is to offer a more detailed, fact-centric analysis by exploring the effects of combinations of entities and relations. To facilitate this, we construct a new question answering (QA) dataset called WiTQA (Wikipedia Triple Question Answers). This dataset includes questions about entities and relations of various popularity levels, each accompanied by a supporting passage. Our extensive experiments with diverse LMs and retrievers reveal when retrieval does not consistently enhance LMs from the viewpoints of fact-centric popularity.Confirming earlier findings, we observe that larger LMs excel in recalling popular facts. However, they notably encounter difficulty with infrequent entity-relation pairs compared to retrievers. Interestingly, they can effectively retain popular relations of less common entities. We demonstrate the efficacy of our finer-grained metric and insights through an adaptive retrieval system that selectively employs retrieval and recall based on the frequencies of entities and relations in the question. 4 authors · Feb 20, 2024
- Prompt Tuned Embedding Classification for Multi-Label Industry Sector Allocation Prompt Tuning is emerging as a scalable and cost-effective method to fine-tune Pretrained Language Models (PLMs), which are often referred to as Large Language Models (LLMs). This study benchmarks the performance and computational efficiency of Prompt Tuning and baselines for multi-label text classification. This is applied to the challenging task of classifying companies into an investment firm's proprietary industry taxonomy, supporting their thematic investment strategy. Text-to-text classification is frequently reported to outperform task-specific classification heads, but has several limitations when applied to a multi-label classification problem where each label consists of multiple tokens: (a) Generated labels may not match any label in the label taxonomy; (b) The fine-tuning process lacks permutation invariance and is sensitive to the order of the provided labels; (c) The model provides binary decisions rather than appropriate confidence scores. Limitation (a) is addressed by applying constrained decoding using Trie Search, which slightly improves classification performance. All limitations (a), (b), and (c) are addressed by replacing the PLM's language head with a classification head, which is referred to as Prompt Tuned Embedding Classification (PTEC). This improves performance significantly, while also reducing computational costs during inference. In our industrial application, the training data is skewed towards well-known companies. We confirm that the model's performance is consistent across both well-known and less-known companies. Our overall results indicate the continuing need to adapt state-of-the-art methods to domain-specific tasks, even in the era of PLMs with strong generalization abilities. We release our codebase and a benchmarking dataset at https://github.com/EQTPartners/PTEC. 4 authors · Sep 21, 2023
- Do Large Language Models Speak All Languages Equally? A Comparative Study in Low-Resource Settings Large language models (LLMs) have garnered significant interest in natural language processing (NLP), particularly their remarkable performance in various downstream tasks in resource-rich languages. Recent studies have highlighted the limitations of LLMs in low-resource languages, primarily focusing on binary classification tasks and giving minimal attention to South Asian languages. These limitations are primarily attributed to constraints such as dataset scarcity, computational costs, and research gaps specific to low-resource languages. To address this gap, we present datasets for sentiment and hate speech tasks by translating from English to Bangla, Hindi, and Urdu, facilitating research in low-resource language processing. Further, we comprehensively examine zero-shot learning using multiple LLMs in English and widely spoken South Asian languages. Our findings indicate that GPT-4 consistently outperforms Llama 2 and Gemini, with English consistently demonstrating superior performance across diverse tasks compared to low-resource languages. Furthermore, our analysis reveals that natural language inference (NLI) exhibits the highest performance among the evaluated tasks, with GPT-4 demonstrating superior capabilities. 5 authors · Aug 5, 2024
- A Few Brief Notes on DeepImpact, COIL, and a Conceptual Framework for Information Retrieval Techniques Recent developments in representational learning for information retrieval can be organized in a conceptual framework that establishes two pairs of contrasts: sparse vs. dense representations and unsupervised vs. learned representations. Sparse learned representations can further be decomposed into expansion and term weighting components. This framework allows us to understand the relationship between recently proposed techniques such as DPR, ANCE, DeepCT, DeepImpact, and COIL, and furthermore, gaps revealed by our analysis point to "low hanging fruit" in terms of techniques that have yet to be explored. We present a novel technique dubbed "uniCOIL", a simple extension of COIL that achieves to our knowledge the current state-of-the-art in sparse retrieval on the popular MS MARCO passage ranking dataset. Our implementation using the Anserini IR toolkit is built on the Lucene search library and thus fully compatible with standard inverted indexes. 2 authors · Jun 28, 2021
- The Nordic Pile: A 1.2TB Nordic Dataset for Language Modeling Pre-training Large Language Models (LLMs) require massive amounts of text data, and the performance of the LLMs typically correlates with the scale and quality of the datasets. This means that it may be challenging to build LLMs for smaller languages such as Nordic ones, where the availability of text corpora is limited. In order to facilitate the development of the LLMS in the Nordic languages, we curate a high-quality dataset consisting of 1.2TB of text, in all of the major North Germanic languages (Danish, Icelandic, Norwegian, and Swedish), as well as some high-quality English data. This paper details our considerations and processes for collecting, cleaning, and filtering the dataset. 8 authors · Mar 30, 2023
- Rethinking with Retrieval: Faithful Large Language Model Inference Despite the success of large language models (LLMs) in various natural language processing (NLP) tasks, the stored knowledge in these models may inevitably be incomplete, out-of-date, or incorrect. This motivates the need to utilize external knowledge to assist LLMs. Unfortunately, current methods for incorporating external knowledge often require additional training or fine-tuning, which can be costly and may not be feasible for LLMs. To address this issue, we propose a novel post-processing approach, rethinking with retrieval (RR), which retrieves relevant external knowledge based on the decomposed reasoning steps obtained from the chain-of-thought (CoT) prompting. This lightweight approach does not require additional training or fine-tuning and is not limited by the input length of LLMs. We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks: commonsense reasoning, temporal reasoning, and tabular reasoning. Our results show that RR can produce more faithful explanations and improve the performance of LLMs. 3 authors · Dec 31, 2022
- JuriBERT: A Masked-Language Model Adaptation for French Legal Text Language models have proven to be very useful when adapted to specific domains. Nonetheless, little research has been done on the adaptation of domain-specific BERT models in the French language. In this paper, we focus on creating a language model adapted to French legal text with the goal of helping law professionals. We conclude that some specific tasks do not benefit from generic language models pre-trained on large amounts of data. We explore the use of smaller architectures in domain-specific sub-languages and their benefits for French legal text. We prove that domain-specific pre-trained models can perform better than their equivalent generalised ones in the legal domain. Finally, we release JuriBERT, a new set of BERT models adapted to the French legal domain. 5 authors · Oct 4, 2021
- RIFF: Learning to Rephrase Inputs for Few-shot Fine-tuning of Language Models Pre-trained Language Models (PLMs) can be accurately fine-tuned for downstream text processing tasks. Recently, researchers have introduced several parameter-efficient fine-tuning methods that optimize input prompts or adjust a small number of model parameters (e.g LoRA). In this study, we explore the impact of altering the input text of the original task in conjunction with parameter-efficient fine-tuning methods. To most effectively rewrite the input text, we train a few-shot paraphrase model with a Maximum-Marginal Likelihood objective. Using six few-shot text classification datasets, we show that enriching data with paraphrases at train and test time enhances the performance beyond what can be achieved with parameter-efficient fine-tuning alone. 2 authors · Mar 4, 2024
