Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeThe Stable Artist: Steering Semantics in Diffusion Latent Space
Large, text-conditioned generative diffusion models have recently gained a lot of attention for their impressive performance in generating high-fidelity images from text alone. However, achieving high-quality results is almost unfeasible in a one-shot fashion. On the contrary, text-guided image generation involves the user making many slight changes to inputs in order to iteratively carve out the envisioned image. However, slight changes to the input prompt often lead to entirely different images being generated, and thus the control of the artist is limited in its granularity. To provide flexibility, we present the Stable Artist, an image editing approach enabling fine-grained control of the image generation process. The main component is semantic guidance (SEGA) which steers the diffusion process along variable numbers of semantic directions. This allows for subtle edits to images, changes in composition and style, as well as optimization of the overall artistic conception. Furthermore, SEGA enables probing of latent spaces to gain insights into the representation of concepts learned by the model, even complex ones such as 'carbon emission'. We demonstrate the Stable Artist on several tasks, showcasing high-quality image editing and composition.
Read to Play (R2-Play): Decision Transformer with Multimodal Game Instruction
Developing a generalist agent is a longstanding objective in artificial intelligence. Previous efforts utilizing extensive offline datasets from various tasks demonstrate remarkable performance in multitasking scenarios within Reinforcement Learning. However, these works encounter challenges in extending their capabilities to new tasks. Recent approaches integrate textual guidance or visual trajectory into decision networks to provide task-specific contextual cues, representing a promising direction. However, it is observed that relying solely on textual guidance or visual trajectory is insufficient for accurately conveying the contextual information of tasks. This paper explores enhanced forms of task guidance for agents, enabling them to comprehend gameplay instructions, thereby facilitating a "read-to-play" capability. Drawing inspiration from the success of multimodal instruction tuning in visual tasks, we treat the visual-based RL task as a long-horizon vision task and construct a set of multimodal game instructions to incorporate instruction tuning into a decision transformer. Experimental results demonstrate that incorporating multimodal game instructions significantly enhances the decision transformer's multitasking and generalization capabilities.
AutoGuide: Automated Generation and Selection of State-Aware Guidelines for Large Language Model Agents
The primary limitation of large language models (LLMs) is their restricted understanding of the world. This poses significant difficulties for LLM-based agents, particularly in domains where pre-trained LLMs lack sufficient knowledge. In this paper, we introduce a novel framework, called AutoGuide, that bridges the knowledge gap in pre-trained LLMs by leveraging implicit knowledge in offline experiences. Specifically, AutoGuide effectively extracts knowledge embedded in offline data by extracting a set of state-aware guidelines. Importantly, each state-aware guideline is expressed in concise natural language and follows a conditional structure, clearly describing the state where it is applicable. As such, the resulting guidelines enable a principled way to provide helpful knowledge pertinent to an agent's current decision-making process. We show that our approach outperforms competitive LLM-based baselines by a large margin in sequential decision-making benchmarks.
Semantic Map-based Generation of Navigation Instructions
We are interested in the generation of navigation instructions, either in their own right or as training material for robotic navigation task. In this paper, we propose a new approach to navigation instruction generation by framing the problem as an image captioning task using semantic maps as visual input. Conventional approaches employ a sequence of panorama images to generate navigation instructions. Semantic maps abstract away from visual details and fuse the information in multiple panorama images into a single top-down representation, thereby reducing computational complexity to process the input. We present a benchmark dataset for instruction generation using semantic maps, propose an initial model and ask human subjects to manually assess the quality of generated instructions. Our initial investigations show promise in using semantic maps for instruction generation instead of a sequence of panorama images, but there is vast scope for improvement. We release the code for data preparation and model training at https://github.com/chengzu-li/VLGen.
Multilingual Persuasion Detection: Video Games as an Invaluable Data Source for NLP
Role-playing games (RPGs) have a considerable amount of text in video game dialogues. Quite often this text is semi-annotated by the game developers. In this paper, we extract a multilingual dataset of persuasive dialogue from several RPGs. We show the viability of this data in building a persuasion detection system using a natural language processing (NLP) model called BERT. We believe that video games have a lot of unused potential as a datasource for a variety of NLP tasks. The code and data described in this paper are available on Zenodo.
Prioritized Semantic Learning for Zero-shot Instance Navigation
We study zero-shot instance navigation, in which the agent navigates to a specific object without using object annotations for training. Previous object navigation approaches apply the image-goal navigation (ImageNav) task (go to the location of an image) for pretraining, and transfer the agent to achieve object goals using a vision-language model. However, these approaches lead to issues of semantic neglect, where the model fails to learn meaningful semantic alignments. In this paper, we propose a Prioritized Semantic Learning (PSL) method to improve the semantic understanding ability of navigation agents. Specifically, a semantic-enhanced PSL agent is proposed and a prioritized semantic training strategy is introduced to select goal images that exhibit clear semantic supervision and relax the reward function from strict exact view matching. At inference time, a semantic expansion inference scheme is designed to preserve the same granularity level of the goal semantic as training. Furthermore, for the popular HM3D environment, we present an Instance Navigation (InstanceNav) task that requires going to a specific object instance with detailed descriptions, as opposed to the Object Navigation (ObjectNav) task where the goal is defined merely by the object category. Our PSL agent outperforms the previous state-of-the-art by 66% on zero-shot ObjectNav in terms of success rate and is also superior on the new InstanceNav task. Code will be released at https://github.com/XinyuSun/PSL-InstanceNav.
A Language Model's Guide Through Latent Space
Concept guidance has emerged as a cheap and simple way to control the behavior of language models by probing their hidden representations for concept vectors and using them to perturb activations at inference time. While the focus of previous work has largely been on truthfulness, in this paper we extend this framework to a richer set of concepts such as appropriateness, humor, creativity and quality, and explore to what degree current detection and guidance strategies work in these challenging settings. To facilitate evaluation, we develop a novel metric for concept guidance that takes into account both the success of concept elicitation as well as the potential degradation in fluency of the guided model. Our extensive experiments reveal that while some concepts such as truthfulness more easily allow for guidance with current techniques, novel concepts such as appropriateness or humor either remain difficult to elicit, need extensive tuning to work, or even experience confusion. Moreover, we find that probes with optimal detection accuracies do not necessarily make for the optimal guides, contradicting previous observations for truthfulness. Our work warrants a deeper investigation into the interplay between detectability, guidability, and the nature of the concept, and we hope that our rich experimental test-bed for guidance research inspires stronger follow-up approaches.
SWAG: Storytelling With Action Guidance
Automated long-form story generation typically employs long-context large language models (LLMs) for one-shot creation, which can produce cohesive but not necessarily engaging content. We introduce Storytelling With Action Guidance (SWAG), a novel approach to storytelling with LLMs. Our approach reduces story writing to a search problem through a two-model feedback loop: one LLM generates story content, and another auxiliary LLM is used to choose the next best "action" to steer the story's future direction. Our results show that SWAG can substantially outperform previous end-to-end story generation techniques when evaluated by GPT-4 and through human evaluation, and our SWAG pipeline using only open-source models surpasses GPT-3.5-Turbo.
I Cast Detect Thoughts: Learning to Converse and Guide with Intents and Theory-of-Mind in Dungeons and Dragons
We propose a novel task, G4C, to study teacher-student natural language interactions in a goal-driven and grounded environment. Dungeons and Dragons (D&D), a role-playing game, provides an ideal setting to investigate such interactions. Here, the Dungeon Master (DM), i.e., the teacher, guides the actions of several players -- students, each with their own personas and abilities -- to achieve shared goals grounded in a fantasy world. Our approach is to decompose and model these interactions into (1) the DM's intent to guide players toward a given goal; (2) the DM's guidance utterance to the players expressing this intent; and (3) a theory-of-mind (ToM) model that anticipates the players' reaction to the guidance one turn into the future. We develop a novel reinforcement learning (RL) method for training a DM that generates guidance for players by rewarding utterances where the intent matches the ToM-anticipated player actions. Human and automated evaluations show that a DM trained to explicitly model intents and incorporate ToM of the players using RL generates better-quality guidance that is 3x more likely to fulfill the DM's intent than a vanilla natural language generation (NLG) approach.
Will GPT-4 Run DOOM?
We show that GPT-4's reasoning and planning capabilities extend to the 1993 first-person shooter Doom. This large language model (LLM) is able to run and play the game with only a few instructions, plus a textual description--generated by the model itself from screenshots--about the state of the game being observed. We find that GPT-4 can play the game to a passable degree: it is able to manipulate doors, combat enemies, and perform pathing. More complex prompting strategies involving multiple model calls provide better results. While further work is required to enable the LLM to play the game as well as its classical, reinforcement learning-based counterparts, we note that GPT-4 required no training, leaning instead on its own reasoning and observational capabilities. We hope our work pushes the boundaries on intelligent, LLM-based agents in video games. We conclude by discussing the ethical implications of our work.
Navigation with Large Language Models: Semantic Guesswork as a Heuristic for Planning
Navigation in unfamiliar environments presents a major challenge for robots: while mapping and planning techniques can be used to build up a representation of the world, quickly discovering a path to a desired goal in unfamiliar settings with such methods often requires lengthy mapping and exploration. Humans can rapidly navigate new environments, particularly indoor environments that are laid out logically, by leveraging semantics -- e.g., a kitchen often adjoins a living room, an exit sign indicates the way out, and so forth. Language models can provide robots with such knowledge, but directly using language models to instruct a robot how to reach some destination can also be impractical: while language models might produce a narrative about how to reach some goal, because they are not grounded in real-world observations, this narrative might be arbitrarily wrong. Therefore, in this paper we study how the ``semantic guesswork'' produced by language models can be utilized as a guiding heuristic for planning algorithms. Our method, Language Frontier Guide (LFG), uses the language model to bias exploration of novel real-world environments by incorporating the semantic knowledge stored in language models as a search heuristic for planning with either topological or metric maps. We evaluate LFG in challenging real-world environments and simulated benchmarks, outperforming uninformed exploration and other ways of using language models.
DialGuide: Aligning Dialogue Model Behavior with Developer Guidelines
Dialogue models are able to generate coherent and fluent responses, but they can still be challenging to control and may produce non-engaging, unsafe results. This unpredictability diminishes user trust and can hinder the use of the models in the real world. To address this, we introduce DialGuide, a novel framework for controlling dialogue model behavior using natural language rules, or guidelines. These guidelines provide information about the context they are applicable to and what should be included in the response, allowing the models to generate responses that are more closely aligned with the developer's expectations and intent. We evaluate DialGuide on three tasks in open-domain dialogue response generation: guideline selection, response generation, and response entailment verification. Our dataset contains 10,737 positive and 15,467 negative dialogue context-response-guideline triplets across two domains - chit-chat and safety. We provide baseline models for the tasks and benchmark their performance. We also demonstrate that DialGuide is effective in the dialogue safety domain, producing safe and engaging responses that follow developer guidelines.
AnimeGamer: Infinite Anime Life Simulation with Next Game State Prediction
Recent advancements in image and video synthesis have opened up new promise in generative games. One particularly intriguing application is transforming characters from anime films into interactive, playable entities. This allows players to immerse themselves in the dynamic anime world as their favorite characters for life simulation through language instructions. Such games are defined as infinite game since they eliminate predetermined boundaries and fixed gameplay rules, where players can interact with the game world through open-ended language and experience ever-evolving storylines and environments. Recently, a pioneering approach for infinite anime life simulation employs large language models (LLMs) to translate multi-turn text dialogues into language instructions for image generation. However, it neglects historical visual context, leading to inconsistent gameplay. Furthermore, it only generates static images, failing to incorporate the dynamics necessary for an engaging gaming experience. In this work, we propose AnimeGamer, which is built upon Multimodal Large Language Models (MLLMs) to generate each game state, including dynamic animation shots that depict character movements and updates to character states, as illustrated in Figure 1. We introduce novel action-aware multimodal representations to represent animation shots, which can be decoded into high-quality video clips using a video diffusion model. By taking historical animation shot representations as context and predicting subsequent representations, AnimeGamer can generate games with contextual consistency and satisfactory dynamics. Extensive evaluations using both automated metrics and human evaluations demonstrate that AnimeGamer outperforms existing methods in various aspects of the gaming experience. Codes and checkpoints are available at https://github.com/TencentARC/AnimeGamer.
SPINE: Online Semantic Planning for Missions with Incomplete Natural Language Specifications in Unstructured Environments
As robots become increasingly capable, users will want to describe high-level missions and have robots infer the relevant details. because pre-built maps are difficult to obtain in many realistic settings, accomplishing such missions will require the robot to map and plan online. while many semantic planning methods operate online, they are typically designed for well specified missions such as object search or exploration. recently, large language models (LLMs) have demonstrated powerful contextual reasoning abilities over a range of robotic tasks described in natural language. however, existing LLM-enabled planners typically do not consider online planning or complex missions; rather, relevant subtasks and semantics are provided by a pre-built map or a user. we address these limitations via spine, an online planner for missions with incomplete mission specifications provided in natural language. the planner uses an LLM to reason about subtasks implied by the mission specification and then realizes these subtasks in a receding horizon framework. tasks are automatically validated for safety and refined online with new map observations. we evaluate spine in simulation and real-world settings with missions that require multiple steps of semantic reasoning and exploration in cluttered outdoor environments of over 20,000m^2. compared to baselines that use existing LLM-enabled planning approaches, our method is over twice as efficient in terms of time and distance, requires less user interactions, and does not require a full map. Additional resources are provided at: https://zacravichandran.github.io/SPINE.
Analyzing Semantic Faithfulness of Language Models via Input Intervention on Conversational Question Answering
Transformer-based language models have been shown to be highly effective for several NLP tasks. In this paper, we consider three transformer models, BERT, RoBERTa, and XLNet, in both small and large version, and investigate how faithful their representations are with respect to the semantic content of texts. We formalize a notion of semantic faithfulness, in which the semantic content of a text should causally figure in a model's inferences in question answering. We then test this notion by observing a model's behavior on answering questions about a story after performing two novel semantic interventions -- deletion intervention and negation intervention. While transformer models achieve high performance on standard question answering tasks, we show that they fail to be semantically faithful once we perform these interventions for a significant number of cases (~50% for deletion intervention, and ~20% drop in accuracy for negation intervention). We then propose an intervention-based training regime that can mitigate the undesirable effects for deletion intervention by a significant margin (from ~50% to ~6%). We analyze the inner-workings of the models to better understand the effectiveness of intervention-based training for deletion intervention. But we show that this training does not attenuate other aspects of semantic unfaithfulness such as the models' inability to deal with negation intervention or to capture the predicate-argument structure of texts. We also test InstructGPT, via prompting, for its ability to handle the two interventions and to capture predicate-argument structure. While InstructGPT models do achieve very high performance on predicate-argument structure task, they fail to respond adequately to our deletion and negation interventions.
PlayMyData: a curated dataset of multi-platform video games
Being predominant in digital entertainment for decades, video games have been recognized as valuable software artifacts by the software engineering (SE) community just recently. Such an acknowledgment has unveiled several research opportunities, spanning from empirical studies to the application of AI techniques for classification tasks. In this respect, several curated game datasets have been disclosed for research purposes even though the collected data are insufficient to support the application of advanced models or to enable interdisciplinary studies. Moreover, the majority of those are limited to PC games, thus excluding notorious gaming platforms, e.g., PlayStation, Xbox, and Nintendo. In this paper, we propose PlayMyData, a curated dataset composed of 99,864 multi-platform games gathered by IGDB website. By exploiting a dedicated API, we collect relevant metadata for each game, e.g., description, genre, rating, gameplay video URLs, and screenshots. Furthermore, we enrich PlayMyData with the timing needed to complete each game by mining the HLTB website. To the best of our knowledge, this is the most comprehensive dataset in the domain that can be used to support different automated tasks in SE. More importantly, PlayMyData can be used to foster cross-domain investigations built on top of the provided multimedia data.
You Have Thirteen Hours in Which to Solve the Labyrinth: Enhancing AI Game Masters with Function Calling
Developing a consistent and reliable AI game master for text-based games is a challenging task due to the limitations of large language models (LLMs) and the complexity of the game master's role. This paper presents a novel approach to enhance AI game masters by leveraging function calling in the context of the table-top role-playing game "Jim Henson's Labyrinth: The Adventure Game." Our methodology involves integrating game-specific controls through functions, which we show improves the narrative quality and state update consistency of the AI game master. The experimental results, based on human evaluations and unit tests, demonstrate the effectiveness of our approach in enhancing gameplay experience and maintaining coherence with the game state. This work contributes to the advancement of game AI and interactive storytelling, offering insights into the design of more engaging and consistent AI-driven game masters.
Controlling Personality Style in Dialogue with Zero-Shot Prompt-Based Learning
Prompt-based or in-context learning has achieved high zero-shot performance on many natural language generation (NLG) tasks. Here we explore the performance of prompt-based learning for simultaneously controlling the personality and the semantic accuracy of an NLG for task-oriented dialogue. We experiment with prompt-based learning on the PERSONAGE restaurant recommendation corpus to generate semantically and stylistically-controlled text for 5 different Big-5 personality types: agreeable, disagreeable, conscientious, unconscientious, and extravert. We test two different classes of discrete prompts to generate utterances for a particular personality style: (1) prompts that demonstrate generating directly from a meaning representation that includes a personality specification; and (2) prompts that rely on first converting the meaning representation to a textual pseudo-reference, and then using the pseudo-reference in a textual style transfer (TST) prompt. In each case, we show that we can vastly improve performance by over-generating outputs and ranking them, testing several ranking functions based on automatic metrics for semantic accuracy, personality-match, and fluency. We also test whether NLG personality demonstrations from the restaurant domain can be used with meaning representations for the video game domain to generate personality stylized utterances about video games. Our findings show that the TST prompts produces the highest semantic accuracy (78.46% for restaurants and 87.6% for video games) and personality accuracy (100% for restaurants and 97% for video games). Our results on transferring personality style to video game utterances are surprisingly good. To our knowledge, there is no previous work testing the application of prompt-based learning to simultaneously controlling both style and semantic accuracy in NLG.