4 Energy Efficient Protein Language Models: Leveraging Small Language Models with LoRA for Controllable Protein Generation Large language models (LLMs) have demonstrated significant success in natural language processing (NLP) tasks and have shown promising results in other domains such as protein sequence generation. However, there remain salient differences between LLMs used for NLP, which effectively handle multiple tasks and are available in small sizes, and protein language models that are often specialized for specific tasks and only exist in larger sizes. In this work, we introduce two small protein language models, based on Llama-3-8B and Phi-3-mini, that are capable of both uncontrollable and controllable protein generation. For the uncontrollable generation task, our best model achieves an average pLDDT score of 69.75, demonstrating robust performance in generating viable protein structures. For the controllable generation task, in which the model generates proteins according to properties specified in the prompt, we achieve a remarkable average TM-Score of 0.84, indicating high structural similarity to target proteins. We chose 10 properties, including six classes of enzymes, to extend the capabilities of prior protein language models. Our approach utilizes the Low-Rank Adaptor (LoRA) technique, reducing trainable parameters to just 4% of the original model size, lowering computational requirements. By using a subset of the UniRef50 dataset and small models, we reduced the overall training time by 70% without compromising performance. Notably, Phi-3-mini reduced trainable parameters by 60%, decreasing training cost by 30% compared to Llama 3. Consequently, Phi-3 achieved a comparable TM-Score of 0.81, demonstrating that smaller models can match the performance of larger ones, like Llama 3. We also demonstrate the deployment of our models on the energy efficient ET-SoC-1 chip, significantly improving the TPS/W by a factor of 3. 2 authors · Nov 8, 2024 2
- LoRA-Mini : Adaptation Matrices Decomposition and Selective Training The rapid advancements in large language models (LLMs) have revolutionized natural language processing, creating an increased need for efficient, task-specific fine-tuning methods. Traditional fine-tuning of LLMs involves updating a large number of parameters, which is computationally expensive and memory-intensive. Low-Rank Adaptation (LoRA) has emerged as a promising solution, enabling parameter-efficient fine-tuning by reducing the number of trainable parameters. However, while LoRA reduces the number of trainable parameters, LoRA modules still create significant storage challenges. We propose LoRA-Mini, an optimized adaptation of LoRA that improves parameter efficiency by splitting low-rank matrices into four parts, with only the two inner matrices being trainable. This approach achieves upto a 20x reduction compared to standard LoRA in the number of trainable parameters while preserving performance levels comparable to standard LoRA, addressing both computational and storage efficiency in LLM fine-tuning. 3 authors · Nov 24, 2024
3 CamemBERT: a Tasty French Language Model Pretrained language models are now ubiquitous in Natural Language Processing. Despite their success, most available models have either been trained on English data or on the concatenation of data in multiple languages. This makes practical use of such models --in all languages except English-- very limited. In this paper, we investigate the feasibility of training monolingual Transformer-based language models for other languages, taking French as an example and evaluating our language models on part-of-speech tagging, dependency parsing, named entity recognition and natural language inference tasks. We show that the use of web crawled data is preferable to the use of Wikipedia data. More surprisingly, we show that a relatively small web crawled dataset (4GB) leads to results that are as good as those obtained using larger datasets (130+GB). Our best performing model CamemBERT reaches or improves the state of the art in all four downstream tasks. 8 authors · Nov 10, 2019
- A Three-Pronged Approach to Cross-Lingual Adaptation with Multilingual LLMs Low-resource languages, by its very definition, tend to be under represented in the pre-training corpora of Large Language Models. In this work, we investigate three low-resource cross-lingual approaches that enable an LLM adapt to tasks in previously unseen languages. Llama-2 is an LLM where Indic languages, among many other language families, contribute to less than 0.005% of the total 2 trillion token pre-training corpora. In this work, we experiment with the English-dominated Llama-2 for cross-lingual transfer to three Indic languages, Bengali, Hindi, and Tamil as target languages. We study three approaches for cross-lingual transfer, under ICL and fine-tuning. One, we find that adding additional supervisory signals via a dominant language in the LLM, leads to improvements, both under in-context learning and fine-tuning. Two, adapting the target languages to word reordering may be beneficial under ICL, but its impact diminishes with fine tuning. Finally, continued pre-training in one low-resource language can improve model performance for other related low-resource languages. 4 authors · Jun 25, 2024
9 TeacherLM: Teaching to Fish Rather Than Giving the Fish, Language Modeling Likewise Large Language Models (LLMs) exhibit impressive reasoning and data augmentation capabilities in various NLP tasks. However, what about small models? In this work, we propose TeacherLM-7.1B, capable of annotating relevant fundamentals, chain of thought, and common mistakes for most NLP samples, which makes annotation more than just an answer, thus allowing other models to learn "why" instead of just "what". The TeacherLM-7.1B model achieved a zero-shot score of 52.3 on MMLU, surpassing most models with over 100B parameters. Even more remarkable is its data augmentation ability. Based on TeacherLM-7.1B, we augmented 58 NLP datasets and taught various student models with different parameters from OPT and BLOOM series in a multi-task setting. The experimental results indicate that the data augmentation provided by TeacherLM has brought significant benefits. We will release the TeacherLM series of models and augmented datasets as open-source. 15 authors · Oct 29, 2023 3
10 TaxoLLaMA: WordNet-based Model for Solving Multiple Lexical Sematic Tasks In this paper, we explore the capabilities of LLMs in capturing lexical-semantic knowledge from WordNet on the example of the LLaMA-2-7b model and test it on multiple lexical semantic tasks. As the outcome of our experiments, we present TaxoLLaMA, the everything-in-one model, lightweight due to 4-bit quantization and LoRA. It achieves 11 SotA results, 4 top-2 results out of 16 tasks for the Taxonomy Enrichment, Hypernym Discovery, Taxonomy Construction, and Lexical Entailment tasks. Moreover, it demonstrates very strong zero-shot performance on Lexical Entailment and Taxonomy Construction with no fine-tuning. We also explore its hidden multilingual and domain adaptation capabilities with a little tuning or few-shot learning. All datasets, code, and model are available online at https://github.com/VityaVitalich/TaxoLLaMA 5 authors · Mar 14, 2024
- SparTerm: Learning Term-based Sparse Representation for Fast Text Retrieval Term-based sparse representations dominate the first-stage text retrieval in industrial applications, due to its advantage in efficiency, interpretability, and exact term matching. In this paper, we study the problem of transferring the deep knowledge of the pre-trained language model (PLM) to Term-based Sparse representations, aiming to improve the representation capacity of bag-of-words(BoW) method for semantic-level matching, while still keeping its advantages. Specifically, we propose a novel framework SparTerm to directly learn sparse text representations in the full vocabulary space. The proposed SparTerm comprises an importance predictor to predict the importance for each term in the vocabulary, and a gating controller to control the term activation. These two modules cooperatively ensure the sparsity and flexibility of the final text representation, which unifies the term-weighting and expansion in the same framework. Evaluated on MSMARCO dataset, SparTerm significantly outperforms traditional sparse methods and achieves state of the art ranking performance among all the PLM-based sparse models. 9 authors · Oct 1, 2020
37 Principled Instructions Are All You Need for Questioning LLaMA-1/2, GPT-3.5/4 This paper introduces 26 guiding principles designed to streamline the process of querying and prompting large language models. Our goal is to simplify the underlying concepts of formulating questions for various scales of large language models, examining their abilities, and enhancing user comprehension on the behaviors of different scales of large language models when feeding into different prompts. Extensive experiments are conducted on LLaMA-1/2 (7B, 13B and 70B), GPT-3.5/4 to verify the effectiveness of the proposed principles on instructions and prompts design. We hope that this work provides a better guide for researchers working on the prompting of large language models. Project page is available at https://github.com/VILA-Lab/ATLAS. 3 authors · Dec 26, 2023 4
1 Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval Multi-hop reasoning (i.e., reasoning across two or more documents) is a key ingredient for NLP models that leverage large corpora to exhibit broad knowledge. To retrieve evidence passages, multi-hop models must contend with a fast-growing search space across the hops, represent complex queries that combine multiple information needs, and resolve ambiguity about the best order in which to hop between training passages. We tackle these problems via Baleen, a system that improves the accuracy of multi-hop retrieval while learning robustly from weak training signals in the many-hop setting. To tame the search space, we propose condensed retrieval, a pipeline that summarizes the retrieved passages after each hop into a single compact context. To model complex queries, we introduce a focused late interaction retriever that allows different parts of the same query representation to match disparate relevant passages. Lastly, to infer the hopping dependencies among unordered training passages, we devise latent hop ordering, a weak-supervision strategy in which the trained retriever itself selects the sequence of hops. We evaluate Baleen on retrieval for two-hop question answering and many-hop claim verification, establishing state-of-the-art performance. 3 authors · Jan 2, 2021
- Adapters for Altering LLM Vocabularies: What Languages Benefit the Most? Vocabulary adaptation, which integrates new vocabulary into pre-trained language models (LMs), enables expansion to new languages and mitigates token over-fragmentation. However, existing approaches are limited by their reliance on heuristic or external embeddings. We propose VocADT, a novel method for vocabulary adaptation using adapter modules that are trained to learn the optimal linear combination of existing embeddings while keeping the model's weights fixed. VocADT offers a flexible and scalable solution without requiring external resources or language constraints. Across 11 languages-with various scripts, resource availability, and fragmentation-we demonstrate that VocADT outperforms the original Mistral model and other baselines across various multilingual tasks. We find that Latin-script languages and highly fragmented languages benefit the most from vocabulary adaptation. We further fine-tune the adapted model on the generative task of machine translation and find that vocabulary adaptation is still beneficial after fine-tuning and that VocADT is the most effective method. 6 authors · Oct 12, 2024
- Progressive Query Expansion for Retrieval Over Cost-constrained Data Sources Query expansion has been employed for a long time to improve the accuracy of query retrievers. Earlier works relied on pseudo-relevance feedback (PRF) techniques, which augment a query with terms extracted from documents retrieved in a first stage. However, the documents may be noisy hindering the effectiveness of the ranking. To avoid this, recent studies have instead used Large Language Models (LLMs) to generate additional content to expand a query. These techniques are prone to hallucination and also focus on the LLM usage cost. However, the cost may be dominated by the retrieval in several important practical scenarios, where the corpus is only available via APIs which charge a fee per retrieved document. We propose combining classic PRF techniques with LLMs and create a progressive query expansion algorithm ProQE that iteratively expands the query as it retrieves more documents. ProQE is compatible with both sparse and dense retrieval systems. Our experimental results on four retrieval datasets show that ProQE outperforms state-of-the-art baselines by 37% and is the most cost-effective. 4 authors · Jun 11, 2024
1 TinyHelen's First Curriculum: Training and Evaluating Tiny Language Models in a Simpler Language Environment Training language models (LMs) and their application agents is increasingly costly due to large datasets and models, making test failures difficult to bear. Simplified language environments serve as primordial training and testing grounds, retaining essential commonsense and communication skills but in a more digestible form, potentially enhancing the learning efficiency of LMs, and thus reducing the required model size and data volume for effective training and evaluation. In these simplified language environments, workable strategies for small models, datasets, and agents may be adaptable to larger models, datasets, and agents in complex language environments. To create such environments, we focus on two aspects: i) minimizing language dataset noise and complexity, and ii) preserving the essential text distribution characteristics. Unlike previous methods, we propose a pipeline to refine text data by eliminating noise, minimizing vocabulary, and maintaining genre-specific patterns (e.g., for books, conversation, code, etc.). Implementing this pipeline with large LMs, we have created a leaner suite of LM training and evaluation datasets: 71M Leaner-Pretrain, 7M Leaner-Instruct, Leaner-Glue for assessing linguistic proficiency, and Leaner-Eval for testing instruction-following ability. Our experiments show that leaner pre-training boosts LM learning efficiency. Tiny LMs trained on these datasets outperform those trained on original datasets in instruction-following across different language granularity levels. Moreover, the Leaner-Pretrain dataset's alignment with conventional large LM training sets enables resource-optimized analysis of how learning objectives, model architectures, and training techniques impact performance on language modeling and downstream tasks. Our code and datasets are available at https://github.com/EmpathYang/TinyHelen.git. 3 authors · Dec 31, 2024
- I2D2: Inductive Knowledge Distillation with NeuroLogic and Self-Imitation Pre-trained language models, despite their rapid advancements powered by scale, still fall short of robust commonsense capabilities. And yet, scale appears to be the winning recipe; after all, the largest models seem to have acquired the largest amount of commonsense capabilities. Or is it? In this paper, we investigate the possibility of a seemingly impossible match: can smaller language models with dismal commonsense capabilities (i.e., GPT-2), ever win over models that are orders of magnitude larger and better (i.e., GPT-3), if the smaller models are powered with novel commonsense distillation algorithms? The key intellectual question we ask here is whether it is possible, if at all, to design a learning algorithm that does not benefit from scale, yet leads to a competitive level of commonsense acquisition. In this work, we study the generative models of commonsense knowledge, focusing on the task of generating generics, statements of commonsense facts about everyday concepts, e.g., birds can fly. We introduce a novel commonsense distillation framework, I2D2, that loosely follows the Symbolic Knowledge Distillation of West et al. but breaks the dependence on the extreme-scale models as the teacher model by two innovations: (1) the novel adaptation of NeuroLogic Decoding to enhance the generation quality of the weak, off-the-shelf language models, and (2) self-imitation learning to iteratively learn from the model's own enhanced commonsense acquisition capabilities. Empirical results suggest that scale is not the only way, as novel algorithms can be a promising alternative. Moreover, our study leads to a new corpus of generics, Gen-A-Tomic, that is of the largest and highest quality available to date. 10 authors · Dec 18, 2022
1 CompAct: Compressing Retrieved Documents Actively for Question Answering Retrieval-augmented generation supports language models to strengthen their factual groundings by providing external contexts. However, language models often face challenges when given extensive information, diminishing their effectiveness in solving questions. Context compression tackles this issue by filtering out irrelevant information, but current methods still struggle in realistic scenarios where crucial information cannot be captured with a single-step approach. To overcome this limitation, we introduce CompAct, a novel framework that employs an active strategy to condense extensive documents without losing key information. Our experiments demonstrate that CompAct brings significant improvements in both performance and compression rate on multi-hop question-answering (QA) benchmarks. CompAct flexibly operates as a cost-efficient plug-in module with various off-the-shelf retrievers or readers, achieving exceptionally high compression rates (47x). 5 authors · Jul 12, 2024