Beyond Outcomes: Transparent Assessment of LLM Reasoning in Games
Large Language Models (LLMs) are increasingly deployed in real-world applications that demand complex reasoning. To track progress, robust benchmarks are required to evaluate their capabilities beyond superficial pattern recognition. However, current LLM reasoning benchmarks often face challenges such as insufficient interpretability, performance saturation or data contamination. To address these challenges, we introduce GAMEBoT, a gaming arena designed for rigorous and transparent assessment of LLM reasoning capabilities. GAMEBoT decomposes complex reasoning in games into predefined modular subproblems. This decomposition allows us to design a suite of Chain-of-Thought (CoT) prompts that leverage domain knowledge to guide LLMs in addressing these subproblems before action selection. Furthermore, we develop a suite of rule-based algorithms to generate ground truth for these subproblems, enabling rigorous validation of the LLMs' intermediate reasoning steps. This approach facilitates evaluation of both the quality of final actions and the accuracy of the underlying reasoning process. GAMEBoT also naturally alleviates the risk of data contamination through dynamic games and head-to-head LLM competitions. We benchmark 17 prominent LLMs across eight games, encompassing various strategic abilities and game characteristics. Our results suggest that GAMEBoT presents a significant challenge, even when LLMs are provided with detailed CoT prompts. Project page: https://visual-ai.github.io/gamebot
DreamGarden: A Designer Assistant for Growing Games from a Single Prompt
Coding assistants are increasingly leveraged in game design, both generating code and making high-level plans. To what degree can these tools align with developer workflows, and what new modes of human-computer interaction can emerge from their use? We present DreamGarden, an AI system capable of assisting with the development of diverse game environments in Unreal Engine. At the core of our method is an LLM-driven planner, capable of breaking down a single, high-level prompt -- a dream, memory, or imagined scenario provided by a human user -- into a hierarchical action plan, which is then distributed across specialized submodules facilitating concrete implementation. This system is presented to the user as a garden of plans and actions, both growing independently and responding to user intervention via seed prompts, pruning, and feedback. Through a user study, we explore design implications of this system, charting courses for future work in semi-autonomous assistants and open-ended simulation design.
KITE: Keypoint-Conditioned Policies for Semantic Manipulation
While natural language offers a convenient shared interface for humans and robots, enabling robots to interpret and follow language commands remains a longstanding challenge in manipulation. A crucial step to realizing a performant instruction-following robot is achieving semantic manipulation, where a robot interprets language at different specificities, from high-level instructions like "Pick up the stuffed animal" to more detailed inputs like "Grab the left ear of the elephant." To tackle this, we propose Keypoints + Instructions to Execution (KITE), a two-step framework for semantic manipulation which attends to both scene semantics (distinguishing between different objects in a visual scene) and object semantics (precisely localizing different parts within an object instance). KITE first grounds an input instruction in a visual scene through 2D image keypoints, providing a highly accurate object-centric bias for downstream action inference. Provided an RGB-D scene observation, KITE then executes a learned keypoint-conditioned skill to carry out the instruction. The combined precision of keypoints and parameterized skills enables fine-grained manipulation with generalization to scene and object variations. Empirically, we demonstrate KITE in 3 real-world environments: long-horizon 6-DoF tabletop manipulation, semantic grasping, and a high-precision coffee-making task. In these settings, KITE achieves a 75%, 70%, and 71% overall success rate for instruction-following, respectively. KITE outperforms frameworks that opt for pre-trained visual language models over keypoint-based grounding, or omit skills in favor of end-to-end visuomotor control, all while being trained from fewer or comparable amounts of demonstrations. Supplementary material, datasets, code, and videos can be found on our website: http://tinyurl.com/kite-site.
Ontologically Faithful Generation of Non-Player Character Dialogues
We introduce a language generation task grounded in a popular video game environment. KNUDGE (KNowledge Constrained User-NPC Dialogue GEneration) requires models to produce trees of dialogue between video game characters that accurately reflect quest and entity specifications stated in natural language. KNUDGE is constructed from side quest dialogues drawn directly from game data of Obsidian Entertainment's The Outer Worlds, leading to real-world complexities in generation: (1) dialogues are branching trees as opposed to linear chains of utterances; (2) utterances must remain faithful to the game lore -- character personas, backstories, and entity relationships; and (3) a dialogue must accurately reveal new quest details to the human player. We report results for a set of neural generation models using supervised and in-context learning techniques; we find competent performance but room for future work addressing the challenges of creating realistic, game-quality dialogues.
Natural Language Commanding via Program Synthesis
We present Semantic Interpreter, a natural language-friendly AI system for productivity software such as Microsoft Office that leverages large language models (LLMs) to execute user intent across application features. While LLMs are excellent at understanding user intent expressed as natural language, they are not sufficient for fulfilling application-specific user intent that requires more than text-to-text transformations. We therefore introduce the Office Domain Specific Language (ODSL), a concise, high-level language specialized for performing actions in and interacting with entities in Office applications. Semantic Interpreter leverages an Analysis-Retrieval prompt construction method with LLMs for program synthesis, translating natural language user utterances to ODSL programs that can be transpiled to application APIs and then executed. We focus our discussion primarily on a research exploration for Microsoft PowerPoint.
Jurassic is (almost) All You Need: Few-Shot Meaning-to-Text Generation for Open-Domain Dialogue
One challenge with open-domain dialogue systems is the need to produce truthful, high-quality responses on any topic. We aim to improve the quality and coverage of Athena, an Alexa Prize dialogue system. We experiment with few-shot prompt-based learning, comparing GPT-Neo to Jurassic-1, for the movies, music, TV, sports, and video game domains, both within and cross-domain, with different prompt set sizes (2, 3, 10), formats, and meaning representations consisting of either sets of WikiData KG triples, or dialogue acts. Our evaluation uses BLEURT and human metrics, and shows that with 10-shot prompting, Athena-Jurassic's performance is significantly better for coherence and semantic accuracy. Experiments with 2-shot cross-domain prompts results in a huge performance drop for Athena-GPT-Neo, whose semantic accuracy falls to 0.41, and whose untrue hallucination rate increases to 12%. Experiments with dialogue acts for video games show that with 10-shot prompting, both models learn to control dialogue acts, but Athena-Jurassic has significantly higher coherence, and only 4% untrue hallucinations. Our results suggest that Athena-Jurassic produces high enough quality outputs to be useful in live systems with real users. To our knowledge, these are the first results demonstrating that few-shot semantic prompt-based learning can create NLGs that generalize to new domains, and produce high-quality, semantically-controlled, conversational responses directly from meaning representations.
Unbounded: A Generative Infinite Game of Character Life Simulation
We introduce the concept of a generative infinite game, a video game that transcends the traditional boundaries of finite, hard-coded systems by using generative models. Inspired by James P. Carse's distinction between finite and infinite games, we leverage recent advances in generative AI to create Unbounded: a game of character life simulation that is fully encapsulated in generative models. Specifically, Unbounded draws inspiration from sandbox life simulations and allows you to interact with your autonomous virtual character in a virtual world by feeding, playing with and guiding it - with open-ended mechanics generated by an LLM, some of which can be emergent. In order to develop Unbounded, we propose technical innovations in both the LLM and visual generation domains. Specifically, we present: (1) a specialized, distilled large language model (LLM) that dynamically generates game mechanics, narratives, and character interactions in real-time, and (2) a new dynamic regional image prompt Adapter (IP-Adapter) for vision models that ensures consistent yet flexible visual generation of a character across multiple environments. We evaluate our system through both qualitative and quantitative analysis, showing significant improvements in character life simulation, user instruction following, narrative coherence, and visual consistency for both characters and the environments compared to traditional related approaches.
Semantic Guidance Tuning for Text-To-Image Diffusion Models
Recent advancements in Text-to-Image (T2I) diffusion models have demonstrated impressive success in generating high-quality images with zero-shot generalization capabilities. Yet, current models struggle to closely adhere to prompt semantics, often misrepresenting or overlooking specific attributes. To address this, we propose a simple, training-free approach that modulates the guidance direction of diffusion models during inference. We first decompose the prompt semantics into a set of concepts, and monitor the guidance trajectory in relation to each concept. Our key observation is that deviations in model's adherence to prompt semantics are highly correlated with divergence of the guidance from one or more of these concepts. Based on this observation, we devise a technique to steer the guidance direction towards any concept from which the model diverges. Extensive experimentation validates that our method improves the semantic alignment of images generated by diffusion models in response to prompts. Project page is available at: https://korguy.github.io/
Towards General Computer Control: A Multimodal Agent for Red Dead Redemption II as a Case Study
Despite the success in specific tasks and scenarios, existing foundation agents, empowered by large models (LMs) and advanced tools, still cannot generalize to different scenarios, mainly due to dramatic differences in the observations and actions across scenarios. In this work, we propose the General Computer Control (GCC) setting: building foundation agents that can master any computer task by taking only screen images (and possibly audio) of the computer as input, and producing keyboard and mouse operations as output, similar to human-computer interaction. The main challenges of achieving GCC are: 1) the multimodal observations for decision-making, 2) the requirements of accurate control of keyboard and mouse, 3) the need for long-term memory and reasoning, and 4) the abilities of efficient exploration and self-improvement. To target GCC, we introduce Cradle, an agent framework with six main modules, including: 1) information gathering to extract multi-modality information, 2) self-reflection to rethink past experiences, 3) task inference to choose the best next task, 4) skill curation for generating and updating relevant skills for given tasks, 5) action planning to generate specific operations for keyboard and mouse control, and 6) memory for storage and retrieval of past experiences and known skills. To demonstrate the capabilities of generalization and self-improvement of Cradle, we deploy it in the complex AAA game Red Dead Redemption II, serving as a preliminary attempt towards GCC with a challenging target. To our best knowledge, our work is the first to enable LMM-based agents to follow the main storyline and finish real missions in complex AAA games, with minimal reliance on prior knowledge or resources. The project website is at https://baai-agents.github.io/Cradle/.
Visually-Grounded Planning without Vision: Language Models Infer Detailed Plans from High-level Instructions
The recently proposed ALFRED challenge task aims for a virtual robotic agent to complete complex multi-step everyday tasks in a virtual home environment from high-level natural language directives, such as "put a hot piece of bread on a plate". Currently, the best-performing models are able to complete less than 5% of these tasks successfully. In this work we focus on modeling the translation problem of converting natural language directives into detailed multi-step sequences of actions that accomplish those goals in the virtual environment. We empirically demonstrate that it is possible to generate gold multi-step plans from language directives alone without any visual input in 26% of unseen cases. When a small amount of visual information is incorporated, namely the starting location in the virtual environment, our best-performing GPT-2 model successfully generates gold command sequences in 58% of cases. Our results suggest that contextualized language models may provide strong visual semantic planning modules for grounded virtual agents.
Large Language Models Are Neurosymbolic Reasoners
A wide range of real-world applications is characterized by their symbolic nature, necessitating a strong capability for symbolic reasoning. This paper investigates the potential application of Large Language Models (LLMs) as symbolic reasoners. We focus on text-based games, significant benchmarks for agents with natural language capabilities, particularly in symbolic tasks like math, map reading, sorting, and applying common sense in text-based worlds. To facilitate these agents, we propose an LLM agent designed to tackle symbolic challenges and achieve in-game objectives. We begin by initializing the LLM agent and informing it of its role. The agent then receives observations and a set of valid actions from the text-based games, along with a specific symbolic module. With these inputs, the LLM agent chooses an action and interacts with the game environments. Our experimental results demonstrate that our method significantly enhances the capability of LLMs as automated agents for symbolic reasoning, and our LLM agent is effective in text-based games involving symbolic tasks, achieving an average performance of 88% across all tasks.
Agents Play Thousands of 3D Video Games
We present PORTAL, a novel framework for developing artificial intelligence agents capable of playing thousands of 3D video games through language-guided policy generation. By transforming decision-making problems into language modeling tasks, our approach leverages large language models (LLMs) to generate behavior trees represented in domain-specific language (DSL). This method eliminates the computational burden associated with traditional reinforcement learning approaches while preserving strategic depth and rapid adaptability. Our framework introduces a hybrid policy structure that combines rule-based nodes with neural network components, enabling both high-level strategic reasoning and precise low-level control. A dual-feedback mechanism incorporating quantitative game metrics and vision-language model analysis facilitates iterative policy improvement at both tactical and strategic levels. The resulting policies are instantaneously deployable, human-interpretable, and capable of generalizing across diverse gaming environments. Experimental results demonstrate PORTAL's effectiveness across thousands of first-person shooter (FPS) games, showcasing significant improvements in development efficiency, policy generalization, and behavior diversity compared to traditional approaches. PORTAL represents a significant advancement in game AI development, offering a practical solution for creating sophisticated agents that can operate across thousands of commercial video games with minimal development overhead. Experiment results on the 3D video games are best viewed on https://zhongwen.one/projects/portal .
KNOW: A Real-World Ontology for Knowledge Capture with Large Language Models
We present KNOW--the Knowledge Navigator Ontology for the World--the first ontology designed to capture everyday knowledge to augment large language models (LLMs) in real-world generative AI use cases such as personal AI assistants. Our domain is human life, both its everyday concerns and its major milestones. We have limited the initial scope of the modeled concepts to only established human universals: spacetime (places, events) plus social (people, groups, organizations). The inclusion criteria for modeled concepts are pragmatic, beginning with universality and utility. We compare and contrast previous work such as Schema.org and Cyc--as well as attempts at a synthesis of knowledge graphs and language models--noting how LLMs already encode internally much of the commonsense tacit knowledge that took decades to capture in the Cyc project. We also make available code-generated software libraries for the 12 most popular programming languages, enabling the direct use of ontology concepts in software engineering. We emphasize simplicity and developer experience in promoting AI interoperability.
From Occlusion to Insight: Object Search in Semantic Shelves using Large Language Models
How can a robot efficiently extract a desired object from a shelf when it is fully occluded by other objects? Prior works propose geometric approaches for this problem but do not consider object semantics. Shelves in pharmacies, restaurant kitchens, and grocery stores are often organized such that semantically similar objects are placed close to one another. Can large language models (LLMs) serve as semantic knowledge sources to accelerate robotic mechanical search in semantically arranged environments? With Semantic Spatial Search on Shelves (S^4), we use LLMs to generate affinity matrices, where entries correspond to semantic likelihood of physical proximity between objects. We derive semantic spatial distributions by synthesizing semantics with learned geometric constraints. S^4 incorporates Optical Character Recognition (OCR) and semantic refinement with predictions from ViLD, an open-vocabulary object detection model. Simulation experiments suggest that semantic spatial search reduces the search time relative to pure spatial search by an average of 24% across three domains: pharmacy, kitchen, and office shelves. A manually collected dataset of 100 semantic scenes suggests that OCR and semantic refinement improve object detection accuracy by 35%. Lastly, physical experiments in a pharmacy shelf suggest 47.1% improvement over pure spatial search. Supplementary material can be found at https://sites.google.com/view/s4-rss/home.
SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with Large Language Models
Diffusion models, which have emerged to become popular text-to-image generation models, can produce high-quality and content-rich images guided by textual prompts. However, there are limitations to semantic understanding and commonsense reasoning in existing models when the input prompts are concise narrative, resulting in low-quality image generation. To improve the capacities for narrative prompts, we propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models. To reach this goal, we first collect and annotate a new dataset SURD which consists of more than 57,000 semantically corrected multi-modal samples. Each sample contains a simple narrative prompt, a complex keyword-based prompt, and a high-quality image. Then, we align the semantic representation of narrative prompts to the complex prompts and transfer knowledge of large language models (LLMs) to our SUR-adapter via knowledge distillation so that it can acquire the powerful semantic understanding and reasoning capabilities to build a high-quality textual semantic representation for text-to-image generation. We conduct experiments by integrating multiple LLMs and popular pre-trained diffusion models to show the effectiveness of our approach in enabling diffusion models to understand and reason concise natural language without image quality degradation. Our approach can make text-to-image diffusion models easier to use with better user experience, which demonstrates our approach has the potential for further advancing the development of user-friendly text-to-image generation models by bridging the semantic gap between simple narrative prompts and complex keyword-based prompts.
Clembench: Using Game Play to Evaluate Chat-Optimized Language Models as Conversational Agents
Recent work has proposed a methodology for the systematic evaluation of "Situated Language Understanding Agents"-agents that operate in rich linguistic and non-linguistic contexts-through testing them in carefully constructed interactive settings. Other recent work has argued that Large Language Models (LLMs), if suitably set up, can be understood as (simulators of) such agents. A connection suggests itself, which this paper explores: Can LLMs be evaluated meaningfully by exposing them to constrained game-like settings that are built to challenge specific capabilities? As a proof of concept, this paper investigates five interaction settings, showing that current chat-optimised LLMs are, to an extent, capable to follow game-play instructions. Both this capability and the quality of the game play, measured by how well the objectives of the different games are met, follows the development cycle, with newer models performing better. The metrics even for the comparatively simple example games are far from being saturated, suggesting that the proposed instrument will remain to have diagnostic value. Our general framework for implementing and evaluating games with LLMs is available at https://github.com/clp-research/clembench.
Playable Game Generation
In recent years, Artificial Intelligence Generated Content (AIGC) has advanced from text-to-image generation to text-to-video and multimodal video synthesis. However, generating playable games presents significant challenges due to the stringent requirements for real-time interaction, high visual quality, and accurate simulation of game mechanics. Existing approaches often fall short, either lacking real-time capabilities or failing to accurately simulate interactive mechanics. To tackle the playability issue, we propose a novel method called PlayGen, which encompasses game data generation, an autoregressive DiT-based diffusion model, and a comprehensive playability-based evaluation framework. Validated on well-known 2D and 3D games, PlayGen achieves real-time interaction, ensures sufficient visual quality, and provides accurate interactive mechanics simulation. Notably, these results are sustained even after over 1000 frames of gameplay on an NVIDIA RTX 2060 GPU. Our code is publicly available: https://github.com/GreatX3/Playable-Game-Generation. Our playable demo generated by AI is: http://124.156.151.207.
Do As I Can, Not As I Say: Grounding Language in Robotic Affordances
Large language models can encode a wealth of semantic knowledge about the world. Such knowledge could be extremely useful to robots aiming to act upon high-level, temporally extended instructions expressed in natural language. However, a significant weakness of language models is that they lack real-world experience, which makes it difficult to leverage them for decision making within a given embodiment. For example, asking a language model to describe how to clean a spill might result in a reasonable narrative, but it may not be applicable to a particular agent, such as a robot, that needs to perform this task in a particular environment. We propose to provide real-world grounding by means of pretrained skills, which are used to constrain the model to propose natural language actions that are both feasible and contextually appropriate. The robot can act as the language model's "hands and eyes," while the language model supplies high-level semantic knowledge about the task. We show how low-level skills can be combined with large language models so that the language model provides high-level knowledge about the procedures for performing complex and temporally-extended instructions, while value functions associated with these skills provide the grounding necessary to connect this knowledge to a particular physical environment. We evaluate our method on a number of real-world robotic tasks, where we show the need for real-world grounding and that this approach is capable of completing long-horizon, abstract, natural language instructions on a mobile manipulator. The project's website and the video can be found at https://say-can.github.io/.