2 Neural Text Generation from Structured Data with Application to the Biography Domain This paper introduces a neural model for concept-to-text generation that scales to large, rich domains. We experiment with a new dataset of biographies from Wikipedia that is an order of magnitude larger than existing resources with over 700k samples. The dataset is also vastly more diverse with a 400k vocabulary, compared to a few hundred words for Weathergov or Robocup. Our model builds upon recent work on conditional neural language model for text generation. To deal with the large vocabulary, we extend these models to mix a fixed vocabulary with copy actions that transfer sample-specific words from the input database to the generated output sentence. Our neural model significantly out-performs a classical Kneser-Ney language model adapted to this task by nearly 15 BLEU. 3 authors · Mar 24, 2016
4 When to Speak, When to Abstain: Contrastive Decoding with Abstention Large Language Models (LLMs) demonstrate exceptional performance across diverse tasks by leveraging both pre-trained knowledge (i.e., parametric knowledge) and external knowledge (i.e., contextual knowledge). While substantial efforts have been made to leverage both forms of knowledge, scenarios in which the model lacks any relevant knowledge remain underexplored. Such limitations can result in issues like hallucination, causing reduced reliability and potential risks in high-stakes applications. To address such limitations, this paper extends the task scope to encompass cases where the user's request cannot be fulfilled due to the lack of relevant knowledge. To this end, we introduce Contrastive Decoding with Abstention (CDA), a training-free decoding method that empowers LLMs to generate responses when relevant knowledge is available and to abstain otherwise. CDA evaluates the relevance of each knowledge for a given query, adaptively determining which knowledge to prioritize or which to completely ignore. Extensive experiments with four LLMs on three question-answering datasets demonstrate that CDA can effectively perform accurate generation and abstention simultaneously. These findings highlight CDA's potential to broaden the applicability of LLMs, enhancing reliability and preserving user trust. 4 authors · Dec 16, 2024 2
2 Retrieving Texts based on Abstract Descriptions In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model. 5 authors · May 21, 2023
- Maknuune: A Large Open Palestinian Arabic Lexicon We present Maknuune, a large open lexicon for the Palestinian Arabic dialect. Maknuune has over 36K entries from 17K lemmas, and 3.7K roots. All entries include diacritized Arabic orthography, phonological transcription and English glosses. Some entries are enriched with additional information such as broken plurals and templatic feminine forms, associated phrases and collocations, Standard Arabic glosses, and examples or notes on grammar, usage, or location of collected entry. 7 authors · Oct 24, 2022
- In-Context Learning for Text Classification with Many Labels In-context learning (ICL) using large language models for tasks with many labels is challenging due to the limited context window, which makes it difficult to fit a sufficient number of examples in the prompt. In this paper, we use a pre-trained dense retrieval model to bypass this limitation, giving the model only a partial view of the full label space for each inference call. Testing with recent open-source LLMs (OPT, LLaMA), we set new state of the art performance in few-shot settings for three common intent classification datasets, with no finetuning. We also surpass fine-tuned performance on fine-grained sentiment classification in certain cases. We analyze the performance across number of in-context examples and different model scales, showing that larger models are necessary to effectively and consistently make use of larger context lengths for ICL. By running several ablations, we analyze the model's use of: a) the similarity of the in-context examples to the current input, b) the semantic content of the class names, and c) the correct correspondence between examples and labels. We demonstrate that all three are needed to varying degrees depending on the domain, contrary to certain recent works. 3 authors · Sep 19, 2023
- IDK-MRC: Unanswerable Questions for Indonesian Machine Reading Comprehension Machine Reading Comprehension (MRC) has become one of the essential tasks in Natural Language Understanding (NLU) as it is often included in several NLU benchmarks (Liang et al., 2020; Wilie et al., 2020). However, most MRC datasets only have answerable question type, overlooking the importance of unanswerable questions. MRC models trained only on answerable questions will select the span that is most likely to be the answer, even when the answer does not actually exist in the given passage (Rajpurkar et al., 2018). This problem especially remains in medium- to low-resource languages like Indonesian. Existing Indonesian MRC datasets (Purwarianti et al., 2007; Clark et al., 2020) are still inadequate because of the small size and limited question types, i.e., they only cover answerable questions. To fill this gap, we build a new Indonesian MRC dataset called I(n)don'tKnow- MRC (IDK-MRC) by combining the automatic and manual unanswerable question generation to minimize the cost of manual dataset construction while maintaining the dataset quality. Combined with the existing answerable questions, IDK-MRC consists of more than 10K questions in total. Our analysis shows that our dataset significantly improves the performance of Indonesian MRC models, showing a large improvement for unanswerable questions. 2 authors · Oct 25, 2022
- For those who don't know (how) to ask: Building a dataset of technology questions for digital newcomers While the rise of large language models (LLMs) has created rich new opportunities to learn about digital technology, many on the margins of this technology struggle to gain and maintain competency due to lexical or conceptual barriers that prevent them from asking appropriate questions. Although there have been many efforts to understand factuality of LLM-created content and ability of LLMs to answer questions, it is not well understood how unclear or nonstandard language queries affect the model outputs. We propose the creation of a dataset that captures questions of digital newcomers and outsiders, utilizing data we have compiled from a decade's worth of one-on-one tutoring. In this paper we lay out our planned efforts and some potential uses of this dataset. 4 authors · Mar 26, 2024
20 H2O-Danube3 Technical Report We present H2O-Danube3, a series of small language models consisting of H2O-Danube3-4B, trained on 6T tokens and H2O-Danube3-500M, trained on 4T tokens. Our models are pre-trained on high quality Web data consisting of primarily English tokens in three stages with different data mixes before final supervised tuning for chat version. The models exhibit highly competitive metrics across a multitude of academic, chat, and fine-tuning benchmarks. Thanks to its compact architecture, H2O-Danube3 can be efficiently run on a modern smartphone, enabling local inference and rapid processing capabilities even on mobile devices. We make all models openly available under Apache 2.0 license further democratizing LLMs to a wider audience economically. 6 authors · Jul 12, 2024 2
1 Retrieval-based Knowledge Transfer: An Effective Approach for Extreme Large Language Model Compression Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks. However, the massive size of these models poses huge challenges for their deployment in real-world applications. While numerous model compression techniques have been proposed, most of them are not well-suited for achieving extreme model compression when there is a significant gap in model scale. In this paper, we introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT), which effectively transfers the knowledge of LLMs to extremely small-scale models (e.g., 1%). In particular, our approach extracts knowledge from LLMs to construct a knowledge store, from which the small-scale model can retrieve relevant information and leverage it for effective inference. To improve the quality of the model, soft prompt tuning and Proximal Policy Optimization (PPO) reinforcement learning techniques are employed. Extensive experiments are conducted on low-resource tasks from SuperGLUE and GLUE benchmarks. The results demonstrate that the proposed approach significantly enhances the performance of small-scale models by leveraging the knowledge from LLMs. 8 authors · Oct 24, 2023
3 Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets With the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, web-mined text datasets covering hundreds of languages. We manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4). Lower-resource corpora have systematic issues: At least 15 corpora have no usable text, and a significant fraction contains less than 50% sentences of acceptable quality. In addition, many are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-proficient speakers, and supplement the human audit with automatic analyses. Finally, we recommend techniques to evaluate and improve multilingual corpora and discuss potential risks that come with low-quality data releases. 52 authors · Mar 22, 2021