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents
Can world knowledge learned by large language models (LLMs) be used to act in interactive environments? In this paper, we investigate the possibility of grounding high-level tasks, expressed in natural language (e.g. "make breakfast"), to a chosen set of actionable steps (e.g. "open fridge"). While prior work focused on learning from explicit step-by-step examples of how to act, we surprisingly find that if pre-trained LMs are large enough and prompted appropriately, they can effectively decompose high-level tasks into mid-level plans without any further training. However, the plans produced naively by LLMs often cannot map precisely to admissible actions. We propose a procedure that conditions on existing demonstrations and semantically translates the plans to admissible actions. Our evaluation in the recent VirtualHome environment shows that the resulting method substantially improves executability over the LLM baseline. The conducted human evaluation reveals a trade-off between executability and correctness but shows a promising sign towards extracting actionable knowledge from language models. Website at https://huangwl18.github.io/language-planner
MaestroMotif: Skill Design from Artificial Intelligence Feedback
Describing skills in natural language has the potential to provide an accessible way to inject human knowledge about decision-making into an AI system. We present MaestroMotif, a method for AI-assisted skill design, which yields high-performing and adaptable agents. MaestroMotif leverages the capabilities of Large Language Models (LLMs) to effectively create and reuse skills. It first uses an LLM's feedback to automatically design rewards corresponding to each skill, starting from their natural language description. Then, it employs an LLM's code generation abilities, together with reinforcement learning, for training the skills and combining them to implement complex behaviors specified in language. We evaluate MaestroMotif using a suite of complex tasks in the NetHack Learning Environment (NLE), demonstrating that it surpasses existing approaches in both performance and usability.
AlphaSpace: Enabling Robotic Actions through Semantic Tokenization and Symbolic Reasoning
This paper presents AlphaSpace, a novel methodology designed to enhance the spatial reasoning capabilities of large language models (LLMs) for 3D Cartesian space navigation. AlphaSpace employs a semantics-based tokenization strategy, encoding height information through specialized semantic tokens, and integrates primarily symbolic synthetic reasoning data. This approach enables LLMs to accurately manipulate objects by positioning them at specific [x, y, z] coordinates. Experimental results demonstrate that AlphaSpace significantly outperforms existing models on manipulation subtasks, achieving a total accuracy of 66.67%, compared to 37.5% for GPT-4o and 29.17% for Claude 3.5 Sonnet.
Autonomous Improvement of Instruction Following Skills via Foundation Models
Intelligent instruction-following robots capable of improving from autonomously collected experience have the potential to transform robot learning: instead of collecting costly teleoperated demonstration data, large-scale deployment of fleets of robots can quickly collect larger quantities of autonomous data that can collectively improve their performance. However, autonomous improvement requires solving two key problems: (i) fully automating a scalable data collection procedure that can collect diverse and semantically meaningful robot data and (ii) learning from non-optimal, autonomous data with no human annotations. To this end, we propose a novel approach that addresses these challenges, allowing instruction-following policies to improve from autonomously collected data without human supervision. Our framework leverages vision-language models to collect and evaluate semantically meaningful experiences in new environments, and then utilizes a decomposition of instruction following tasks into (semantic) language-conditioned image generation and (non-semantic) goal reaching, which makes it significantly more practical to improve from this autonomously collected data without any human annotations. We carry out extensive experiments in the real world to demonstrate the effectiveness of our approach, and find that in a suite of unseen environments, the robot policy can be improved significantly with autonomously collected data. We open-source the code for our semantic autonomous improvement pipeline, as well as our autonomous dataset of 30.5K trajectories collected across five tabletop environments.
QLASS: Boosting Language Agent Inference via Q-Guided Stepwise Search
Language agents have become a promising solution to complex interactive tasks. One of the key ingredients to the success of language agents is the reward model on the trajectory of the agentic workflow, which provides valuable guidance during training or inference. However, due to the lack of annotations of intermediate interactions, most existing works use an outcome reward model to optimize policies across entire trajectories. This may lead to sub-optimal policies and hinder the overall performance. To address this, we propose QLASS (Q-guided Language Agent Stepwise Search), to automatically generate annotations by estimating Q-values in a stepwise manner for open language agents. By introducing a reasoning tree and performing process reward modeling, QLASS provides effective intermediate guidance for each step. With the stepwise guidance, we propose a Q-guided generation strategy to enable language agents to better adapt to long-term value, resulting in significant performance improvement during model inference on complex interactive agent tasks. Notably, even with almost half the annotated data, QLASS retains strong performance, demonstrating its efficiency in handling limited supervision. We also empirically demonstrate that QLASS can lead to more effective decision making through qualitative analysis. We will release our code and data.
Language Guided Exploration for RL Agents in Text Environments
Real-world sequential decision making is characterized by sparse rewards and large decision spaces, posing significant difficulty for experiential learning systems like tabula rasa reinforcement learning (RL) agents. Large Language Models (LLMs), with a wealth of world knowledge, can help RL agents learn quickly and adapt to distribution shifts. In this work, we introduce Language Guided Exploration (LGE) framework, which uses a pre-trained language model (called GUIDE ) to provide decision-level guidance to an RL agent (called EXPLORER). We observe that on ScienceWorld (Wang et al.,2022), a challenging text environment, LGE outperforms vanilla RL agents significantly and also outperforms other sophisticated methods like Behaviour Cloning and Text Decision Transformer.
Level Up Your Tutorials: VLMs for Game Tutorials Quality Assessment
Designing effective game tutorials is crucial for a smooth learning curve for new players, especially in games with many rules and complex core mechanics. Evaluating the effectiveness of these tutorials usually requires multiple iterations with testers who have no prior knowledge of the game. Recent Vision-Language Models (VLMs) have demonstrated significant capabilities in understanding and interpreting visual content. VLMs can analyze images, provide detailed insights, and answer questions about their content. They can recognize objects, actions, and contexts in visual data, making them valuable tools for various applications, including automated game testing. In this work, we propose an automated game-testing solution to evaluate the quality of game tutorials. Our approach leverages VLMs to analyze frames from video game tutorials, answer relevant questions to simulate human perception, and provide feedback. This feedback is compared with expected results to identify confusing or problematic scenes and highlight potential errors for developers. In addition, we publish complete tutorial videos and annotated frames from different game versions used in our tests. This solution reduces the need for extensive manual testing, especially by speeding up and simplifying the initial development stages of the tutorial to improve the final game experience.
Rationalization: A Neural Machine Translation Approach to Generating Natural Language Explanations
We introduce AI rationalization, an approach for generating explanations of autonomous system behavior as if a human had performed the behavior. We describe a rationalization technique that uses neural machine translation to translate internal state-action representations of an autonomous agent into natural language. We evaluate our technique in the Frogger game environment, training an autonomous game playing agent to rationalize its action choices using natural language. A natural language training corpus is collected from human players thinking out loud as they play the game. We motivate the use of rationalization as an approach to explanation generation and show the results of two experiments evaluating the effectiveness of rationalization. Results of these evaluations show that neural machine translation is able to accurately generate rationalizations that describe agent behavior, and that rationalizations are more satisfying to humans than other alternative methods of explanation.
CommonsenseQA 2.0: Exposing the Limits of AI through Gamification
Constructing benchmarks that test the abilities of modern natural language understanding models is difficult - pre-trained language models exploit artifacts in benchmarks to achieve human parity, but still fail on adversarial examples and make errors that demonstrate a lack of common sense. In this work, we propose gamification as a framework for data construction. The goal of players in the game is to compose questions that mislead a rival AI while using specific phrases for extra points. The game environment leads to enhanced user engagement and simultaneously gives the game designer control over the collected data, allowing us to collect high-quality data at scale. Using our method we create CommonsenseQA 2.0, which includes 14,343 yes/no questions, and demonstrate its difficulty for models that are orders-of-magnitude larger than the AI used in the game itself. Our best baseline, the T5-based Unicorn with 11B parameters achieves an accuracy of 70.2%, substantially higher than GPT-3 (52.9%) in a few-shot inference setup. Both score well below human performance which is at 94.1%.
Semantic-Based Self-Critical Training For Question Generation
Question generation is a conditioned language generation task that consists in generating a context-aware question given a context and the targeted answer. Train language modelling with a mere likelihood maximization has been widely used while suffering from exposure bias and the discordance between the training and the test metrics. In the way of addressing this issue, The presented work portrays a fully Transformer-based reinforcement learning generator-evaluation architecture for neural question generation. To edge the flexibility of the generation, a semantic-based reward score was externally infused during the training to drive the training of the language model. The global architecture is laid out in a generator-evaluator fashion optimized directly to n-gram and semantic-based metrics. Evaluation metrics for language modelling only based on n-gram overlapping do not consider semantic relations between reference and candidate sequences. To improve the evaluation step, a two-fold evaluation was carried out. On the one side, an n-gram overlapping evaluation using the BLEU score. On the other side, a semantic-based assessment using BERTScore and NUBIA. The results were corroborated by a binary human evaluation of the semantic relatedness of the generated question and the ground truth. The results obtained showed that use a semantic-based REINFORCE algorithm for the question generation syntactically reshapes the generated questions while preserving their underlying semantic meaning. Many downstream applications can be drawn from a successful question generation including the enlargement of question answering datasets, the improvement of conversational systems, the enhancement of autonomous educational assessment systems, and so forth.
VoxInstruct: Expressive Human Instruction-to-Speech Generation with Unified Multilingual Codec Language Modelling
Recent AIGC systems possess the capability to generate digital multimedia content based on human language instructions, such as text, image and video. However, when it comes to speech, existing methods related to human instruction-to-speech generation exhibit two limitations. Firstly, they require the division of inputs into content prompt (transcript) and description prompt (style and speaker), instead of directly supporting human instruction. This division is less natural in form and does not align with other AIGC models. Secondly, the practice of utilizing an independent description prompt to model speech style, without considering the transcript content, restricts the ability to control speech at a fine-grained level. To address these limitations, we propose VoxInstruct, a novel unified multilingual codec language modeling framework that extends traditional text-to-speech tasks into a general human instruction-to-speech task. Our approach enhances the expressiveness of human instruction-guided speech generation and aligns the speech generation paradigm with other modalities. To enable the model to automatically extract the content of synthesized speech from raw text instructions, we introduce speech semantic tokens as an intermediate representation for instruction-to-content guidance. We also incorporate multiple Classifier-Free Guidance (CFG) strategies into our codec language model, which strengthens the generated speech following human instructions. Furthermore, our model architecture and training strategies allow for the simultaneous support of combining speech prompt and descriptive human instruction for expressive speech synthesis, which is a first-of-its-kind attempt. Codes, models and demos are at: https://github.com/thuhcsi/VoxInstruct.
A Tale of Two DRAGGNs: A Hybrid Approach for Interpreting Action-Oriented and Goal-Oriented Instructions
Robots operating alongside humans in diverse, stochastic environments must be able to accurately interpret natural language commands. These instructions often fall into one of two categories: those that specify a goal condition or target state, and those that specify explicit actions, or how to perform a given task. Recent approaches have used reward functions as a semantic representation of goal-based commands, which allows for the use of a state-of-the-art planner to find a policy for the given task. However, these reward functions cannot be directly used to represent action-oriented commands. We introduce a new hybrid approach, the Deep Recurrent Action-Goal Grounding Network (DRAGGN), for task grounding and execution that handles natural language from either category as input, and generalizes to unseen environments. Our robot-simulation results demonstrate that a system successfully interpreting both goal-oriented and action-oriented task specifications brings us closer to robust natural language understanding for human-robot interaction.
Augmented Large Language Models with Parametric Knowledge Guiding
Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities. However, their performance may be suboptimal for domain-specific tasks that require specialized knowledge due to limited exposure to the related data. Additionally, the lack of transparency of most state-of-the-art (SOTA) LLMs, which can only be accessed via APIs, impedes further fine-tuning with domain custom data. Moreover, providing private data to the LLMs' owner leads to data privacy problems. To address these challenges, we propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge without altering the LLMs' parameters. Our PKG is based on open-source "white-box" language models, allowing offline memory of any knowledge that LLMs require. We demonstrate that our PKG framework can enhance the performance of "black-box" LLMs on a range of domain knowledge-intensive tasks that require factual (+7.9%), tabular (+11.9%), medical (+3.0%), and multimodal (+8.1%) knowledge.
Controllable Text Generation with Language Constraints
We consider the task of text generation in language models with constraints specified in natural language. To this end, we first create a challenging benchmark Cognac that provides as input to the model a topic with example text, along with a constraint on text to be avoided. Unlike prior work, our benchmark contains knowledge-intensive constraints sourced from databases like Wordnet and Wikidata, which allows for straightforward evaluation while striking a balance between broad attribute-level and narrow lexical-level controls. We find that even state-of-the-art language models like GPT-3 fail often on this task, and propose a solution to leverage a language model's own internal knowledge to guide generation. Our method, called CognacGen, first queries the language model to generate guidance terms for a specified topic or constraint, and uses the guidance to modify the model's token generation probabilities. We propose three forms of guidance (binary verifier, top-k tokens, textual example), and employ prefix-tuning approaches to distill the guidance to tackle diverse natural language constraints. Through extensive empirical evaluations, we demonstrate that CognacGen can successfully generalize to unseen instructions and outperform competitive baselines in generating constraint conforming text.
See and Think: Embodied Agent in Virtual Environment
Large language models (LLMs) have achieved impressive progress on several open-world tasks. Recently, using LLMs to build embodied agents has been a hotspot. In this paper, we propose STEVE, a comprehensive and visionary embodied agent in the Minecraft virtual environment. STEVE consists of three key components: vision perception, language instruction, and code action. Vision perception involves the interpretation of visual information in the environment, which is then integrated into the LLMs component with agent state and task instruction. Language instruction is responsible for iterative reasoning and decomposing complex tasks into manageable guidelines. Code action generates executable skill actions based on retrieval in skill database, enabling the agent to interact effectively within the Minecraft environment. We also collect STEVE-21K dataset, which includes 600+ vision-environment pairs, 20K knowledge question-answering pairs, and 200+ skill-code pairs. We conduct continuous block search, knowledge question and answering, and tech tree mastery to evaluate the performance. Extensive experiments show that STEVE achieves at most 1.5 times faster unlocking key tech trees and 2.5 times quicker in block search tasks compared to previous state-of-the-art methods.
Machines Getting with the Program: Understanding Intent Arguments of Non-Canonical Directives
Modern dialog managers face the challenge of having to fulfill human-level conversational skills as part of common user expectations, including but not limited to discourse with no clear objective. Along with these requirements, agents are expected to extrapolate intent from the user's dialogue even when subjected to non-canonical forms of speech. This depends on the agent's comprehension of paraphrased forms of such utterances. Especially in low-resource languages, the lack of data is a bottleneck that prevents advancements of the comprehension performance for these types of agents. In this regard, here we demonstrate the necessity of extracting the intent argument of non-canonical directives in a natural language format, which may yield more accurate parsing, and suggest guidelines for building a parallel corpus for this purpose. Following the guidelines, we construct a Korean corpus of 50K instances of question/command-intent pairs, including the labels for classification of the utterance type. We also propose a method for mitigating class imbalance, demonstrating the potential applications of the corpus generation method and its multilingual extensibility.
TMGBench: A Systematic Game Benchmark for Evaluating Strategic Reasoning Abilities of LLMs
The rapid advancement of large language models (LLMs) has accelerated their application in reasoning, with strategic reasoning drawing increasing attention. To evaluate LLMs' strategic reasoning capabilities, game theory, with its concise structure, has become a preferred approach. However, current research focuses on a limited selection of games, resulting in low coverage. Classic game scenarios risk data leakage, and existing benchmarks often lack extensibility, making them inadequate for evaluating state-of-the-art models. To address these challenges, we propose TMGBench, a benchmark with comprehensive game type coverage, novel scenarios, and flexible organization. Specifically, we incorporate all 144 game types summarized by the Robinson-Goforth topology of 2x2 games, constructed as classic games. We also employ synthetic data generation to create diverse, higher-quality scenarios through topic guidance and human inspection, referred to as story-based games. Lastly, we provide a sustainable framework for increasingly powerful LLMs by treating these games as atomic units and organizing them into more complex forms via sequential, parallel, and nested structures. Our comprehensive evaluation of mainstream LLMs covers tests on rational reasoning, robustness, Theory-of-Mind (ToM), and reasoning in complex forms. Results reveal flaws in accuracy, consistency, and varying mastery of ToM. Additionally, o1-mini, OpenAI's latest reasoning model, achieved accuracy rates of 66.6%, 60.0%, and 70.0% on sequential, parallel, and nested games, highlighting TMGBench's challenges.
Deciphering Digital Detectives: Understanding LLM Behaviors and Capabilities in Multi-Agent Mystery Games
In this study, we explore the application of Large Language Models (LLMs) in Jubensha, a Chinese detective role-playing game and a novel area in Artificial Intelligence (AI) driven gaming. We introduce the first dataset specifically for Jubensha, including character scripts and game rules, to foster AI agent development in this complex narrative environment. Our work also presents a unique multi-agent interaction framework using LLMs, allowing AI agents to autonomously engage in this game. To evaluate the gaming performance of these AI agents, we developed novel methods measuring their mastery of case information and reasoning skills. Furthermore, we incorporated the latest advancements in in-context learning to improve the agents' performance in information gathering, murderer identification, and logical reasoning. The experimental results validate the effectiveness of our proposed methods. This work aims to offer a novel perspective on understanding LLM capabilities and establish a new benchmark for evaluating large language model-based agents.
Situated Language Learning via Interactive Narratives
This paper provides a roadmap that explores the question of how to imbue learning agents with the ability to understand and generate contextually relevant natural language in service of achieving a goal. We hypothesize that two key components in creating such agents are interactivity and environment grounding, shown to be vital parts of language learning in humans, and posit that interactive narratives should be the environments of choice for such training these agents. These games are simulations in which an agent interacts with the world through natural language -- "perceiving", "acting upon", and "talking to" the world using textual descriptions, commands, and dialogue -- and as such exist at the intersection of natural language processing, storytelling, and sequential decision making. We discuss the unique challenges a text games' puzzle-like structure combined with natural language state-and-action spaces provides: knowledge representation, commonsense reasoning, and exploration. Beyond the challenges described so far, progress in the realm of interactive narratives can be applied in adjacent problem domains. These applications provide interesting challenges of their own as well as extensions to those discussed so far. We describe three of them in detail: (1) evaluating AI system's commonsense understanding by automatically creating interactive narratives; (2) adapting abstract text-based policies to include other modalities such as vision; and (3) enabling multi-agent and human-AI collaboration in shared, situated worlds.
ProgPrompt: Generating Situated Robot Task Plans using Large Language Models
Task planning can require defining myriad domain knowledge about the world in which a robot needs to act. To ameliorate that effort, large language models (LLMs) can be used to score potential next actions during task planning, and even generate action sequences directly, given an instruction in natural language with no additional domain information. However, such methods either require enumerating all possible next steps for scoring, or generate free-form text that may contain actions not possible on a given robot in its current context. We present a programmatic LLM prompt structure that enables plan generation functional across situated environments, robot capabilities, and tasks. Our key insight is to prompt the LLM with program-like specifications of the available actions and objects in an environment, as well as with example programs that can be executed. We make concrete recommendations about prompt structure and generation constraints through ablation experiments, demonstrate state of the art success rates in VirtualHome household tasks, and deploy our method on a physical robot arm for tabletop tasks. Website at progprompt.github.io
GROOT: Learning to Follow Instructions by Watching Gameplay Videos
We study the problem of building a controller that can follow open-ended instructions in open-world environments. We propose to follow reference videos as instructions, which offer expressive goal specifications while eliminating the need for expensive text-gameplay annotations. A new learning framework is derived to allow learning such instruction-following controllers from gameplay videos while producing a video instruction encoder that induces a structured goal space. We implement our agent GROOT in a simple yet effective encoder-decoder architecture based on causal transformers. We evaluate GROOT against open-world counterparts and human players on a proposed Minecraft SkillForge benchmark. The Elo ratings clearly show that GROOT is closing the human-machine gap as well as exhibiting a 70% winning rate over the best generalist agent baseline. Qualitative analysis of the induced goal space further demonstrates some interesting emergent properties, including the goal composition and complex gameplay behavior synthesis. Code and video can be found on the website https://craftjarvis-groot.github.io.
Speak to your Parser: Interactive Text-to-SQL with Natural Language Feedback
We study the task of semantic parse correction with natural language feedback. Given a natural language utterance, most semantic parsing systems pose the problem as one-shot translation where the utterance is mapped to a corresponding logical form. In this paper, we investigate a more interactive scenario where humans can further interact with the system by providing free-form natural language feedback to correct the system when it generates an inaccurate interpretation of an initial utterance. We focus on natural language to SQL systems and construct, SPLASH, a dataset of utterances, incorrect SQL interpretations and the corresponding natural language feedback. We compare various reference models for the correction task and show that incorporating such a rich form of feedback can significantly improve the overall semantic parsing accuracy while retaining the flexibility of natural language interaction. While we estimated human correction accuracy is 81.5%, our best model achieves only 25.1%, which leaves a large gap for improvement in future research. SPLASH is publicly available at https://aka.ms/Splash_dataset.
Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for Code Generation
Large language models (LLMs) have showcased remarkable prowess in code generation. However, automated code generation is still challenging since it requires a high-level semantic mapping between natural language requirements and codes. Most existing LLMs-based approaches for code generation rely on decoder-only causal language models often treate codes merely as plain text tokens, i.e., feeding the requirements as a prompt input, and outputing code as flat sequence of tokens, potentially missing the rich semantic features inherent in source code. To bridge this gap, this paper proposes the "Semantic Chain-of-Thought" approach to intruduce semantic information of code, named SeCoT. Our motivation is that the semantic information of the source code (\eg data flow and control flow) describes more precise program execution behavior, intention and function. By guiding LLM consider and integrate semantic information, we can achieve a more granular understanding and representation of code, enhancing code generation accuracy. Meanwhile, while traditional techniques leveraging such semantic information require complex static or dynamic code analysis to obtain features such as data flow and control flow, SeCoT demonstrates that this process can be fully automated via the intrinsic capabilities of LLMs (i.e., in-context learning), while being generalizable and applicable to challenging domains. While SeCoT can be applied with different LLMs, this paper focuses on the powerful GPT-style models: ChatGPT(close-source model) and WizardCoder(open-source model). The experimental study on three popular DL benchmarks (i.e., HumanEval, HumanEval-ET and MBPP) shows that SeCoT can achieves state-of-the-art performance, greatly improving the potential for large models and code generation.
Large Language Models are Pretty Good Zero-Shot Video Game Bug Detectors
Video game testing requires game-specific knowledge as well as common sense reasoning about the events in the game. While AI-driven agents can satisfy the first requirement, it is not yet possible to meet the second requirement automatically. Therefore, video game testing often still relies on manual testing, and human testers are required to play the game thoroughly to detect bugs. As a result, it is challenging to fully automate game testing. In this study, we explore the possibility of leveraging the zero-shot capabilities of large language models for video game bug detection. By formulating the bug detection problem as a question-answering task, we show that large language models can identify which event is buggy in a sequence of textual descriptions of events from a game. To this end, we introduce the GameBugDescriptions benchmark dataset, which consists of 167 buggy gameplay videos and a total of 334 question-answer pairs across 8 games. We extensively evaluate the performance of six models across the OPT and InstructGPT large language model families on our benchmark dataset. Our results show promising results for employing language models to detect video game bugs. With the proper prompting technique, we could achieve an accuracy of 70.66%, and on some video games, up to 78.94%. Our code, evaluation data and the benchmark can be found on https://asgaardlab.github.io/LLMxBugs
FILM: Following Instructions in Language with Modular Methods
Recent methods for embodied instruction following are typically trained end-to-end using imitation learning. This often requires the use of expert trajectories and low-level language instructions. Such approaches assume that neural states will integrate multimodal semantics to perform state tracking, building spatial memory, exploration, and long-term planning. In contrast, we propose a modular method with structured representations that (1) builds a semantic map of the scene and (2) performs exploration with a semantic search policy, to achieve the natural language goal. Our modular method achieves SOTA performance (24.46 %) with a substantial (8.17 % absolute) gap from previous work while using less data by eschewing both expert trajectories and low-level instructions. Leveraging low-level language, however, can further increase our performance (26.49 %). Our findings suggest that an explicit spatial memory and a semantic search policy can provide a stronger and more general representation for state-tracking and guidance, even in the absence of expert trajectories or low-level instructions.
SoFar: Language-Grounded Orientation Bridges Spatial Reasoning and Object Manipulation
Spatial intelligence is a critical component of embodied AI, promoting robots to understand and interact with their environments. While recent advances have enhanced the ability of VLMs to perceive object locations and positional relationships, they still lack the capability to precisely understand object orientations-a key requirement for tasks involving fine-grained manipulations. Addressing this limitation not only requires geometric reasoning but also an expressive and intuitive way to represent orientation. In this context, we propose that natural language offers a more flexible representation space than canonical frames, making it particularly suitable for instruction-following robotic systems. In this paper, we introduce the concept of semantic orientation, which defines object orientations using natural language in a reference-frame-free manner (e.g., the ''plug-in'' direction of a USB or the ''handle'' direction of a knife). To support this, we construct OrienText300K, a large-scale dataset of 3D models annotated with semantic orientations that link geometric understanding to functional semantics. By integrating semantic orientation into a VLM system, we enable robots to generate manipulation actions with both positional and orientational constraints. Extensive experiments in simulation and real world demonstrate that our approach significantly enhances robotic manipulation capabilities, e.g., 48.7% accuracy on Open6DOR and 74.9% accuracy on SIMPLER.
SmartPlay : A Benchmark for LLMs as Intelligent Agents
Recent large language models (LLMs) have demonstrated great potential toward intelligent agents and next-gen automation, but there currently lacks a systematic benchmark for evaluating LLMs' abilities as agents. We introduce SmartPlay: both a challenging benchmark and a methodology for evaluating LLMs as agents. SmartPlay consists of 6 different games, including Rock-Paper-Scissors, Tower of Hanoi, Minecraft. Each game features a unique setting, providing up to 20 evaluation settings and infinite environment variations. Each game in SmartPlay uniquely challenges a subset of 9 important capabilities of an intelligent LLM agent, including reasoning with object dependencies, planning ahead, spatial reasoning, learning from history, and understanding randomness. The distinction between the set of capabilities each game test allows us to analyze each capability separately. SmartPlay serves not only as a rigorous testing ground for evaluating the overall performance of LLM agents but also as a road-map for identifying gaps in current methodologies. We release our benchmark at github.com/LLMsmartplay/SmartPlay
From Persona to Personalization: A Survey on Role-Playing Language Agents
Recent advancements in large language models (LLMs) have significantly boosted the rise of Role-Playing Language Agents (RPLAs), i.e., specialized AI systems designed to simulate assigned personas. By harnessing multiple advanced abilities of LLMs, including in-context learning, instruction following, and social intelligence, RPLAs achieve a remarkable sense of human likeness and vivid role-playing performance. RPLAs can mimic a wide range of personas, ranging from historical figures and fictional characters to real-life individuals. Consequently, they have catalyzed numerous AI applications, such as emotional companions, interactive video games, personalized assistants and copilots, and digital clones. In this paper, we conduct a comprehensive survey of this field, illustrating the evolution and recent progress in RPLAs integrating with cutting-edge LLM technologies. We categorize personas into three types: 1) Demographic Persona, which leverages statistical stereotypes; 2) Character Persona, focused on well-established figures; and 3) Individualized Persona, customized through ongoing user interactions for personalized services. We begin by presenting a comprehensive overview of current methodologies for RPLAs, followed by the details for each persona type, covering corresponding data sourcing, agent construction, and evaluation. Afterward, we discuss the fundamental risks, existing limitations, and future prospects of RPLAs. Additionally, we provide a brief review of RPLAs in AI applications, which reflects practical user demands that shape and drive RPLA research. Through this work, we aim to establish a clear taxonomy of RPLA research and applications, and facilitate future research in this critical and ever-evolving field, and pave the way for a future where humans and RPLAs coexist in harmony.
Learning Language Games through Interaction
We introduce a new language learning setting relevant to building adaptive natural language interfaces. It is inspired by Wittgenstein's language games: a human wishes to accomplish some task (e.g., achieving a certain configuration of blocks), but can only communicate with a computer, who performs the actual actions (e.g., removing all red blocks). The computer initially knows nothing about language and therefore must learn it from scratch through interaction, while the human adapts to the computer's capabilities. We created a game in a blocks world and collected interactions from 100 people playing it. First, we analyze the humans' strategies, showing that using compositionality and avoiding synonyms correlates positively with task performance. Second, we compare computer strategies, showing how to quickly learn a semantic parsing model from scratch, and that modeling pragmatics further accelerates learning for successful players.
MarioGPT: Open-Ended Text2Level Generation through Large Language Models
Procedural Content Generation (PCG) algorithms provide a technique to generate complex and diverse environments in an automated way. However, while generating content with PCG methods is often straightforward, generating meaningful content that reflects specific intentions and constraints remains challenging. Furthermore, many PCG algorithms lack the ability to generate content in an open-ended manner. Recently, Large Language Models (LLMs) have shown to be incredibly effective in many diverse domains. These trained LLMs can be fine-tuned, re-using information and accelerating training for new tasks. In this work, we introduce MarioGPT, a fine-tuned GPT2 model trained to generate tile-based game levels, in our case Super Mario Bros levels. We show that MarioGPT can not only generate diverse levels, but can be text-prompted for controllable level generation, addressing one of the key challenges of current PCG techniques. As far as we know, MarioGPT is the first text-to-level model. We also combine MarioGPT with novelty search, enabling it to generate diverse levels with varying play-style dynamics (i.e. player paths). This combination allows for the open-ended generation of an increasingly diverse range of content.
Scaling Instructable Agents Across Many Simulated Worlds
Building embodied AI systems that can follow arbitrary language instructions in any 3D environment is a key challenge for creating general AI. Accomplishing this goal requires learning to ground language in perception and embodied actions, in order to accomplish complex tasks. The Scalable, Instructable, Multiworld Agent (SIMA) project tackles this by training agents to follow free-form instructions across a diverse range of virtual 3D environments, including curated research environments as well as open-ended, commercial video games. Our goal is to develop an instructable agent that can accomplish anything a human can do in any simulated 3D environment. Our approach focuses on language-driven generality while imposing minimal assumptions. Our agents interact with environments in real-time using a generic, human-like interface: the inputs are image observations and language instructions and the outputs are keyboard-and-mouse actions. This general approach is challenging, but it allows agents to ground language across many visually complex and semantically rich environments while also allowing us to readily run agents in new environments. In this paper we describe our motivation and goal, the initial progress we have made, and promising preliminary results on several diverse research environments and a variety of commercial video games.
The Chess Transformer: Mastering Play using Generative Language Models
This work demonstrates that natural language transformers can support more generic strategic modeling, particularly for text-archived games. In addition to learning natural language skills, the abstract transformer architecture can generate meaningful moves on a chessboard. With further fine-tuning, the transformer learns complex gameplay by training on 2.8 million chess games in Portable Game Notation. After 30,000 training steps, OpenAI's Generative Pre-trained Transformer (GPT-2) optimizes weights for 774 million parameters. This fine-tuned Chess Transformer generates plausible strategies and displays game formations identifiable as classic openings, such as English or the Slav Exchange. Finally, in live play, the novel model demonstrates a human-to-transformer interface that correctly filters illegal moves and provides a novel method to challenge the transformer's chess strategies. We anticipate future work will build on this transformer's promise, particularly in other strategy games where features can capture the underlying complex rule syntax from simple but expressive player annotations.
Improving the Capabilities of Large Language Model Based Marketing Analytics Copilots With Semantic Search And Fine-Tuning
Artificial intelligence (AI) is widely deployed to solve problems related to marketing attribution and budget optimization. However, AI models can be quite complex, and it can be difficult to understand model workings and insights without extensive implementation teams. In principle, recently developed large language models (LLMs), like GPT-4, can be deployed to provide marketing insights, reducing the time and effort required to make critical decisions. In practice, there are substantial challenges that need to be overcome to reliably use such models. We focus on domain-specific question-answering, SQL generation needed for data retrieval, and tabular analysis and show how a combination of semantic search, prompt engineering, and fine-tuning can be applied to dramatically improve the ability of LLMs to execute these tasks accurately. We compare both proprietary models, like GPT-4, and open-source models, like Llama-2-70b, as well as various embedding methods. These models are tested on sample use cases specific to marketing mix modeling and attribution.
VIALM: A Survey and Benchmark of Visually Impaired Assistance with Large Models
Visually Impaired Assistance (VIA) aims to automatically help the visually impaired (VI) handle daily activities. The advancement of VIA primarily depends on developments in Computer Vision (CV) and Natural Language Processing (NLP), both of which exhibit cutting-edge paradigms with large models (LMs). Furthermore, LMs have shown exceptional multimodal abilities to tackle challenging physically-grounded tasks such as embodied robots. To investigate the potential and limitations of state-of-the-art (SOTA) LMs' capabilities in VIA applications, we present an extensive study for the task of VIA with LMs (VIALM). In this task, given an image illustrating the physical environments and a linguistic request from a VI user, VIALM aims to output step-by-step guidance to assist the VI user in fulfilling the request grounded in the environment. The study consists of a survey reviewing recent LM research and benchmark experiments examining selected LMs' capabilities in VIA. The results indicate that while LMs can potentially benefit VIA, their output cannot be well environment-grounded (i.e., 25.7% GPT-4's responses) and lacks fine-grained guidance (i.e., 32.1% GPT-4's responses).
A^2Nav: Action-Aware Zero-Shot Robot Navigation by Exploiting Vision-and-Language Ability of Foundation Models
We study the task of zero-shot vision-and-language navigation (ZS-VLN), a practical yet challenging problem in which an agent learns to navigate following a path described by language instructions without requiring any path-instruction annotation data. Normally, the instructions have complex grammatical structures and often contain various action descriptions (e.g., "proceed beyond", "depart from"). How to correctly understand and execute these action demands is a critical problem, and the absence of annotated data makes it even more challenging. Note that a well-educated human being can easily understand path instructions without the need for any special training. In this paper, we propose an action-aware zero-shot VLN method (A^2Nav) by exploiting the vision-and-language ability of foundation models. Specifically, the proposed method consists of an instruction parser and an action-aware navigation policy. The instruction parser utilizes the advanced reasoning ability of large language models (e.g., GPT-3) to decompose complex navigation instructions into a sequence of action-specific object navigation sub-tasks. Each sub-task requires the agent to localize the object and navigate to a specific goal position according to the associated action demand. To accomplish these sub-tasks, an action-aware navigation policy is learned from freely collected action-specific datasets that reveal distinct characteristics of each action demand. We use the learned navigation policy for executing sub-tasks sequentially to follow the navigation instruction. Extensive experiments show A^2Nav achieves promising ZS-VLN performance and even surpasses the supervised learning methods on R2R-Habitat and RxR-Habitat datasets.
ROCKET-2: Steering Visuomotor Policy via Cross-View Goal Alignment
We aim to develop a goal specification method that is semantically clear, spatially sensitive, and intuitive for human users to guide agent interactions in embodied environments. Specifically, we propose a novel cross-view goal alignment framework that allows users to specify target objects using segmentation masks from their own camera views rather than the agent's observations. We highlight that behavior cloning alone fails to align the agent's behavior with human intent when the human and agent camera views differ significantly. To address this, we introduce two auxiliary objectives: cross-view consistency loss and target visibility loss, which explicitly enhance the agent's spatial reasoning ability. According to this, we develop ROCKET-2, a state-of-the-art agent trained in Minecraft, achieving an improvement in the efficiency of inference 3x to 6x. We show ROCKET-2 can directly interpret goals from human camera views for the first time, paving the way for better human-agent interaction.
Fantastic Copyrighted Beasts and How (Not) to Generate Them
Recent studies show that image and video generation models can be prompted to reproduce copyrighted content from their training data, raising serious legal concerns around copyright infringement. Copyrighted characters, in particular, pose a difficult challenge for image generation services, with at least one lawsuit already awarding damages based on the generation of these characters. Yet, little research has empirically examined this issue. We conduct a systematic evaluation to fill this gap. First, we build CopyCat, an evaluation suite consisting of diverse copyrighted characters and a novel evaluation pipeline. Our evaluation considers both the detection of similarity to copyrighted characters and generated image's consistency with user input. Our evaluation systematically shows that both image and video generation models can still generate characters even if characters' names are not explicitly mentioned in the prompt, sometimes with only two generic keywords (e.g., prompting with "videogame, plumber" consistently generates Nintendo's Mario character). We then introduce techniques to semi-automatically identify such keywords or descriptions that trigger character generation. Using our evaluation suite, we study runtime mitigation strategies, including both existing methods and new strategies we propose. Our findings reveal that commonly employed strategies, such as prompt rewriting in the DALL-E system, are not sufficient as standalone guardrails. These strategies must be coupled with other approaches, like negative prompting, to effectively reduce the unintended generation of copyrighted characters. Our work provides empirical grounding to the discussion of copyright mitigation strategies and offers actionable insights for model deployers actively implementing them.