2 A Survey on Efficient Inference for Large Language Models Large Language Models (LLMs) have attracted extensive attention due to their remarkable performance across various tasks. However, the substantial computational and memory requirements of LLM inference pose challenges for deployment in resource-constrained scenarios. Efforts within the field have been directed towards developing techniques aimed at enhancing the efficiency of LLM inference. This paper presents a comprehensive survey of the existing literature on efficient LLM inference. We start by analyzing the primary causes of the inefficient LLM inference, i.e., the large model size, the quadratic-complexity attention operation, and the auto-regressive decoding approach. Then, we introduce a comprehensive taxonomy that organizes the current literature into data-level, model-level, and system-level optimization. Moreover, the paper includes comparative experiments on representative methods within critical sub-fields to provide quantitative insights. Last but not least, we provide some knowledge summary and discuss future research directions. 15 authors · Apr 22, 2024
- Internet-augmented language models through few-shot prompting for open-domain question answering In this work, we aim to capitalize on the unique few-shot capabilities of large-scale language models (LSLMs) to overcome some of their challenges with respect to grounding to factual and up-to-date information. Motivated by semi-parametric language models (LMs), which ground their decisions in external retrieved evidence, we use few-shot prompting to learn to condition LMs on information returned from the web using Google Search, a broad and constantly updated knowledge source. Our approach does not involve fine-tuning or learning additional parameters, thus making it applicable to any LM, offering therefore a strong baseline. Indeed, we find that LMs conditioned on the web surpass performance of closed-book models of similar, or even larger, model sizes in open-domain question answering. Finally, we find that increasing the inference-time compute of models, achieved via using multiple retrieved evidences to generate multiple answers followed by a reranking stage that uses scores generated by the same LMs, leads to better performance and alleviates lower performance of smaller few-shot LMs. All in all, our findings suggest that it might be beneficial to slow down the race towards the biggest model and instead shift attention towards finding more effective ways to use models, including but not limited to, better prompting or increasing inference-time compute. 4 authors · Mar 9, 2022
- Open, Closed, or Small Language Models for Text Classification? Recent advancements in large language models have demonstrated remarkable capabilities across various NLP tasks. But many questions remain, including whether open-source models match closed ones, why these models excel or struggle with certain tasks, and what types of practical procedures can improve performance. We address these questions in the context of classification by evaluating three classes of models using eight datasets across three distinct tasks: named entity recognition, political party prediction, and misinformation detection. While larger LLMs often lead to improved performance, open-source models can rival their closed-source counterparts by fine-tuning. Moreover, supervised smaller models, like RoBERTa, can achieve similar or even greater performance in many datasets compared to generative LLMs. On the other hand, closed models maintain an advantage in hard tasks that demand the most generalizability. This study underscores the importance of model selection based on task requirements 5 authors · Aug 19, 2023
6 Optimizing Language Augmentation for Multilingual Large Language Models: A Case Study on Korean Large language models (LLMs) use pretraining to predict the subsequent word; however, their expansion requires significant computing resources. Numerous big tech companies and research institutes have developed multilingual LLMs (MLLMs) to meet current demands, overlooking less-resourced languages (LRLs). This study proposed three strategies to enhance the performance of LRLs based on the publicly available MLLMs. First, the MLLM vocabularies of LRLs were expanded to enhance expressiveness. Second, bilingual data were used for pretraining to align the high- and less-resourced languages. Third, a high-quality small-scale instruction dataset was constructed and instruction-tuning was performed to augment the LRL. The experiments employed the Llama2 model and Korean was used as the LRL, which was quantitatively evaluated against other developed LLMs across eight tasks. Furthermore, a qualitative assessment was performed based on human evaluation and GPT4. Experimental results showed that our proposed Bllossom model exhibited superior performance in qualitative analyses compared to previously proposed Korean monolingual models. 14 authors · Mar 16, 2024
1 Thrust: Adaptively Propels Large Language Models with External Knowledge Although large-scale pre-trained language models (PTLMs) are shown to encode rich knowledge in their model parameters, the inherent knowledge in PTLMs can be opaque or static, making external knowledge necessary. However, the existing information retrieval techniques could be costly and may even introduce noisy and sometimes misleading knowledge. To address these challenges, we propose the instance-level adaptive propulsion of external knowledge (IAPEK), where we only conduct the retrieval when necessary. To achieve this goal, we propose measuring whether a PTLM contains enough knowledge to solve an instance with a novel metric, Thrust, which leverages the representation distribution of a small number of seen instances. Extensive experiments demonstrate that thrust is a good measurement of PTLM models' instance-level knowledgeability. Moreover, we can achieve significantly higher cost-efficiency with the Thrust score as the retrieval indicator than the naive usage of external knowledge on 88% of the evaluated tasks with 26% average performance improvement. Such findings shed light on the real-world practice of knowledge-enhanced LMs with a limited knowledge-seeking budget due to computation latency or costs. 6 authors · Jul 19, 2023
- Birds have four legs?! NumerSense: Probing Numerical Commonsense Knowledge of Pre-trained Language Models Recent works show that pre-trained language models (PTLMs), such as BERT, possess certain commonsense and factual knowledge. They suggest that it is promising to use PTLMs as "neural knowledge bases" via predicting masked words. Surprisingly, we find that this may not work for numerical commonsense knowledge (e.g., a bird usually has two legs). In this paper, we investigate whether and to what extent we can induce numerical commonsense knowledge from PTLMs as well as the robustness of this process. To study this, we introduce a novel probing task with a diagnostic dataset, NumerSense, containing 13.6k masked-word-prediction probes (10.5k for fine-tuning and 3.1k for testing). Our analysis reveals that: (1) BERT and its stronger variant RoBERTa perform poorly on the diagnostic dataset prior to any fine-tuning; (2) fine-tuning with distant supervision brings some improvement; (3) the best supervised model still performs poorly as compared to human performance (54.06% vs 96.3% in accuracy). 4 authors · May 1, 2020
- Retrieval Oriented Masking Pre-training Language Model for Dense Passage Retrieval Pre-trained language model (PTM) has been shown to yield powerful text representations for dense passage retrieval task. The Masked Language Modeling (MLM) is a major sub-task of the pre-training process. However, we found that the conventional random masking strategy tend to select a large number of tokens that have limited effect on the passage retrieval task (e,g. stop-words and punctuation). By noticing the term importance weight can provide valuable information for passage retrieval, we hereby propose alternative retrieval oriented masking (dubbed as ROM) strategy where more important tokens will have a higher probability of being masked out, to capture this straightforward yet essential information to facilitate the language model pre-training process. Notably, the proposed new token masking method will not change the architecture and learning objective of original PTM. Our experiments verify that the proposed ROM enables term importance information to help language model pre-training thus achieving better performance on multiple passage retrieval benchmarks. 4 authors · Oct 26, 2022