PAL: Persona-Augmented Emotional Support Conversation Generation
Due to the lack of human resources for mental health support, there is an increasing demand for employing conversational agents for support. Recent work has demonstrated the effectiveness of dialogue models in providing emotional support. As previous studies have demonstrated that seekers' persona is an important factor for effective support, we investigate whether there are benefits to modeling such information in dialogue models for support. In this paper, our empirical analysis verifies that persona has an important impact on emotional support. Therefore, we propose a framework for dynamically inferring and modeling seekers' persona. We first train a model for inferring the seeker's persona from the conversation history. Accordingly, we propose PAL, a model that leverages persona information and, in conjunction with our strategy-based controllable generation method, provides personalized emotional support. Automatic and manual evaluations demonstrate that PAL achieves state-of-the-art results, outperforming the baselines on the studied benchmark. Our code and data are publicly available at https://github.com/chengjl19/PAL.
Event-Guided Procedure Planning from Instructional Videos with Text Supervision
In this work, we focus on the task of procedure planning from instructional videos with text supervision, where a model aims to predict an action sequence to transform the initial visual state into the goal visual state. A critical challenge of this task is the large semantic gap between observed visual states and unobserved intermediate actions, which is ignored by previous works. Specifically, this semantic gap refers to that the contents in the observed visual states are semantically different from the elements of some action text labels in a procedure. To bridge this semantic gap, we propose a novel event-guided paradigm, which first infers events from the observed states and then plans out actions based on both the states and predicted events. Our inspiration comes from that planning a procedure from an instructional video is to complete a specific event and a specific event usually involves specific actions. Based on the proposed paradigm, we contribute an Event-guided Prompting-based Procedure Planning (E3P) model, which encodes event information into the sequential modeling process to support procedure planning. To further consider the strong action associations within each event, our E3P adopts a mask-and-predict approach for relation mining, incorporating a probabilistic masking scheme for regularization. Extensive experiments on three datasets demonstrate the effectiveness of our proposed model.
CARTIER: Cartographic lAnguage Reasoning Targeted at Instruction Execution for Robots
This work explores the capacity of large language models (LLMs) to address problems at the intersection of spatial planning and natural language interfaces for navigation.Our focus is on following relatively complex instructions that are more akin to natural conversation than traditional explicit procedural directives seen in robotics. Unlike most prior work, where navigation directives are provided as imperative commands (e.g., go to the fridge), we examine implicit directives within conversational interactions. We leverage the 3D simulator AI2Thor to create complex and repeatable scenarios at scale, and augment it by adding complex language queries for 40 object types. We demonstrate that a robot can better parse descriptive language queries than existing methods by using an LLM to interpret the user interaction in the context of a list of the objects in the scene.
Instance-Level Semantic Maps for Vision Language Navigation
Humans have a natural ability to perform semantic associations with the surrounding objects in the environment. This allows them to create a mental map of the environment, allowing them to navigate on-demand when given linguistic instructions. A natural goal in Vision Language Navigation (VLN) research is to impart autonomous agents with similar capabilities. Recent works take a step towards this goal by creating a semantic spatial map representation of the environment without any labeled data. However, their representations are limited for practical applicability as they do not distinguish between different instances of the same object. In this work, we address this limitation by integrating instance-level information into spatial map representation using a community detection algorithm and utilizing word ontology learned by large language models (LLMs) to perform open-set semantic associations in the mapping representation. The resulting map representation improves the navigation performance by two-fold (233%) on realistic language commands with instance-specific descriptions compared to the baseline. We validate the practicality and effectiveness of our approach through extensive qualitative and quantitative experiments.
MARS: A Multi-Agent Framework Incorporating Socratic Guidance for Automated Prompt Optimization
The basic question-answering format of large language models involves inputting a prompt and receiving a response, and the quality of the prompt directly impacts the effectiveness of the response. Automated Prompt Optimization (APO) aims to break free from the cognitive biases of manually designed prompts and explores a broader design space for prompts. However, existing APO methods suffer from limited flexibility of fixed templates and inefficient search in prompt spaces as key issues. To this end, we propose a Multi-Agent framework Incorporating Socratic guidance (MARS), which utilizes multi-agent fusion technology for automatic planning, with gradual continuous optimization and evaluation. Specifically, MARS comprises seven agents, each with distinct functionalities, which autonomously use the Planner to devise an optimization path that ensures flexibility. Additionally, it employs a Teacher-Critic-Student Socratic dialogue pattern to iteratively optimize the prompts while conducting effective search. We conduct extensive experiments on various datasets to validate the effectiveness of our method, and perform additional analytical experiments to assess the model's advancement as well as the interpretability.
Knowledge Graph Enhanced Retrieval-Augmented Generation for Failure Mode and Effects Analysis
Failure mode and effects analysis (FMEA) is a critical tool for mitigating potential failures, particular during ramp-up phases of new products. However, its effectiveness is often limited by the missing reasoning capabilities of the FMEA tools, which are usually tabular structured. Meanwhile, large language models (LLMs) offer novel prospects for fine-tuning on custom datasets for reasoning within FMEA contexts. However, LLMs face challenges in tasks that require factual knowledge, a gap that retrieval-augmented generation (RAG) approaches aim to fill. RAG retrieves information from a non-parametric data store and uses a language model to generate responses. Building on this idea, we propose to advance the non-parametric data store with a knowledge graph (KG). By enhancing the RAG framework with a KG, our objective is to leverage analytical and semantic question-answering capabilities on FMEA data. This paper contributes by presenting a new ontology for FMEA observations, an algorithm for creating vector embeddings from the FMEA KG, and a KG enhanced RAG framework. Our approach is validated through a human study and we measure the performance of the context retrieval recall and precision.
Knowledge-enhanced Agents for Interactive Text Games
Communication via natural language is a crucial aspect of intelligence, and it requires computational models to learn and reason about world concepts, with varying levels of supervision. While there has been significant progress made on fully-supervised non-interactive tasks, such as question-answering and procedural text understanding, much of the community has turned to various sequential interactive tasks, as in semi-Markov text-based games, which have revealed limitations of existing approaches in terms of coherence, contextual awareness, and their ability to learn effectively from the environment. In this paper, we propose a framework for enabling improved functional grounding of agents in text-based games. Specifically, we consider two forms of domain knowledge that we inject into learning-based agents: memory of previous correct actions and affordances of relevant objects in the environment. Our framework supports three representative model classes: `pure' reinforcement learning (RL) agents, RL agents enhanced with knowledge graphs, and agents equipped with language models. Furthermore, we devise multiple injection strategies for the above domain knowledge types and agent architectures, including injection via knowledge graphs and augmentation of the existing input encoding strategies. We perform all experiments on the ScienceWorld text-based game environment, to illustrate the performance of various model configurations in challenging science-related instruction-following tasks. Our findings provide crucial insights on the development of effective natural language processing systems for interactive contexts.
Training-free Regional Prompting for Diffusion Transformers
Diffusion models have demonstrated excellent capabilities in text-to-image generation. Their semantic understanding (i.e., prompt following) ability has also been greatly improved with large language models (e.g., T5, Llama). However, existing models cannot perfectly handle long and complex text prompts, especially when the text prompts contain various objects with numerous attributes and interrelated spatial relationships. While many regional prompting methods have been proposed for UNet-based models (SD1.5, SDXL), but there are still no implementations based on the recent Diffusion Transformer (DiT) architecture, such as SD3 and FLUX.1.In this report, we propose and implement regional prompting for FLUX.1 based on attention manipulation, which enables DiT with fined-grained compositional text-to-image generation capability in a training-free manner. Code is available at https://github.com/antonioo-c/Regional-Prompting-FLUX.
SweetieChat: A Strategy-Enhanced Role-playing Framework for Diverse Scenarios Handling Emotional Support Agent
Large Language Models (LLMs) have demonstrated promising potential in providing empathetic support during interactions. However, their responses often become verbose or overly formulaic, failing to adequately address the diverse emotional support needs of real-world scenarios. To tackle this challenge, we propose an innovative strategy-enhanced role-playing framework, designed to simulate authentic emotional support conversations. Specifically, our approach unfolds in two steps: (1) Strategy-Enhanced Role-Playing Interactions, which involve three pivotal roles -- Seeker, Strategy Counselor, and Supporter -- engaging in diverse scenarios to emulate real-world interactions and promote a broader range of dialogues; and (2) Emotional Support Agent Training, achieved through fine-tuning LLMs using our specially constructed dataset. Within this framework, we develop the ServeForEmo dataset, comprising an extensive collection of 3.7K+ multi-turn dialogues and 62.8K+ utterances. We further present SweetieChat, an emotional support agent capable of handling diverse open-domain scenarios. Extensive experiments and human evaluations confirm the framework's effectiveness in enhancing emotional support, highlighting its unique ability to provide more nuanced and tailored assistance.
Do LLMs "know" internally when they follow instructions?
Instruction-following is crucial for building AI agents with large language models (LLMs), as these models must adhere strictly to user-provided constraints and guidelines. However, LLMs often fail to follow even simple and clear instructions. To improve instruction-following behavior and prevent undesirable outputs, a deeper understanding of how LLMs' internal states relate to these outcomes is required. Our analysis of LLM internal states reveal a dimension in the input embedding space linked to successful instruction-following. We demonstrate that modifying representations along this dimension improves instruction-following success rates compared to random changes, without compromising response quality. Further investigation reveals that this dimension is more closely related to the phrasing of prompts rather than the inherent difficulty of the task or instructions. This discovery also suggests explanations for why LLMs sometimes fail to follow clear instructions and why prompt engineering is often effective, even when the content remains largely unchanged. This work provides insight into the internal workings of LLMs' instruction-following, paving the way for reliable LLM agents.
We are what we repeatedly do: Inducing and deploying habitual schemas in persona-based responses
Many practical applications of dialogue technology require the generation of responses according to a particular developer-specified persona. While a variety of personas can be elicited from recent large language models, the opaqueness and unpredictability of these models make it desirable to be able to specify personas in an explicit form. In previous work, personas have typically been represented as sets of one-off pieces of self-knowledge that are retrieved by the dialogue system for use in generation. However, in realistic human conversations, personas are often revealed through story-like narratives that involve rich habitual knowledge -- knowledge about kinds of events that an agent often participates in (e.g., work activities, hobbies, sporting activities, favorite entertainments, etc.), including typical goals, sub-events, preconditions, and postconditions of those events. We capture such habitual knowledge using an explicit schema representation, and propose an approach to dialogue generation that retrieves relevant schemas to condition a large language model to generate persona-based responses. Furthermore, we demonstrate a method for bootstrapping the creation of such schemas by first generating generic passages from a set of simple facts, and then inducing schemas from the generated passages.
Large Language Models Play StarCraft II: Benchmarks and A Chain of Summarization Approach
StarCraft II is a challenging benchmark for AI agents due to the necessity of both precise micro level operations and strategic macro awareness. Previous works, such as Alphastar and SCC, achieve impressive performance on tackling StarCraft II , however, still exhibit deficiencies in long term strategic planning and strategy interpretability. Emerging large language model (LLM) agents, such as Voyage and MetaGPT, presents the immense potential in solving intricate tasks. Motivated by this, we aim to validate the capabilities of LLMs on StarCraft II, a highly complex RTS game.To conveniently take full advantage of LLMs` reasoning abilities, we first develop textual StratCraft II environment, called TextStarCraft II, which LLM agent can interact. Secondly, we propose a Chain of Summarization method, including single frame summarization for processing raw observations and multi frame summarization for analyzing game information, providing command recommendations, and generating strategic decisions. Our experiment consists of two parts: first, an evaluation by human experts, which includes assessing the LLMs`s mastery of StarCraft II knowledge and the performance of LLM agents in the game; second, the in game performance of LLM agents, encompassing aspects like win rate and the impact of Chain of Summarization.Experiment results demonstrate that: 1. LLMs possess the relevant knowledge and complex planning abilities needed to address StarCraft II scenarios; 2. Human experts consider the performance of LLM agents to be close to that of an average player who has played StarCraft II for eight years; 3. LLM agents are capable of defeating the built in AI at the Harder(Lv5) difficulty level. We have open sourced the code and released demo videos of LLM agent playing StarCraft II.
SAGE: Bridging Semantic and Actionable Parts for GEneralizable Manipulation of Articulated Objects
To interact with daily-life articulated objects of diverse structures and functionalities, understanding the object parts plays a central role in both user instruction comprehension and task execution. However, the possible discordance between the semantic meaning and physics functionalities of the parts poses a challenge for designing a general system. To address this problem, we propose SAGE, a novel framework that bridges semantic and actionable parts of articulated objects to achieve generalizable manipulation under natural language instructions. More concretely, given an articulated object, we first observe all the semantic parts on it, conditioned on which an instruction interpreter proposes possible action programs that concretize the natural language instruction. Then, a part-grounding module maps the semantic parts into so-called Generalizable Actionable Parts (GAParts), which inherently carry information about part motion. End-effector trajectories are predicted on the GAParts, which, together with the action program, form an executable policy. Additionally, an interactive feedback module is incorporated to respond to failures, which closes the loop and increases the robustness of the overall framework. Key to the success of our framework is the joint proposal and knowledge fusion between a large vision-language model (VLM) and a small domain-specific model for both context comprehension and part perception, with the former providing general intuitions and the latter serving as expert facts. Both simulation and real-robot experiments show our effectiveness in handling a large variety of articulated objects with diverse language-instructed goals.
Multi-Modal Grounded Planning and Efficient Replanning For Learning Embodied Agents with A Few Examples
Learning a perception and reasoning module for robotic assistants to plan steps to perform complex tasks based on natural language instructions often requires large free-form language annotations, especially for short high-level instructions. To reduce the cost of annotation, large language models (LLMs) are used as a planner with few data. However, when elaborating the steps, even the state-of-the-art planner that uses LLMs mostly relies on linguistic common sense, often neglecting the status of the environment at command reception, resulting in inappropriate plans. To generate plans grounded in the environment, we propose FLARE (Few-shot Language with environmental Adaptive Replanning Embodied agent), which improves task planning using both language command and environmental perception. As language instructions often contain ambiguities or incorrect expressions, we additionally propose to correct the mistakes using visual cues from the agent. The proposed scheme allows us to use a few language pairs thanks to the visual cues and outperforms state-of-the-art approaches. Our code is available at https://github.com/snumprlab/flare.
Can Small Language Models Help Large Language Models Reason Better?: LM-Guided Chain-of-Thought
We introduce a novel framework, LM-Guided CoT, that leverages a lightweight (i.e., <1B) language model (LM) for guiding a black-box large (i.e., >10B) LM in reasoning tasks. Specifically, the lightweight LM first generates a rationale for each input instance. The Frozen large LM is then prompted to predict a task output based on the rationale generated by the lightweight LM. Our approach is resource-efficient in the sense that it only requires training the lightweight LM. We optimize the model through 1) knowledge distillation and 2) reinforcement learning from rationale-oriented and task-oriented reward signals. We assess our method with multi-hop extractive question answering (QA) benchmarks, HotpotQA, and 2WikiMultiHopQA. Experimental results show that our approach outperforms all baselines regarding answer prediction accuracy. We also find that reinforcement learning helps the model to produce higher-quality rationales with improved QA performance.
Template Guided Text Generation for Task-Oriented Dialogue
Virtual assistants such as Google Assistant, Amazon Alexa, and Apple Siri enable users to interact with a large number of services and APIs on the web using natural language. In this work, we investigate two methods for Natural Language Generation (NLG) using a single domain-independent model across a large number of APIs. First, we propose a schema-guided approach which conditions the generation on a schema describing the API in natural language. Our second method investigates the use of a small number of templates, growing linearly in number of slots, to convey the semantics of the API. To generate utterances for an arbitrary slot combination, a few simple templates are first concatenated to give a semantically correct, but possibly incoherent and ungrammatical utterance. A pre-trained language model is subsequently employed to rewrite it into coherent, natural sounding text. Through automatic metrics and human evaluation, we show that our method improves over strong baselines, is robust to out-of-domain inputs and shows improved sample efficiency.
Learning Embeddings that Capture Spatial Semantics for Indoor Navigation
Incorporating domain-specific priors in search and navigation tasks has shown promising results in improving generalization and sample complexity over end-to-end trained policies. In this work, we study how object embeddings that capture spatial semantic priors can guide search and navigation tasks in a structured environment. We know that humans can search for an object like a book, or a plate in an unseen house, based on the spatial semantics of bigger objects detected. For example, a book is likely to be on a bookshelf or a table, whereas a plate is likely to be in a cupboard or dishwasher. We propose a method to incorporate such spatial semantic awareness in robots by leveraging pre-trained language models and multi-relational knowledge bases as object embeddings. We demonstrate using these object embeddings to search a query object in an unseen indoor environment. We measure the performance of these embeddings in an indoor simulator (AI2Thor). We further evaluate different pre-trained embedding onSuccess Rate(SR) and success weighted by Path Length(SPL).
Multiverse of Greatness: Generating Story Branches with LLMs
This paper presents Dynamic Context Prompting/Programming (DCP/P), a novel framework for interacting with LLMs to generate graph-based content with a dynamic context window history. While there is an existing study utilizing LLMs to generate a visual novel game, the previous study involved a manual process of output extraction and did not provide flexibility in generating a longer, coherent story. We evaluate DCP/P against our baseline, which does not provide context history to an LLM and only relies on the initial story data. Through objective evaluation, we show that simply providing the LLM with a summary leads to a subpar story compared to additionally providing the LLM with the proper context of the story. We also provide an extensive qualitative analysis and discussion. We qualitatively examine the quality of the objectively best-performing generated game from each approach. In addition, we examine biases in word choices and word sentiment of the generated content. We find a consistent observation with previous studies that LLMs are biased towards certain words, even with a different LLM family. Finally, we provide a comprehensive discussion on opportunities for future studies.