- Characterizing Attribution and Fluency Tradeoffs for Retrieval-Augmented Large Language Models Despite recent progress, it has been difficult to prevent semantic hallucinations in generative Large Language Models. One common solution to this is augmenting LLMs with a retrieval system and making sure that the generated output is attributable to the retrieved information. Given this new added constraint, it is plausible to expect that the overall quality of the output will be affected, for example, in terms of fluency. Can scaling language models help? Here we examine the relationship between fluency and attribution in LLMs prompted with retrieved evidence in knowledge-heavy dialog settings. Our experiments were implemented with a set of auto-metrics that are aligned with human preferences. They were used to evaluate a large set of generations, produced under varying parameters of LLMs and supplied context. We show that larger models tend to do much better in both fluency and attribution, and that (naively) using top-k retrieval versus top-1 retrieval improves attribution but hurts fluency. We next propose a recipe that could allow smaller models to both close the gap with larger models and preserve the benefits of top-k retrieval while avoiding its drawbacks. 5 authors · Feb 10, 2023
- LexMatcher: Dictionary-centric Data Collection for LLM-based Machine Translation The fine-tuning of open-source large language models (LLMs) for machine translation has recently received considerable attention, marking a shift towards data-centric research from traditional neural machine translation. However, the area of data collection for instruction fine-tuning in machine translation remains relatively underexplored. In this paper, we present LexMatcher, a simple yet effective method for data collection that leverages bilingual dictionaries to generate a dataset, the design of which is driven by the coverage of senses found in these dictionaries. The dataset comprises a subset retrieved from an existing corpus and a smaller synthesized subset which supplements the infrequent senses of polysemous words. Utilizing LLaMA2 as our base model, our approach outperforms the established baselines on the WMT2022 test sets and also exhibits significant performance improvements in tasks related to word sense disambiguation and specialized terminology translation. These results underscore the effectiveness of LexMatcher in enhancing LLM-based machine translation. 5 authors · Jun 3, 2024
3 Medical large language models are easily distracted Large language models (LLMs) have the potential to transform medicine, but real-world clinical scenarios contain extraneous information that can hinder performance. The rise of assistive technologies like ambient dictation, which automatically generates draft notes from live patient encounters, has the potential to introduce additional noise making it crucial to assess the ability of LLM's to filter relevant data. To investigate this, we developed MedDistractQA, a benchmark using USMLE-style questions embedded with simulated real-world distractions. Our findings show that distracting statements (polysemous words with clinical meanings used in a non-clinical context or references to unrelated health conditions) can reduce LLM accuracy by up to 17.9%. Commonly proposed solutions to improve model performance such as retrieval-augmented generation (RAG) and medical fine-tuning did not change this effect and in some cases introduced their own confounders and further degraded performance. Our findings suggest that LLMs natively lack the logical mechanisms necessary to distinguish relevant from irrelevant clinical information, posing challenges for real-world applications. MedDistractQA and our results highlights the need for robust mitigation strategies to enhance LLM resilience to extraneous information. 6 authors · Apr 1 2
- On the Usability of Transformers-based models for a French Question-Answering task For many tasks, state-of-the-art results have been achieved with Transformer-based architectures, resulting in a paradigmatic shift in practices from the use of task-specific architectures to the fine-tuning of pre-trained language models. The ongoing trend consists in training models with an ever-increasing amount of data and parameters, which requires considerable resources. It leads to a strong search to improve resource efficiency based on algorithmic and hardware improvements evaluated only for English. This raises questions about their usability when applied to small-scale learning problems, for which a limited amount of training data is available, especially for under-resourced languages tasks. The lack of appropriately sized corpora is a hindrance to applying data-driven and transfer learning-based approaches with strong instability cases. In this paper, we establish a state-of-the-art of the efforts dedicated to the usability of Transformer-based models and propose to evaluate these improvements on the question-answering performances of French language which have few resources. We address the instability relating to data scarcity by investigating various training strategies with data augmentation, hyperparameters optimization and cross-lingual transfer. We also introduce a new compact model for French FrALBERT which proves to be competitive in low-resource settings. 3 authors · Jul 19, 2022
- FewCLUE: A Chinese Few-shot Learning Evaluation Benchmark Pretrained Language Models (PLMs) have achieved tremendous success in natural language understanding tasks. While different learning schemes -- fine-tuning, zero-shot, and few-shot learning -- have been widely explored and compared for languages such as English, there is comparatively little work in Chinese to fairly and comprehensively evaluate and compare these methods and thus hinders cumulative progress. In this paper, we introduce the Chinese Few-shot Learning Evaluation Benchmark (FewCLUE), the first comprehensive few-shot evaluation benchmark in Chinese. It includes nine tasks, ranging from single-sentence and sentence-pair classification tasks to machine reading comprehension tasks. We systematically evaluate five state-of-the-art (SOTA) few-shot learning methods (including PET, ADAPET, LM-BFF, P-tuning and EFL), and compare their performance with fine-tuning and zero-shot learning schemes on the newly constructed FewCLUE benchmark. Experimental results reveal that: 1) The effect of different few-shot learning methods is sensitive to the pre-trained model to which the methods are applied; 2) PET and P-tuning achieve the best overall performance with RoBERTa and ERNIE respectively. Our benchmark is used in the few-shot learning contest of NLPCC 2021. In addition, we provide a user-friendly toolkit, as well as an online leaderboard to help facilitate further progress on Chinese few-shot learning. We provide a baseline performance on different learning methods, a reference for future research. 11 authors · Jul 15, 2021
- Parameterized Synthetic Text Generation with SimpleStories We present SimpleStories, a large synthetic story dataset in simple language, consisting of 2 million stories each in English and Japanese. Our method employs parametrization of prompts with features at multiple levels of abstraction, allowing for systematic control over story characteristics to ensure broad syntactic and semantic diversity. Building on and addressing limitations in the TinyStories dataset, our approach demonstrates that simplicity and variety can be achieved simultaneously in synthetic text generation at scale. 6 authors · Apr 12
1 Revisiting a Pain in the Neck: Semantic Phrase Processing Benchmark for Language Models We introduce LexBench, a comprehensive evaluation suite enabled to test language models (LMs) on ten semantic phrase processing tasks. Unlike prior studies, it is the first work to propose a framework from the comparative perspective to model the general semantic phrase (i.e., lexical collocation) and three fine-grained semantic phrases, including idiomatic expression, noun compound, and verbal construction. Thanks to \ourbenchmark, we assess the performance of 15 LMs across model architectures and parameter scales in classification, extraction, and interpretation tasks. Through the experiments, we first validate the scaling law and find that, as expected, large models excel better than the smaller ones in most tasks. Second, we investigate further through the scaling semantic relation categorization and find that few-shot LMs still lag behind vanilla fine-tuned models in the task. Third, through human evaluation, we find that the performance of strong models is comparable to the human level regarding semantic phrase processing. Our benchmarking findings can serve future research aiming to improve the generic capability of LMs on semantic phrase comprehension. Our source code and data are available at https://github.com/jacklanda/LexBench 4 authors · May 5, 2024
- Transferring BERT Capabilities from High-Resource to Low-Resource Languages Using Vocabulary Matching Pre-trained language models have revolutionized the natural language understanding landscape, most notably BERT (Bidirectional Encoder Representations from Transformers). However, a significant challenge remains for low-resource languages, where limited data hinders the effective training of such models. This work presents a novel approach to bridge this gap by transferring BERT capabilities from high-resource to low-resource languages using vocabulary matching. We conduct experiments on the Silesian and Kashubian languages and demonstrate the effectiveness of our approach to improve the performance of BERT models even when the target language has minimal training data. Our results highlight the potential of the proposed technique to effectively train BERT models for low-resource languages, thus democratizing access to advanced language understanding models. 1 authors · Feb 22, 2024