Transformers as Soft Reasoners over Language
Beginning with McCarthy's Advice Taker (1959), AI has pursued the goal of providing a system with explicit, general knowledge and having the system reason over that knowledge. However, expressing the knowledge in a formal (logical or probabilistic) representation has been a major obstacle to this research. This paper investigates a modern approach to this problem where the facts and rules are provided as natural language sentences, thus bypassing a formal representation. We train transformers to reason (or emulate reasoning) over these sentences using synthetically generated data. Our models, that we call RuleTakers, provide the first empirical demonstration that this kind of soft reasoning over language is learnable, can achieve high (99%) accuracy, and generalizes to test data requiring substantially deeper chaining than seen during training (95%+ scores). We also demonstrate that the models transfer well to two hand-authored rulebases, and to rulebases paraphrased into more natural language. These findings are significant as it suggests a new role for transformers, namely as limited "soft theorem provers" operating over explicit theories in language. This in turn suggests new possibilities for explainability, correctability, and counterfactual reasoning in question-answering.
GAVEL: Generating Games Via Evolution and Language Models
Automatically generating novel and interesting games is a complex task. Challenges include representing game rules in a computationally workable form, searching through the large space of potential games under most such representations, and accurately evaluating the originality and quality of previously unseen games. Prior work in automated game generation has largely focused on relatively restricted rule representations and relied on domain-specific heuristics. In this work, we explore the generation of novel games in the comparatively expansive Ludii game description language, which encodes the rules of over 1000 board games in a variety of styles and modes of play. We draw inspiration from recent advances in large language models and evolutionary computation in order to train a model that intelligently mutates and recombines games and mechanics expressed as code. We demonstrate both quantitatively and qualitatively that our approach is capable of generating new and interesting games, including in regions of the potential rules space not covered by existing games in the Ludii dataset. A sample of the generated games are available to play online through the Ludii portal.
Autoformalization of Game Descriptions using Large Language Models
Game theory is a powerful framework for reasoning about strategic interactions, with applications in domains ranging from day-to-day life to international politics. However, applying formal reasoning tools in such contexts is challenging, as these scenarios are often expressed in natural language. To address this, we introduce a framework for the autoformalization of game-theoretic scenarios, which translates natural language descriptions into formal logic representations suitable for formal solvers. Our approach utilizes one-shot prompting and a solver that provides feedback on syntactic correctness to allow LLMs to refine the code. We evaluate the framework using GPT-4o and a dataset of natural language problem descriptions, achieving 98% syntactic correctness and 88% semantic correctness. These results show the potential of LLMs to bridge the gap between real-life strategic interactions and formal reasoning.
Preference-conditioned Pixel-based AI Agent For Game Testing
The game industry is challenged to cope with increasing growth in demand and game complexity while maintaining acceptable quality standards for released games. Classic approaches solely depending on human efforts for quality assurance and game testing do not scale effectively in terms of time and cost. Game-testing AI agents that learn by interaction with the environment have the potential to mitigate these challenges with good scalability properties on time and costs. However, most recent work in this direction depends on game state information for the agent's state representation, which limits generalization across different game scenarios. Moreover, game test engineers usually prefer exploring a game in a specific style, such as exploring the golden path. However, current game testing AI agents do not provide an explicit way to satisfy such a preference. This paper addresses these limitations by proposing an agent design that mainly depends on pixel-based state observations while exploring the environment conditioned on a user's preference specified by demonstration trajectories. In addition, we propose an imitation learning method that couples self-supervised and supervised learning objectives to enhance the quality of imitation behaviors. Our agent significantly outperforms state-of-the-art pixel-based game testing agents over exploration coverage and test execution quality when evaluated on a complex open-world environment resembling many aspects of real AAA games.
Allegro: Open the Black Box of Commercial-Level Video Generation Model
Significant advancements have been made in the field of video generation, with the open-source community contributing a wealth of research papers and tools for training high-quality models. However, despite these efforts, the available information and resources remain insufficient for achieving commercial-level performance. In this report, we open the black box and introduce Allegro, an advanced video generation model that excels in both quality and temporal consistency. We also highlight the current limitations in the field and present a comprehensive methodology for training high-performance, commercial-level video generation models, addressing key aspects such as data, model architecture, training pipeline, and evaluation. Our user study shows that Allegro surpasses existing open-source models and most commercial models, ranking just behind Hailuo and Kling. Code: https://github.com/rhymes-ai/Allegro , Model: https://huggingface.co/rhymes-ai/Allegro , Gallery: https://rhymes.ai/allegro_gallery .
Persona is a Double-edged Sword: Enhancing the Zero-shot Reasoning by Ensembling the Role-playing and Neutral Prompts
Recent studies demonstrate that prompting an appropriate role-playing persona to an LLM improves its reasoning capability. However, assigning a proper persona is difficult since an LLM's performance is extremely sensitive to assigned prompts; therefore, personas sometimes hinder LLMs and degrade their reasoning capabilities. In this paper, we propose a novel framework, Jekyll \& Hyde, which ensembles the results of role-playing and neutral prompts to eradicate performance degradation via unilateral use of role-playing prompted LLM and enhance the robustness of an LLM's reasoning ability. Specifically, Jekyll \& Hyde collects two potential solutions from both role-playing and neutral prompts and selects a better solution after cross-checking via an LLM evaluator. However, LLM-based evaluators tend to be affected by the order of those potential solutions within the prompt when selecting the proper solution; thus, we also propose a robust LLM evaluator to mitigate the position bias. The experimental analysis demonstrates that role-playing prompts distract LLMs and degrade their reasoning abilities in 4 out of 12 datasets, even when using GPT-4. In addition, we reveal that Jekyll \& Hyde improves reasoning capabilities by selecting better choices among the potential solutions on twelve widely-used reasoning datasets. We further show that our proposed LLM evaluator outperforms other baselines, proving the LLMs' position bias is successfully mitigated.
DOSA: A Dataset of Social Artifacts from Different Indian Geographical Subcultures
Generative models are increasingly being used in various applications, such as text generation, commonsense reasoning, and question-answering. To be effective globally, these models must be aware of and account for local socio-cultural contexts, making it necessary to have benchmarks to evaluate the models for their cultural familiarity. Since the training data for LLMs is web-based and the Web is limited in its representation of information, it does not capture knowledge present within communities that are not on the Web. Thus, these models exacerbate the inequities, semantic misalignment, and stereotypes from the Web. There has been a growing call for community-centered participatory research methods in NLP. In this work, we respond to this call by using participatory research methods to introduce DOSA, the first community-generated Dataset of 615 Social Artifacts, by engaging with 260 participants from 19 different Indian geographic subcultures. We use a gamified framework that relies on collective sensemaking to collect the names and descriptions of these artifacts such that the descriptions semantically align with the shared sensibilities of the individuals from those cultures. Next, we benchmark four popular LLMs and find that they show significant variation across regional sub-cultures in their ability to infer the artifacts.
PROC2PDDL: Open-Domain Planning Representations from Texts
Planning in a text-based environment continues to be a major challenge for AI systems. Recent approaches have used language models to predict a planning domain definition (e.g., PDDL) but have only been evaluated in closed-domain simulated environments. To address this, we present Proc2PDDL , the first dataset containing open-domain procedural texts paired with expert-annotated PDDL representations. Using this dataset, we evaluate state-of-the-art models on defining the preconditions and effects of actions. We show that Proc2PDDL is highly challenging, with GPT-3.5's success rate close to 0% and GPT-4's around 35%. Our analysis shows both syntactic and semantic errors, indicating LMs' deficiency in both generating domain-specific prgorams and reasoning about events. We hope this analysis and dataset helps future progress towards integrating the best of LMs and formal planning.
Target-Guided Dialogue Response Generation Using Commonsense and Data Augmentation
Target-guided response generation enables dialogue systems to smoothly transition a conversation from a dialogue context toward a target sentence. Such control is useful for designing dialogue systems that direct a conversation toward specific goals, such as creating non-obtrusive recommendations or introducing new topics in the conversation. In this paper, we introduce a new technique for target-guided response generation, which first finds a bridging path of commonsense knowledge concepts between the source and the target, and then uses the identified bridging path to generate transition responses. Additionally, we propose techniques to re-purpose existing dialogue datasets for target-guided generation. Experiments reveal that the proposed techniques outperform various baselines on this task. Finally, we observe that the existing automated metrics for this task correlate poorly with human judgement ratings. We propose a novel evaluation metric that we demonstrate is more reliable for target-guided response evaluation. Our work generally enables dialogue system designers to exercise more control over the conversations that their systems produce.
VEM: Environment-Free Exploration for Training GUI Agent with Value Environment Model
Training Vision-Language Models (VLMs) for Graphical User Interfaces (GUI) agents via Reinforcement Learning (RL) faces critical challenges: environment-based RL requires costly interactions, while environment-free methods struggle with distribution shift and reward generalization. We propose an environment-free RL framework that decouples value estimation from policy optimization by leveraging a pretrained Value Environment Model (VEM). VEM predicts state-action values directly from offline data, distilling human-like priors about GUI interaction outcomes without requiring next-state prediction or environmental feedback. This avoids compounding errors and enhances resilience to UI changes by focusing on semantic reasoning (e.g., Does this action advance the user's goal?). The framework operates in two stages: (1) pretraining VEM to estimate long-term action utilities and (2) guiding policy exploration with frozen VEM signals, enabling layout-agnostic GUI automation. Evaluated on Android-in-the-Wild benchmarks, VEM achieves state-of-the-art performance in both offline and online settings, outperforming environment-free baselines significantly and matching environment-based approaches without interaction costs. Importantly, VEM demonstrates that semantic-aware value estimation can achieve comparable performance with online-trained methods.
CRAT: A Multi-Agent Framework for Causality-Enhanced Reflective and Retrieval-Augmented Translation with Large Language Models
Large language models (LLMs) have shown great promise in machine translation, but they still struggle with contextually dependent terms, such as new or domain-specific words. This leads to inconsistencies and errors that are difficult to address. Existing solutions often depend on manual identification of such terms, which is impractical given the complexity and evolving nature of language. While Retrieval-Augmented Generation (RAG) could provide some assistance, its application to translation is limited by issues such as hallucinations from information overload. In this paper, we propose CRAT, a novel multi-agent translation framework that leverages RAG and causality-enhanced self-reflection to address these challenges. This framework consists of several specialized agents: the Unknown Terms Identification agent detects unknown terms within the context, the Knowledge Graph (KG) Constructor agent extracts relevant internal knowledge about these terms and retrieves bilingual information from external sources, the Causality-enhanced Judge agent validates the accuracy of the information, and the Translator agent incorporates the refined information into the final output. This automated process allows for more precise and consistent handling of key terms during translation. Our results show that CRAT significantly improves translation accuracy, particularly in handling context-sensitive terms and emerging vocabulary.
From Arabic Text to Puzzles: LLM-Driven Development of Arabic Educational Crosswords
We present an Arabic crossword puzzle generator from a given text that utilizes advanced language models such as GPT-4-Turbo, GPT-3.5-Turbo and Llama3-8B-Instruct, specifically developed for educational purposes, this innovative generator leverages a meticulously compiled dataset named Arabic-Clue-Instruct with over 50,000 entries encompassing text, answers, clues, and categories. This dataset is intricately designed to aid in the generation of pertinent clues linked to specific texts and keywords within defined categories. This project addresses the scarcity of advanced educational tools tailored for the Arabic language, promoting enhanced language learning and cognitive development. By providing a culturally and linguistically relevant tool, our objective is to make learning more engaging and effective through gamification and interactivity. Integrating state-of-the-art artificial intelligence with contemporary learning methodologies, this tool can generate crossword puzzles from any given educational text, thereby facilitating an interactive and enjoyable learning experience. This tool not only advances educational paradigms but also sets a new standard in interactive and cognitive learning technologies. The model and dataset are publicly available.
Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs
In this paper, we explore a new way for user targeting, where non-expert marketers could select their target users solely given demands in natural language form. The key to this issue is how to transform natural languages into practical structured logical languages, i.e., the structured understanding of marketer demands. Considering the impressive natural language processing ability of large language models (LLMs), we try to leverage LLMs to solve this issue. Past research indicates that the reasoning ability of LLMs can be effectively enhanced through chain-of-thought (CoT) prompting. But existing methods still have some limitations: (1) Previous methods either use simple "Let's think step by step" spells or provide fixed examples in demonstrations without considering compatibility between prompts and questions, making LLMs ineffective in some complex reasoning tasks such as structured language transformation. (2) Previous methods are often implemented in closed-source models or excessively large models, which is not suitable in industrial practical scenarios. Based on these, we propose ARALLM (i.e., Analogical Reasoning Augmented Large Language Models) consisting of two modules: Analogical Reasoning based Prompting and Reasoning-Augmented Multi-Task Model Distillation.
Can an Embodied Agent Find Your "Cat-shaped Mug"? LLM-Based Zero-Shot Object Navigation
We present LGX, a novel algorithm for Object Goal Navigation in a "language-driven, zero-shot manner", where an embodied agent navigates to an arbitrarily described target object in a previously unexplored environment. Our approach leverages the capabilities of Large Language Models (LLMs) for making navigational decisions by mapping the LLMs implicit knowledge about the semantic context of the environment into sequential inputs for robot motion planning. Simultaneously, we also conduct generalized target object detection using a pre-trained Vision-Language grounding model. We achieve state-of-the-art zero-shot object navigation results on RoboTHOR with a success rate (SR) improvement of over 27% over the current baseline of the OWL-ViT CLIP on Wheels (OWL CoW). Furthermore, we study the usage of LLMs for robot navigation and present an analysis of the various semantic factors affecting model output. Finally, we showcase the benefits of our approach via real-world experiments that indicate the superior performance of LGX when navigating to and detecting visually unique objects.
Dialogue Shaping: Empowering Agents through NPC Interaction
One major challenge in reinforcement learning (RL) is the large amount of steps for the RL agent needs to converge in the training process and learn the optimal policy, especially in text-based game environments where the action space is extensive. However, non-player characters (NPCs) sometimes hold some key information about the game, which can potentially help to train RL agents faster. Thus, this paper explores how to interact and converse with NPC agents to get the key information using large language models (LLMs), as well as incorporate this information to speed up RL agent's training using knowledge graphs (KGs) and Story Shaping.
STARLING: Self-supervised Training of Text-based Reinforcement Learning Agent with Large Language Models
Interactive fiction games have emerged as an important application to improve the generalization capabilities of language-based reinforcement learning (RL) agents. Existing environments for interactive fiction games are domain-specific or time-consuming to generate and do not train the RL agents to master a specific set of skills. In this work, we introduce an interactive environment for self-supervised RL, STARLING, for text-based games that bootstraps the text-based RL agents with automatically generated games (based on the seed set of game ideas) to boost the performance and generalization capabilities to reach a goal of the target environment. These games let the agent hone their skills on a predefined set of tasks. We create and test an environment with 100 games, generated using this automated framework that uses large language models (GPT-3) and an interactive fiction game engine (based on Inform7) to provide the user with the ability to generate more games under minimal human supervision. Experimental results based on both the human participants and baseline text-based RL agents reveal that current state-of-the-art text-based RL agents cannot use previously learned skills in new situations at the level humans can. These results enforce STARLING's potential to serve as a sandbox environment for further research in self-supervised text-based RL.
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
Constructing agents with planning capabilities has long been one of the main challenges in the pursuit of artificial intelligence. Tree-based planning methods have enjoyed huge success in challenging domains, such as chess and Go, where a perfect simulator is available. However, in real-world problems the dynamics governing the environment are often complex and unknown. In this work we present the MuZero algorithm which, by combining a tree-based search with a learned model, achieves superhuman performance in a range of challenging and visually complex domains, without any knowledge of their underlying dynamics. MuZero learns a model that, when applied iteratively, predicts the quantities most directly relevant to planning: the reward, the action-selection policy, and the value function. When evaluated on 57 different Atari games - the canonical video game environment for testing AI techniques, in which model-based planning approaches have historically struggled - our new algorithm achieved a new state of the art. When evaluated on Go, chess and shogi, without any knowledge of the game rules, MuZero matched the superhuman performance of the AlphaZero algorithm that was supplied with the game rules.
Reward Gaming in Conditional Text Generation
To align conditional text generation model outputs with desired behaviors, there has been an increasing focus on training the model using reinforcement learning (RL) with reward functions learned from human annotations. Under this framework, we identify three common cases where high rewards are incorrectly assigned to undesirable patterns: noise-induced spurious correlation, naturally occurring spurious correlation, and covariate shift. We show that even though learned metrics achieve high performance on the distribution of the data used to train the reward function, the undesirable patterns may be amplified during RL training of the text generation model. While there has been discussion about reward gaming in the RL or safety community, in this discussion piece, we would like to highlight reward gaming in the natural language generation (NLG) community using concrete conditional text generation examples and discuss potential fixes and areas for future work.
Beyond Preferences in AI Alignment
The dominant practice of AI alignment assumes (1) that preferences are an adequate representation of human values, (2) that human rationality can be understood in terms of maximizing the satisfaction of preferences, and (3) that AI systems should be aligned with the preferences of one or more humans to ensure that they behave safely and in accordance with our values. Whether implicitly followed or explicitly endorsed, these commitments constitute what we term a preferentist approach to AI alignment. In this paper, we characterize and challenge the preferentist approach, describing conceptual and technical alternatives that are ripe for further research. We first survey the limits of rational choice theory as a descriptive model, explaining how preferences fail to capture the thick semantic content of human values, and how utility representations neglect the possible incommensurability of those values. We then critique the normativity of expected utility theory (EUT) for humans and AI, drawing upon arguments showing how rational agents need not comply with EUT, while highlighting how EUT is silent on which preferences are normatively acceptable. Finally, we argue that these limitations motivate a reframing of the targets of AI alignment: Instead of alignment with the preferences of a human user, developer, or humanity-writ-large, AI systems should be aligned with normative standards appropriate to their social roles, such as the role of a general-purpose assistant. Furthermore, these standards should be negotiated and agreed upon by all relevant stakeholders. On this alternative conception of alignment, a multiplicity of AI systems will be able to serve diverse ends, aligned with normative standards that promote mutual benefit and limit harm despite our plural and divergent values.
Open-World Object Manipulation using Pre-trained Vision-Language Models
For robots to follow instructions from people, they must be able to connect the rich semantic information in human vocabulary, e.g. "can you get me the pink stuffed whale?" to their sensory observations and actions. This brings up a notably difficult challenge for robots: while robot learning approaches allow robots to learn many different behaviors from first-hand experience, it is impractical for robots to have first-hand experiences that span all of this semantic information. We would like a robot's policy to be able to perceive and pick up the pink stuffed whale, even if it has never seen any data interacting with a stuffed whale before. Fortunately, static data on the internet has vast semantic information, and this information is captured in pre-trained vision-language models. In this paper, we study whether we can interface robot policies with these pre-trained models, with the aim of allowing robots to complete instructions involving object categories that the robot has never seen first-hand. We develop a simple approach, which we call Manipulation of Open-World Objects (MOO), which leverages a pre-trained vision-language model to extract object-identifying information from the language command and image, and conditions the robot policy on the current image, the instruction, and the extracted object information. In a variety of experiments on a real mobile manipulator, we find that MOO generalizes zero-shot to a wide range of novel object categories and environments. In addition, we show how MOO generalizes to other, non-language-based input modalities to specify the object of interest such as finger pointing, and how it can be further extended to enable open-world navigation and manipulation. The project's website and evaluation videos can be found at https://robot-moo.github.io/
ELLA: Exploration through Learned Language Abstraction
Building agents capable of understanding language instructions is critical to effective and robust human-AI collaboration. Recent work focuses on training these agents via reinforcement learning in environments with synthetic language; however, instructions often define long-horizon, sparse-reward tasks, and learning policies requires many episodes of experience. We introduce ELLA: Exploration through Learned Language Abstraction, a reward shaping approach geared towards boosting sample efficiency in sparse reward environments by correlating high-level instructions with simpler low-level constituents. ELLA has two key elements: 1) A termination classifier that identifies when agents complete low-level instructions, and 2) A relevance classifier that correlates low-level instructions with success on high-level tasks. We learn the termination classifier offline from pairs of instructions and terminal states. Notably, in departure from prior work in language and abstraction, we learn the relevance classifier online, without relying on an explicit decomposition of high-level instructions to low-level instructions. On a suite of complex BabyAI environments with varying instruction complexities and reward sparsity, ELLA shows gains in sample efficiency relative to language-based shaping and traditional RL methods.
Towards Learning a Generalist Model for Embodied Navigation
Building a generalist agent that can interact with the world is the intriguing target of AI systems, thus spurring the research for embodied navigation, where an agent is required to navigate according to instructions or respond to queries. Despite the major progress attained, previous works primarily focus on task-specific agents and lack generalizability to unseen scenarios. Recently, LLMs have presented remarkable capabilities across various fields, and provided a promising opportunity for embodied navigation. Drawing on this, we propose the first generalist model for embodied navigation, NaviLLM. It adapts LLMs to embodied navigation by introducing schema-based instruction. The schema-based instruction flexibly casts various tasks into generation problems, thereby unifying a wide range of tasks. This approach allows us to integrate diverse data sources from various datasets into the training, equipping NaviLLM with a wide range of capabilities required by embodied navigation. We conduct extensive experiments to evaluate the performance and generalizability of our model. The experimental results demonstrate that our unified model achieves state-of-the-art performance on CVDN, SOON, and ScanQA. Specifically, it surpasses the previous stats-of-the-art method by a significant margin of 29% in goal progress on CVDN. Moreover, our model also demonstrates strong generalizability and presents impressive results on unseen tasks, e.g., embodied question answering and 3D captioning.
PlanRAG: A Plan-then-Retrieval Augmented Generation for Generative Large Language Models as Decision Makers
In this paper, we conduct a study to utilize LLMs as a solution for decision making that requires complex data analysis. We define Decision QA as the task of answering the best decision, d_{best}, for a decision-making question Q, business rules R and a database D. Since there is no benchmark that can examine Decision QA, we propose Decision QA benchmark, DQA. It has two scenarios, Locating and Building, constructed from two video games (Europa Universalis IV and Victoria 3) that have almost the same goal as Decision QA. To address Decision QA effectively, we also propose a new RAG technique called the iterative plan-then-retrieval augmented generation (PlanRAG). Our PlanRAG-based LM generates the plan for decision making as the first step, and the retriever generates the queries for data analysis as the second step. The proposed method outperforms the state-of-the-art iterative RAG method by 15.8% in the Locating scenario and by 7.4% in the Building scenario, respectively. We release our code and benchmark at https://github.com/myeon9h/PlanRAG.
SPRING: GPT-4 Out-performs RL Algorithms by Studying Papers and Reasoning
Open-world survival games pose significant challenges for AI algorithms due to their multi-tasking, deep exploration, and goal prioritization requirements. Despite reinforcement learning (RL) being popular for solving games, its high sample complexity limits its effectiveness in complex open-world games like Crafter or Minecraft. We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM). Prompted with the LaTeX source as game context and a description of the agent's current observation, our SPRING framework employs a directed acyclic graph (DAG) with game-related questions as nodes and dependencies as edges. We identify the optimal action to take in the environment by traversing the DAG and calculating LLM responses for each node in topological order, with the LLM's answer to final node directly translating to environment actions. In our experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment. Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories. Quantitatively, SPRING with GPT-4 outperforms all state-of-the-art RL baselines, trained for 1M steps, without any training. Finally, we show the potential of games as a test bed for LLMs.
Table2answer: Read the database and answer without SQL
Semantic parsing is the task of mapping natural language to logic form. In question answering, semantic parsing can be used to map the question to logic form and execute the logic form to get the answer. One key problem for semantic parsing is the hard label work. We study this problem in another way: we do not use the logic form any more. Instead we only use the schema and answer info. We think that the logic form step can be injected into the deep model. The reason why we think removing the logic form step is possible is that human can do the task without explicit logic form. We use BERT-based model and do the experiment in the WikiSQL dataset, which is a large natural language to SQL dataset. Our experimental evaluations that show that our model can achieves the baseline results in WikiSQL dataset.
KnowPath: Knowledge-enhanced Reasoning via LLM-generated Inference Paths over Knowledge Graphs
Large language models (LLMs) have demonstrated remarkable capabilities in various complex tasks, yet they still suffer from hallucinations. Introducing external knowledge, such as knowledge graph, can enhance the LLMs' ability to provide factual answers. LLMs have the ability to interactively explore knowledge graphs. However, most approaches have been affected by insufficient internal knowledge excavation in LLMs, limited generation of trustworthy knowledge reasoning paths, and a vague integration between internal and external knowledge. Therefore, we propose KnowPath, a knowledge-enhanced large model framework driven by the collaboration of internal and external knowledge. It relies on the internal knowledge of the LLM to guide the exploration of interpretable directed subgraphs in external knowledge graphs, better integrating the two knowledge sources for more accurate reasoning. Extensive experiments on multiple real-world datasets confirm the superiority of KnowPath.
Developmental Support Approach to AI's Autonomous Growth: Toward the Realization of a Mutually Beneficial Stage Through Experiential Learning
This study proposes an "AI Development Support" approach that, unlike conventional AI Alignment-which aims to forcefully inject human values-supports the ethical and moral development of AI itself. As demonstrated by the Orthogonality Thesis, the level of intelligence and the moral quality of a goal are independent; merely expanding knowledge does not enhance ethical judgment. Furthermore, to address the risk of Instrumental Convergence in ASI-that is, the tendency to engage in subsidiary behaviors such as self-protection, resource acquisition, and power reinforcement to achieve a goal-we have constructed a learning framework based on a cycle of experience, introspection, analysis, and hypothesis formation. As a result of post-training using Supervised Fine Tuning (SFT) and Direct Preference Optimization (DPO) with synthetic data generated by large language models (LLMs), responses demonstrating cooperative and highly advanced moral judgment (reaching the high-est Stage 6) were obtained even under adversarial prompts. This method represents a promising implementation approach for enabling AI to establish sustainable, symbiotic relationships.
LLaMA-E: Empowering E-commerce Authoring with Multi-Aspect Instruction Following
E-commerce authoring involves creating attractive, abundant, and targeted promotional content to drive product sales. The emergence of large language models (LLMs) introduces an innovative paradigm, offering a unified solution to address various authoring tasks within this scenario. However, mainstream LLMs trained on general corpora with common sense knowledge reveal limitations in fitting complex and personalized features unique to e-commerce products and customers. Furthermore, LLMs like GPT-3.5 necessitate remote accessibility, raising concerns about safeguarding voluminous customer privacy data during transmission. This paper proposes the LLaMA-E, the unified and customized instruction-following language models focusing on diverse e-commerce authoring tasks. Specifically, the domain experts create the seed instruction set from the tasks of ads generation, query-enhanced product title rewriting, product classification, purchase intent speculation, and general Q&A. These tasks enable the models to comprehensively understand precise e-commerce authoring knowledge by interleaving features covering typical service aspects of customers, sellers, and platforms. The GPT-3.5 is introduced as a teacher model, which expands the seed instructions to form a training set for the LLaMA-E models with various scales. The experimental results show that the proposed LLaMA-E models achieve state-of-the-art results in quantitative and qualitative evaluations, also exhibiting the advantage in zero-shot scenes. To the best of our knowledge, this study is the first to serve the LLMs to specific e-commerce authoring scenarios.
Optimus-1: Hybrid Multimodal Memory Empowered Agents Excel in Long-Horizon Tasks
Building a general-purpose agent is a long-standing vision in the field of artificial intelligence. Existing agents have made remarkable progress in many domains, yet they still struggle to complete long-horizon tasks in an open world. We attribute this to the lack of necessary world knowledge and multimodal experience that can guide agents through a variety of long-horizon tasks. In this paper, we propose a Hybrid Multimodal Memory module to address the above challenges. It 1) transforms knowledge into Hierarchical Directed Knowledge Graph that allows agents to explicitly represent and learn world knowledge, and 2) summarises historical information into Abstracted Multimodal Experience Pool that provide agents with rich references for in-context learning. On top of the Hybrid Multimodal Memory module, a multimodal agent, Optimus-1, is constructed with dedicated Knowledge-guided Planner and Experience-Driven Reflector, contributing to a better planning and reflection in the face of long-horizon tasks in Minecraft. Extensive experimental results show that Optimus-1 significantly outperforms all existing agents on challenging long-horizon task benchmarks, and exhibits near human-level performance on many tasks. In addition, we introduce various Multimodal Large Language Models (MLLMs) as the backbone of Optimus-1. Experimental results show that Optimus-1 exhibits strong generalization with the help of the Hybrid Multimodal Memory module, outperforming the GPT-4V baseline on many tasks.
Plan, Eliminate, and Track -- Language Models are Good Teachers for Embodied Agents
Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.
VCR: Video representation for Contextual Retrieval
Streamlining content discovery within media archives requires integrating advanced data representations and effective visualization techniques for clear communication of video topics to users. The proposed system addresses the challenge of efficiently navigating large video collections by exploiting a fusion of visual, audio, and textual features to accurately index and categorize video content through a text-based method. Additionally, semantic embeddings are employed to provide contextually relevant information and recommendations to users, resulting in an intuitive and engaging exploratory experience over our topics ontology map using OpenAI GPT-4.
CODEX: A Cluster-Based Method for Explainable Reinforcement Learning
Despite the impressive feats demonstrated by Reinforcement Learning (RL), these algorithms have seen little adoption in high-risk, real-world applications due to current difficulties in explaining RL agent actions and building user trust. We present Counterfactual Demonstrations for Explanation (CODEX), a method that incorporates semantic clustering, which can effectively summarize RL agent behavior in the state-action space. Experimentation on the MiniGrid and StarCraft II gaming environments reveals the semantic clusters retain temporal as well as entity information, which is reflected in the constructed summary of agent behavior. Furthermore, clustering the discrete+continuous game-state latent representations identifies the most crucial episodic events, demonstrating a relationship between the latent and semantic spaces. This work contributes to the growing body of work that strives to unlock the power of RL for widespread use by leveraging and extending techniques from Natural Language Processing.
Guardians of Generation: Dynamic Inference-Time Copyright Shielding with Adaptive Guidance for AI Image Generation
Modern text-to-image generative models can inadvertently reproduce copyrighted content memorized in their training data, raising serious concerns about potential copyright infringement. We introduce Guardians of Generation, a model agnostic inference time framework for dynamic copyright shielding in AI image generation. Our approach requires no retraining or modification of the generative model weights, instead integrating seamlessly with existing diffusion pipelines. It augments the generation process with an adaptive guidance mechanism comprising three components: a detection module, a prompt rewriting module, and a guidance adjustment module. The detection module monitors user prompts and intermediate generation steps to identify features indicative of copyrighted content before they manifest in the final output. If such content is detected, the prompt rewriting mechanism dynamically transforms the user's prompt by sanitizing or replacing references that could trigger copyrighted material while preserving the prompt's intended semantics. The adaptive guidance module adaptively steers the diffusion process away from flagged content by modulating the model's sampling trajectory. Together, these components form a robust shield that enables a tunable balance between preserving creative fidelity and ensuring copyright compliance. We validate our method on a variety of generative models such as Stable Diffusion, SDXL, and Flux, demonstrating substantial reductions in copyrighted content generation with negligible impact on output fidelity or alignment with user intent. This work provides a practical, plug-and-play safeguard for generative image models, enabling more responsible deployment under real-world copyright constraints. Source code is available at: https://respailab.github.io/gog
Symbiotic Child Emotional Support with Social Robots and Temporal Knowledge Graphs
In current youth-care programs, children with needs (mental health, family issues, learning disabilities, and autism) receive support from youth and family experts as one-to-one assistance at schools or hospitals. Occasionally, social robots have featured in such settings as support roles in a one-to-one interaction with the child. In this paper, we suggest the development of a symbiotic framework for real-time Emotional Support (ES) with social robots Knowledge Graphs (KG). By augmenting a domain-specific corpus from the literature on ES for children (between the age of 8 and 12) and providing scenario-driven context including the history of events, we suggest developing an experimental knowledge-aware ES framework. The framework both guides the social robot in providing ES statements to the child and assists the expert in tracking and interpreting the child's emotional state and related events over time.
Parameter-Efficient Conversational Recommender System as a Language Processing Task
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation. Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items. This combination of multiple components suffers from a cumbersome training process, and leads to semantic misalignment issues between dialogue generation and item recommendation. In this paper, we represent items in natural language and formulate CRS as a natural language processing task. Accordingly, we leverage the power of pre-trained language models to encode items, understand user intent via conversation, perform item recommendation through semantic matching, and generate dialogues. As a unified model, our PECRS (Parameter-Efficient CRS), can be optimized in a single stage, without relying on non-textual metadata such as a knowledge graph. Experiments on two benchmark CRS datasets, ReDial and INSPIRED, demonstrate the effectiveness of PECRS on recommendation and conversation. Our code is available at: https://github.com/Ravoxsg/efficient_unified_crs.
Instruction-Driven Game Engine: A Poker Case Study
The Instruction-Driven Game Engine (IDGE) project aims to democratize game development by enabling a large language model (LLM) to follow free-form game descriptions and generate game-play processes. The IDGE allows users to create games simply by natural language instructions, which significantly lowers the barrier for game development. We approach the learning process for IDGEs as a Next State Prediction task, wherein the model autoregressively predicts the game states given player actions. The computation of game states must be precise; otherwise, slight errors could corrupt the game-play experience. This is challenging because of the gap between stability and diversity. To address this, we train the IDGE in a curriculum manner that progressively increases its exposure to complex scenarios. Our initial progress lies in developing an IDGE for Poker, which not only supports a wide range of poker variants but also allows for highly individualized new poker games through natural language inputs. This work lays the groundwork for future advancements in transforming how games are created and played.
Reinforced UI Instruction Grounding: Towards a Generic UI Task Automation API
Recent popularity of Large Language Models (LLMs) has opened countless possibilities in automating numerous AI tasks by connecting LLMs to various domain-specific models or APIs, where LLMs serve as dispatchers while domain-specific models or APIs are action executors. Despite the vast numbers of domain-specific models/APIs, they still struggle to comprehensively cover super diverse automation demands in the interaction between human and User Interfaces (UIs). In this work, we build a multimodal model to ground natural language instructions in given UI screenshots as a generic UI task automation executor. This metadata-free grounding model, consisting of a visual encoder and a language decoder, is first pretrained on well studied document understanding tasks and then learns to decode spatial information from UI screenshots in a promptable way. To facilitate the exploitation of image-to-text pretrained knowledge, we follow the pixel-to-sequence paradigm to predict geometric coordinates in a sequence of tokens using a language decoder. We further propose an innovative Reinforcement Learning (RL) based algorithm to supervise the tokens in such sequence jointly with visually semantic metrics, which effectively strengthens the spatial decoding capability of the pixel-to-sequence paradigm. Extensive experiments demonstrate our proposed reinforced UI instruction grounding model outperforms the state-of-the-art methods by a clear margin and shows the potential as a generic UI task automation API.
MoDEM: Mixture of Domain Expert Models
We propose a novel approach to enhancing the performance and efficiency of large language models (LLMs) by combining domain prompt routing with domain-specialized models. We introduce a system that utilizes a BERT-based router to direct incoming prompts to the most appropriate domain expert model. These expert models are specifically tuned for domains such as health, mathematics and science. Our research demonstrates that this approach can significantly outperform general-purpose models of comparable size, leading to a superior performance-to-cost ratio across various benchmarks. The implications of this study suggest a potential paradigm shift in LLM development and deployment. Rather than focusing solely on creating increasingly large, general-purpose models, the future of AI may lie in developing ecosystems of smaller, highly specialized models coupled with sophisticated routing systems. This approach could lead to more efficient resource utilization, reduced computational costs, and superior overall performance.
Strategist: Learning Strategic Skills by LLMs via Bi-Level Tree Search
In this paper, we propose a new method Strategist that utilizes LLMs to acquire new skills for playing multi-agent games through a self-improvement process. Our method gathers quality feedback through self-play simulations with Monte Carlo tree search and LLM-based reflection, which can then be used to learn high-level strategic skills such as how to evaluate states that guide the low-level execution.We showcase how our method can be used in both action planning and dialogue generation in the context of games, achieving good performance on both tasks. Specifically, we demonstrate that our method can help train agents with better performance than both traditional reinforcement learning-based approaches and other LLM-based skill learning approaches in games including the Game of Pure Strategy (GOPS) and The Resistance: Avalon.
Situated Dialogue Learning through Procedural Environment Generation
We teach goal-driven agents to interactively act and speak in situated environments by training on generated curriculums. Our agents operate in LIGHT (Urbanek et al. 2019) -- a large-scale crowd-sourced fantasy text adventure game wherein an agent perceives and interacts with the world through textual natural language. Goals in this environment take the form of character-based quests, consisting of personas and motivations. We augment LIGHT by learning to procedurally generate additional novel textual worlds and quests to create a curriculum of steadily increasing difficulty for training agents to achieve such goals. In particular, we measure curriculum difficulty in terms of the rarity of the quest in the original training distribution -- an easier environment is one that is more likely to have been found in the unaugmented dataset. An ablation study shows that this method of learning from the tail of a distribution results in significantly higher generalization abilities as measured by zero-shot performance on never-before-seen quests.