6 Token Erasure as a Footprint of Implicit Vocabulary Items in LLMs LLMs process text as sequences of tokens that roughly correspond to words, where less common words are represented by multiple tokens. However, individual tokens are often semantically unrelated to the meanings of the words/concepts they comprise. For example, Llama-2-7b's tokenizer splits the word "northeastern" into the tokens ['_n', 'ort', 'he', 'astern'], none of which correspond to semantically meaningful units like "north" or "east." Similarly, the overall meanings of named entities like "Neil Young" and multi-word expressions like "break a leg" cannot be directly inferred from their constituent tokens. Mechanistically, how do LLMs convert such arbitrary groups of tokens into useful higher-level representations? In this work, we find that last token representations of named entities and multi-token words exhibit a pronounced "erasure" effect, where information about previous and current tokens is rapidly forgotten in early layers. Using this observation, we propose a method to "read out" the implicit vocabulary of an autoregressive LLM by examining differences in token representations across layers, and present results of this method for Llama-2-7b and Llama-3-8B. To our knowledge, this is the first attempt to probe the implicit vocabulary of an LLM. 4 authors · Jun 28, 2024 4
- Evaluating Large Language Models on Controlled Generation Tasks While recent studies have looked into the abilities of large language models in various benchmark tasks, including question generation, reading comprehension, multilingual and etc, there have been few studies looking into the controllability of large language models on generation tasks. We present an extensive analysis of various benchmarks including a sentence planning benchmark with different granularities. After comparing large language models against state-of-the-start finetuned smaller models, we present a spectrum showing large language models falling behind, are comparable, or exceed the ability of smaller models. We conclude that **large language models struggle at meeting fine-grained hard constraints**. 9 authors · Oct 22, 2023
- Performance Comparison of Pre-trained Models for Speech-to-Text in Turkish: Whisper-Small and Wav2Vec2-XLS-R-300M In this study, the performances of the Whisper-Small and Wav2Vec2-XLS-R-300M models which are two pre-trained multilingual models for speech to text were examined for the Turkish language. Mozilla Common Voice version 11.0 which is prepared in Turkish language and is an open-source data set, was used in the study. The multilingual models, Whisper- Small and Wav2Vec2-XLS-R-300M were fine-tuned with this data set which contains a small amount of data. The speech to text performance of the two models was compared. WER values are calculated as 0.28 and 0.16 for the Wav2Vec2-XLS- R-300M and the Whisper-Small models respectively. In addition, the performances of the models were examined with the test data prepared with call center records that were not included in the training and validation dataset. 4 authors · Jul 6, 2023
- MultiLS-SP/CA: Lexical Complexity Prediction and Lexical Simplification Resources for Catalan and Spanish Automatic lexical simplification is a task to substitute lexical items that may be unfamiliar and difficult to understand with easier and more common words. This paper presents MultiLS-SP/CA, a novel dataset for lexical simplification in Spanish and Catalan. This dataset represents the first of its kind in Catalan and a substantial addition to the sparse data on automatic lexical simplification which is available for Spanish. Specifically, MultiLS-SP is the first dataset for Spanish which includes scalar ratings of the understanding difficulty of lexical items. In addition, we describe experiments with this dataset, which can serve as a baseline for future work on the same data. 5 authors · Apr 11, 2024
2 Query Expansion by Prompting Large Language Models Query expansion is a widely used technique to improve the recall of search systems. In this paper, we propose an approach to query expansion that leverages the generative abilities of Large Language Models (LLMs). Unlike traditional query expansion approaches such as Pseudo-Relevance Feedback (PRF) that relies on retrieving a good set of pseudo-relevant documents to expand queries, we rely on the generative and creative abilities of an LLM and leverage the knowledge inherent in the model. We study a variety of different prompts, including zero-shot, few-shot and Chain-of-Thought (CoT). We find that CoT prompts are especially useful for query expansion as these prompts instruct the model to break queries down step-by-step and can provide a large number of terms related to the original query. Experimental results on MS-MARCO and BEIR demonstrate that query expansions generated by LLMs can be more powerful than traditional query expansion methods. 5 authors · May 5, 2023
- InPars-Light: Cost-Effective Unsupervised Training of Efficient Rankers We carried out a reproducibility study of InPars recipe for unsupervised training of neural rankers. As a by-product of this study, we developed a simple-yet-effective modification of InPars, which we called InPars-light. Unlike InPars, InPars-light uses only a freely available language model BLOOM and 7x-100x smaller ranking models. On all five English retrieval collections (used in the original InPars study) we obtained substantial (7-30%) and statistically significant improvements over BM25 in nDCG or MRR using only a 30M parameter six-layer MiniLM ranker. In contrast, in the InPars study only a 100x larger MonoT5-3B model consistently outperformed BM25, whereas their smaller MonoT5-220M model (which is still 7x larger than our MiniLM ranker), outperformed BM25 only on MS MARCO and TREC DL 2020. In a purely unsupervised setting, our 435M parameter DeBERTA v3 ranker was roughly at par with the 7x larger MonoT5-3B: In fact, on three out of five datasets, it slightly outperformed MonoT5-3B. Finally, these good results were achieved by re-ranking only 100 candidate documents compared to 1000 used in InPars. We believe that InPars-light is the first truly cost-effective prompt-based unsupervised recipe to train and deploy neural ranking models that outperform BM25. 7 authors · Jan 8, 2023 4
- Mitigating Catastrophic Forgetting for Few-Shot Spoken Word Classification Through Meta-Learning We consider the problem of few-shot spoken word classification in a setting where a model is incrementally introduced to new word classes. This would occur in a user-defined keyword system where new words can be added as the system is used. In such a continual learning scenario, a model might start to misclassify earlier words as newer classes are added, i.e. catastrophic forgetting. To address this, we propose an extension to model-agnostic meta-learning (MAML): each inner learning loop, where a model "learns how to learn'' new classes, ends with a single gradient update using stored templates from all the classes that the model has already seen (one template per class). We compare this method to OML (another extension of MAML) in few-shot isolated-word classification experiments on Google Commands and FACC. Our method consistently outperforms OML in experiments where the number of shots and the final number of classes are varied. 2 authors · May 22, 2023
- Playing with Words at the National Library of Sweden -- Making a Swedish BERT This paper introduces the Swedish BERT ("KB-BERT") developed by the KBLab for data-driven research at the National Library of Sweden (KB). Building on recent efforts to create transformer-based BERT models for languages other than English, we explain how we used KB's collections to create and train a new language-specific BERT model for Swedish. We also present the results of our model in comparison with existing models - chiefly that produced by the Swedish Public Employment Service, Arbetsf\"ormedlingen, and Google's multilingual M-BERT - where we demonstrate that KB-BERT outperforms these in a range of NLP tasks from named entity recognition (NER) to part-of-speech tagging (POS). Our discussion highlights the difficulties that continue to exist given the lack of training data and testbeds for smaller languages like Swedish. We release our model for further exploration and research here: https://github.com/Kungbib/swedish-bert-models . 3 authors · Jul 3, 2020
2 Fine Tuning vs. Retrieval Augmented Generation for Less Popular Knowledge Large language models (LLMs) memorize a vast amount of factual knowledge, exhibiting strong performance across diverse tasks and domains. However, it has been observed that the performance diminishes when dealing with less-popular or low-frequency concepts and entities, for example in domain specific applications. The two prominent approaches to enhance the performance of LLMs on low-frequent topics are: Retrieval Augmented Generation (RAG) and fine-tuning (FT) over synthetic data. This paper explores and evaluates the impact of RAG and FT on customizing LLMs in handling low-frequency entities on question answering task. Our findings indicate that FT significantly boosts the performance across entities of varying popularity, especially in the most and least popular groups, while RAG surpasses other methods. Additionally, the success of both RAG and FT approaches is amplified by advancements in retrieval and data augmentation techniques. We release our data and code at https://github.com/informagi/RAGvsFT. 3 authors · Mar 3, 2024
- The Highs and Lows of Simple Lexical Domain Adaptation Approaches for Neural Machine Translation Machine translation systems are vulnerable to domain mismatch, especially in a low-resource scenario. Out-of-domain translations are often of poor quality and prone to hallucinations, due to exposure bias and the decoder acting as a language model. We adopt two approaches to alleviate this problem: lexical shortlisting restricted by IBM statistical alignments, and hypothesis re-ranking based on similarity. The methods are computationally cheap, widely known, but not extensively experimented on domain adaptation. We demonstrate success on low-resource out-of-domain test sets, however, the methods are ineffective when there is sufficient data or too great domain mismatch. This is due to both the IBM model losing its advantage over the implicitly learned neural alignment, and issues with subword segmentation of out-of-domain words. 2 authors · Jan 2, 2021
1 PubMed 200k RCT: a Dataset for Sequential Sentence Classification in Medical Abstracts We present PubMed 200k RCT, a new dataset based on PubMed for sequential sentence classification. The dataset consists of approximately 200,000 abstracts of randomized controlled trials, totaling 2.3 million sentences. Each sentence of each abstract is labeled with their role in the abstract using one of the following classes: background, objective, method, result, or conclusion. The purpose of releasing this dataset is twofold. First, the majority of datasets for sequential short-text classification (i.e., classification of short texts that appear in sequences) are small: we hope that releasing a new large dataset will help develop more accurate algorithms for this task. Second, from an application perspective, researchers need better tools to efficiently skim through the literature. Automatically classifying each sentence in an abstract would help researchers read abstracts more efficiently, especially in fields where abstracts may be long, such as the medical field. 2 authors · Oct 16, 2017
- BIRCO: A Benchmark of Information Retrieval Tasks with Complex Objectives We present the Benchmark of Information Retrieval (IR) tasks with Complex Objectives (BIRCO). BIRCO evaluates the ability of IR systems to retrieve documents given multi-faceted user objectives. The benchmark's complexity and compact size make it suitable for evaluating large language model (LLM)-based information retrieval systems. We present a modular framework for investigating factors that may influence LLM performance on retrieval tasks, and identify a simple baseline model which matches or outperforms existing approaches and more complex alternatives. No approach achieves satisfactory performance on all benchmark tasks, suggesting that stronger models and new retrieval protocols are necessary to address complex user needs. 6 authors · Feb 21, 2024
- Test-Time Training on Nearest Neighbors for Large Language Models Many recent efforts augment language models with retrieval, by adding retrieved data to the input context. For this approach to succeed, the retrieved data must be added at both training and test time. Moreover, as input length grows linearly with the size of retrieved data, cost in computation and memory grows quadratically for modern Transformers. To avoid these complications, we simply fine-tune the model on retrieved data at test time, using its standard training setup. We build a large-scale distributed index based on text embeddings of the Pile dataset. For each test input, our system retrieves its neighbors and fine-tunes the model on their text. Surprisingly, retrieving and training on as few as 20 neighbors, each for only one gradient iteration, drastically improves performance across more than 20 language modeling tasks in the Pile. For example, test-time training with nearest neighbors significantly narrows the performance gap between a small GPT-2 and a GPT-Neo model more than 10 times larger. Sufficient index quality and size, however, are necessary. Our work establishes a first baseline of test-time training for language modeling. 2 authors · May 29, 2023
- Evaluating Named Entity Recognition Using Few-Shot Prompting with Large Language Models This paper evaluates Few-Shot Prompting with Large Language Models for Named Entity Recognition (NER). Traditional NER systems rely on extensive labeled datasets, which are costly and time-consuming to obtain. Few-Shot Prompting or in-context learning enables models to recognize entities with minimal examples. We assess state-of-the-art models like GPT-4 in NER tasks, comparing their few-shot performance to fully supervised benchmarks. Results show that while there is a performance gap, large models excel in adapting to new entity types and domains with very limited data. We also explore the effects of prompt engineering, guided output format and context length on performance. This study underscores Few-Shot Learning's potential to reduce the need for large labeled datasets, enhancing NER scalability and accessibility. 2 authors · Aug 28, 2024
- Are LLMs Effective Backbones for Fine-tuning? An Experimental Investigation of Supervised LLMs on Chinese Short Text Matching The recent success of Large Language Models (LLMs) has garnered significant attention in both academia and industry. Prior research on LLMs has primarily focused on enhancing or leveraging their generalization capabilities in zero- and few-shot settings. However, there has been limited investigation into effectively fine-tuning LLMs for a specific natural language understanding task in supervised settings. In this study, we conduct an experimental analysis by fine-tuning LLMs for the task of Chinese short text matching. We explore various factors that influence performance when fine-tuning LLMs, including task modeling methods, prompt formats, and output formats. 5 authors · Mar 28, 2024
- Sense Vocabulary Compression through the Semantic Knowledge of WordNet for Neural Word Sense Disambiguation In this article, we tackle the issue of the limited quantity of manually sense annotated corpora for the task of word sense disambiguation, by exploiting the semantic relationships between senses such as synonymy, hypernymy and hyponymy, in order to compress the sense vocabulary of Princeton WordNet, and thus reduce the number of different sense tags that must be observed to disambiguate all words of the lexical database. We propose two different methods that greatly reduces the size of neural WSD models, with the benefit of improving their coverage without additional training data, and without impacting their precision. In addition to our method, we present a WSD system which relies on pre-trained BERT word vectors in order to achieve results that significantly outperform the state of the art on all WSD evaluation tasks. 3 authors · May 14, 2019
- Improving Tool Retrieval by Leveraging Large Language Models for Query Generation Using tools by Large Language Models (LLMs) is a promising avenue to extend their reach beyond language or conversational settings. The number of tools can scale to thousands as they enable accessing sensory information, fetching updated factual knowledge, or taking actions in the real world. In such settings, in-context learning by providing a short list of relevant tools in the prompt is a viable approach. To retrieve relevant tools, various approaches have been suggested, ranging from simple frequency-based matching to dense embedding-based semantic retrieval. However, such approaches lack the contextual and common-sense understanding required to retrieve the right tools for complex user requests. Rather than increasing the complexity of the retrieval component itself, we propose leveraging LLM understanding to generate a retrieval query. Then, the generated query is embedded and used to find the most relevant tools via a nearest-neighbor search. We investigate three approaches for query generation: zero-shot prompting, supervised fine-tuning on tool descriptions, and alignment learning by iteratively optimizing a reward metric measuring retrieval performance. By conducting extensive experiments on a dataset covering complex and multi-tool scenarios, we show that leveraging LLMs for query generation improves the retrieval for in-domain (seen tools) and out-of-domain (unseen tools) settings. 5 authors · Nov 16, 2024