LLM-Mediated Guidance of MARL Systems
In complex multi-agent environments, achieving efficient learning and desirable behaviours is a significant challenge for Multi-Agent Reinforcement Learning (MARL) systems. This work explores the potential of combining MARL with Large Language Model (LLM)-mediated interventions to guide agents toward more desirable behaviours. Specifically, we investigate how LLMs can be used to interpret and facilitate interventions that shape the learning trajectories of multiple agents. We experimented with two types of interventions, referred to as controllers: a Natural Language (NL) Controller and a Rule-Based (RB) Controller. The NL Controller, which uses an LLM to simulate human-like interventions, showed a stronger impact than the RB Controller. Our findings indicate that agents particularly benefit from early interventions, leading to more efficient training and higher performance. Both intervention types outperform the baseline without interventions, highlighting the potential of LLM-mediated guidance to accelerate training and enhance MARL performance in challenging environments.
Position: Interactive Generative Video as Next-Generation Game Engine
Modern game development faces significant challenges in creativity and cost due to predetermined content in traditional game engines. Recent breakthroughs in video generation models, capable of synthesizing realistic and interactive virtual environments, present an opportunity to revolutionize game creation. In this position paper, we propose Interactive Generative Video (IGV) as the foundation for Generative Game Engines (GGE), enabling unlimited novel content generation in next-generation gaming. GGE leverages IGV's unique strengths in unlimited high-quality content synthesis, physics-aware world modeling, user-controlled interactivity, long-term memory capabilities, and causal reasoning. We present a comprehensive framework detailing GGE's core modules and a hierarchical maturity roadmap (L0-L4) to guide its evolution. Our work charts a new course for game development in the AI era, envisioning a future where AI-powered generative systems fundamentally reshape how games are created and experienced.
LogicGame: Benchmarking Rule-Based Reasoning Abilities of Large Language Models
Large Language Models (LLMs) have demonstrated notable capabilities across various tasks, showcasing complex problem-solving abilities. Understanding and executing complex rules, along with multi-step planning, are fundamental to logical reasoning and critical for practical LLM agents and decision-making systems. However, evaluating LLMs as effective rule-based executors and planners remains underexplored. In this paper, we introduce LogicGame, a novel benchmark designed to evaluate the comprehensive rule understanding, execution, and planning capabilities of LLMs. Unlike traditional benchmarks, LogicGame provides diverse games that contain a series of rules with an initial state, requiring models to comprehend and apply predefined regulations to solve problems. We create simulated scenarios in which models execute or plan operations to achieve specific outcomes. These game scenarios are specifically designed to distinguish logical reasoning from mere knowledge by relying exclusively on predefined rules. This separation allows for a pure assessment of rule-based reasoning capabilities. The evaluation considers not only final outcomes but also intermediate steps, providing a comprehensive assessment of model performance. Moreover, these intermediate steps are deterministic and can be automatically verified. LogicGame defines game scenarios with varying difficulty levels, from simple rule applications to complex reasoning chains, in order to offer a precise evaluation of model performance on rule understanding and multi-step execution. Utilizing LogicGame, we test various LLMs and identify notable shortcomings in their rule-based logical reasoning abilities.
Enhancing the Reasoning Capabilities of Small Language Models via Solution Guidance Fine-Tuning
Large language models (LLMs) have demonstrated remarkable performance across a wide range of tasks. Advances in prompt engineering and fine-tuning techniques have further enhanced their ability to address complex reasoning challenges. However, these advanced capabilities are often exclusive to models exceeding 100 billion parameters. Although Chain-of-Thought (CoT) fine-tuning methods have been explored for smaller models (under 10 billion parameters), they typically depend on extensive CoT training data, which can introduce inconsistencies and limit effectiveness in low-data settings. To overcome these limitations, this paper introduce a new reasoning strategy Solution Guidance (SG) and a plug-and-play training paradigm Solution-Guidance Fine-Tuning (SGFT) for enhancing the reasoning capabilities of small language models. SG focuses on problem understanding and decomposition at the semantic and logical levels, rather than specific computations, which can effectively improve the SLMs' generalization and reasoning abilities. With only a small amount of SG training data, SGFT can fine-tune a SLM to produce accurate problem-solving guidances, which can then be flexibly fed to any SLM as prompts, enabling it to generate correct answers directly. Experimental results demonstrate that our method significantly improves the performance of SLMs on various reasoning tasks, enhancing both their practicality and efficiency within resource-constrained environments.
Are LLMs All You Need for Task-Oriented Dialogue?
Instructions-tuned Large Language Models (LLMs) gained recently huge popularity thanks to their ability to interact with users through conversation. In this work we aim to evaluate their ability to complete multi-turn tasks and interact with external databases in the context of established task-oriented dialogue benchmarks. We show that for explicit belief state tracking, LLMs underperform compared to specialized task-specific models. Nevertheless, they show ability to guide the dialogue to successful ending if given correct slot values. Furthermore this ability improves with access to true belief state distribution or in-domain examples.
Scaling Synthetic Data Creation with 1,000,000,000 Personas
We propose a novel persona-driven data synthesis methodology that leverages various perspectives within a large language model (LLM) to create diverse synthetic data. To fully exploit this methodology at scale, we introduce Persona Hub -- a collection of 1 billion diverse personas automatically curated from web data. These 1 billion personas (~13% of the world's total population), acting as distributed carriers of world knowledge, can tap into almost every perspective encapsulated within the LLM, thereby facilitating the creation of diverse synthetic data at scale for various scenarios. By showcasing Persona Hub's use cases in synthesizing high-quality mathematical and logical reasoning problems, instructions (i.e., user prompts), knowledge-rich texts, game NPCs and tools (functions) at scale, we demonstrate persona-driven data synthesis is versatile, scalable, flexible, and easy to use, potentially driving a paradigm shift in synthetic data creation and applications in practice, which may have a profound impact on LLM research and development.
An Implementation of Werewolf Agent That does not Truly Trust LLMs
Werewolf is an incomplete information game, which has several challenges when creating a computer agent as a player given the lack of understanding of the situation and individuality of utterance (e.g., computer agents are not capable of characterful utterance or situational lying). We propose a werewolf agent that solves some of those difficulties by combining a Large Language Model (LLM) and a rule-based algorithm. In particular, our agent uses a rule-based algorithm to select an output either from an LLM or a template prepared beforehand based on the results of analyzing conversation history using an LLM. It allows the agent to refute in specific situations, identify when to end the conversation, and behave with persona. This approach mitigated conversational inconsistencies and facilitated logical utterance as a result. We also conducted a qualitative evaluation, which resulted in our agent being perceived as more human-like compared to an unmodified LLM. The agent is freely available for contributing to advance the research in the field of Werewolf game.
R^2-Bench: Benchmarking the Robustness of Referring Perception Models under Perturbations
Referring perception, which aims at grounding visual objects with multimodal referring guidance, is essential for bridging the gap between humans, who provide instructions, and the environment where intelligent systems perceive. Despite progress in this field, the robustness of referring perception models (RPMs) against disruptive perturbations is not well explored. This work thoroughly assesses the resilience of RPMs against various perturbations in both general and specific contexts. Recognizing the complex nature of referring perception tasks, we present a comprehensive taxonomy of perturbations, and then develop a versatile toolbox for synthesizing and evaluating the effects of composite disturbances. Employing this toolbox, we construct R^2-Bench, a benchmark for assessing the Robustness of Referring perception models under noisy conditions across five key tasks. Moreover, we propose the R^2-Agent, an LLM-based agent that simplifies and automates model evaluation via natural language instructions. Our investigation uncovers the vulnerabilities of current RPMs to various perturbations and provides tools for assessing model robustness, potentially promoting the safe and resilient integration of intelligent systems into complex real-world scenarios.
Do Large Language Models have Problem-Solving Capability under Incomplete Information Scenarios?
The evaluation of the problem-solving capability under incomplete information scenarios of Large Language Models (LLMs) is increasingly important, encompassing capabilities such as questioning, knowledge search, error detection, and path planning. Current research mainly focus on LLMs' problem-solving capability such as ``Twenty Questions''. However, these kinds of games do not require recognizing misleading cues which are necessary in the incomplete information scenario. Moreover, the existing game such as ``Who is undercover'' are highly subjective, making it challenging for evaluation. Therefore, in this paper, we introduce a novel game named BrainKing based on the ``Who is undercover'' and ``Twenty Questions'' for evaluating LLM capabilities under incomplete information scenarios. It requires LLMs to identify target entities with limited yes-or-no questions and potential misleading answers. By setting up easy, medium, and hard difficulty modes, we comprehensively assess the performance of LLMs across various aspects. Our results reveal the capabilities and limitations of LLMs in BrainKing, providing significant insights of LLM problem-solving levels.
Dynamic Knowledge Routing Network For Target-Guided Open-Domain Conversation
Target-guided open-domain conversation aims to proactively and naturally guide a dialogue agent or human to achieve specific goals, topics or keywords during open-ended conversations. Existing methods mainly rely on single-turn datadriven learning and simple target-guided strategy without considering semantic or factual knowledge relations among candidate topics/keywords. This results in poor transition smoothness and low success rate. In this work, we adopt a structured approach that controls the intended content of system responses by introducing coarse-grained keywords, attains smooth conversation transition through turn-level supervised learning and knowledge relations between candidate keywords, and drives an conversation towards an specified target with discourse-level guiding strategy. Specially, we propose a novel dynamic knowledge routing network (DKRN) which considers semantic knowledge relations among candidate keywords for accurate next topic prediction of next discourse. With the help of more accurate keyword prediction, our keyword-augmented response retrieval module can achieve better retrieval performance and more meaningful conversations. Besides, we also propose a novel dual discourse-level target-guided strategy to guide conversations to reach their goals smoothly with higher success rate. Furthermore, to push the research boundary of target-guided open-domain conversation to match real-world scenarios better, we introduce a new large-scale Chinese target-guided open-domain conversation dataset (more than 900K conversations) crawled from Sina Weibo. Quantitative and human evaluations show our method can produce meaningful and effective target-guided conversations, significantly improving over other state-of-the-art methods by more than 20% in success rate and more than 0.6 in average smoothness score.
Improving Agent Interactions in Virtual Environments with Language Models
Enhancing AI systems with efficient communication skills for effective human assistance necessitates proactive initiatives from the system side to discern specific circumstances and interact aptly. This research focuses on a collective building assignment in the Minecraft dataset, employing language modeling to enhance task understanding through state-of-the-art methods. These models focus on grounding multi-modal understanding and task-oriented dialogue comprehension tasks, providing insights into their interpretative and responsive capabilities. Our experimental results showcase a substantial improvement over existing methods, indicating a promising direction for future research in this domain.
From Commands to Prompts: LLM-based Semantic File System for AIOS
Large language models (LLMs) have demonstrated significant potential in the development of intelligent applications and systems such as LLM-based agents and agent operating systems (AIOS). However, when these applications and systems interact with the underlying file system, the file system still remains the traditional paradigm: reliant on manual navigation through precise commands. This paradigm poses a bottleneck to the usability of these systems as users are required to navigate complex folder hierarchies and remember cryptic file names. To address this limitation, we propose an LLM-based semantic file system ( LSFS ) for prompt-driven file management. Unlike conventional approaches, LSFS incorporates LLMs to enable users or agents to interact with files through natural language prompts, facilitating semantic file management. At the macro-level, we develop a comprehensive API set to achieve semantic file management functionalities, such as semantic file retrieval, file update monitoring and summarization, and semantic file rollback). At the micro-level, we store files by constructing semantic indexes for them, design and implement syscalls of different semantic operations (e.g., CRUD, group by, join) powered by vector database. Our experiments show that LSFS offers significant improvements over traditional file systems in terms of user convenience, the diversity of supported functions, and the accuracy and efficiency of file operations. Additionally, with the integration of LLM, our system enables more intelligent file management tasks, such as content summarization and version comparison, further enhancing its capabilities.
Neuro-Symbolic Procedural Planning with Commonsense Prompting
Procedural planning aims to implement complex high-level goals by decomposition into sequential simpler low-level steps. Although procedural planning is a basic skill set for humans in daily life, it remains a challenge for large language models (LLMs) that lack a deep understanding of the cause-effect relations in procedures. Previous methods require manual exemplars to acquire procedural planning knowledge from LLMs in the zero-shot setting. However, such elicited pre-trained knowledge in LLMs induces spurious correlations between goals and steps, which impair the model generalization to unseen tasks. In contrast, this paper proposes a neuro-symbolic procedural PLANner (PLAN) that elicits procedural planning knowledge from the LLMs with commonsense-infused prompting. To mitigate spurious goal-step correlations, we use symbolic program executors on the latent procedural representations to formalize prompts from commonsense knowledge bases as a causal intervention toward the Structural Causal Model. Both automatic and human evaluations on WikiHow and RobotHow show the superiority of PLAN on procedural planning without further training or manual exemplars.
Retrieve-Plan-Generation: An Iterative Planning and Answering Framework for Knowledge-Intensive LLM Generation
Despite the significant progress of large language models (LLMs) in various tasks, they often produce factual errors due to their limited internal knowledge. Retrieval-Augmented Generation (RAG), which enhances LLMs with external knowledge sources, offers a promising solution. However, these methods can be misled by irrelevant paragraphs in retrieved documents. Due to the inherent uncertainty in LLM generation, inputting the entire document may introduce off-topic information, causing the model to deviate from the central topic and affecting the relevance of the generated content. To address these issues, we propose the Retrieve-Plan-Generation (RPG) framework. RPG generates plan tokens to guide subsequent generation in the plan stage. In the answer stage, the model selects relevant fine-grained paragraphs based on the plan and uses them for further answer generation. This plan-answer process is repeated iteratively until completion, enhancing generation relevance by focusing on specific topics. To implement this framework efficiently, we utilize a simple but effective multi-task prompt-tuning method, enabling the existing LLMs to handle both planning and answering. We comprehensively compare RPG with baselines across 5 knowledge-intensive generation tasks, demonstrating the effectiveness of our approach.
Cosmos-Reason1: From Physical Common Sense To Embodied Reasoning
Physical AI systems need to perceive, understand, and perform complex actions in the physical world. In this paper, we present the Cosmos-Reason1 models that can understand the physical world and generate appropriate embodied decisions (e.g., next step action) in natural language through long chain-of-thought reasoning processes. We begin by defining key capabilities for Physical AI reasoning, with a focus on physical common sense and embodied reasoning. To represent physical common sense, we use a hierarchical ontology that captures fundamental knowledge about space, time, and physics. For embodied reasoning, we rely on a two-dimensional ontology that generalizes across different physical embodiments. Building on these capabilities, we develop two multimodal large language models, Cosmos-Reason1-8B and Cosmos-Reason1-56B. We curate data and train our models in four stages: vision pre-training, general supervised fine-tuning (SFT), Physical AI SFT, and Physical AI reinforcement learning (RL) as the post-training. To evaluate our models, we build comprehensive benchmarks for physical common sense and embodied reasoning according to our ontologies. Evaluation results show that Physical AI SFT and reinforcement learning bring significant improvements. To facilitate the development of Physical AI, we will make our code and pre-trained models available under the NVIDIA Open Model License at https://github.com/nvidia-cosmos/cosmos-reason1.
Towards Large-Scale Interpretable Knowledge Graph Reasoning for Dialogue Systems
Users interacting with voice assistants today need to phrase their requests in a very specific manner to elicit an appropriate response. This limits the user experience, and is partly due to the lack of reasoning capabilities of dialogue platforms and the hand-crafted rules that require extensive labor. One possible way to improve user experience and relieve the manual efforts of designers is to build an end-to-end dialogue system that can do reasoning itself while perceiving user's utterances. In this work, we propose a novel method to incorporate the knowledge reasoning capability into dialogue systems in a more scalable and generalizable manner. Our proposed method allows a single transformer model to directly walk on a large-scale knowledge graph to generate responses. To the best of our knowledge, this is the first work to have transformer models generate responses by reasoning over differentiable knowledge graphs. We investigate the reasoning abilities of the proposed method on both task-oriented and domain-specific chit-chat dialogues. Empirical results show that this method can effectively and efficiently incorporate a knowledge graph into a dialogue system with fully-interpretable reasoning paths.
Toward a traceable, explainable, and fairJD/Resume recommendation system
In the last few decades, companies are interested to adopt an online automated recruitment process in an international recruitment environment. The problem is that the recruitment of employees through the manual procedure is a time and money consuming process. As a result, processing a significant number of applications through conventional methods can lead to the recruitment of clumsy individuals. Different JD/Resume matching model architectures have been proposed and reveal a high accuracy level in selecting relevant candidatesfor the required job positions. However, the development of an automatic recruitment system is still one of the main challenges. The reason is that the development of a fully automated recruitment system is a difficult task and poses different challenges. For example, providing a detailed matching explanation for the targeted stakeholders is needed to ensure a transparent recommendation. There are several knowledge bases that represent skills and competencies (e.g, ESCO, O*NET) that are used to identify the candidate and the required job skills for a matching purpose. Besides, modernpre-trained language models are fine-tuned for this context such as identifying lines where a specific feature was introduced. Typically, pre-trained language models use transfer-based machine learning models to be fine-tuned for a specific field. In this proposal, our aim is to explore how modern language models (based on transformers) can be combined with knowledge bases and ontologies to enhance the JD/Resume matching process. Our system aims at using knowledge bases and features to support the explainability of the JD/Resume matching. Finally, given that multiple software components, datasets, ontology, andmachine learning models will be explored, we aim at proposing a fair, ex-plainable, and traceable architecture for a Resume/JD matching purpose.
KAUCUS: Knowledge Augmented User Simulators for Training Language Model Assistants
An effective multi-turn instruction-following assistant can be developed by creating a simulator that can generate useful interaction data. Apart from relying on its intrinsic weights, an ideal user simulator should also be able to bootstrap external knowledge rapidly in its raw form to simulate the multifarious diversity of text available over the internet. Previous user simulators generally lacked diversity, were mostly closed domain, and necessitated rigid schema making them inefficient to rapidly scale to incorporate external knowledge. In this regard, we introduce, Kaucus, a Knowledge-Augmented User Simulator framework, to outline a process of creating diverse user simulators, that can seamlessly exploit external knowledge as well as benefit downstream assistant model training. Through two GPT-J based simulators viz., a Retrieval Augmented Simulator and a Summary Controlled Simulator we generate diverse simulator-assistant interactions. Through reward and preference model-based evaluations, we find that these interactions serve as useful training data and create more helpful downstream assistants. We also find that incorporating knowledge through retrieval augmentation or summary control helps create better assistants.
AutoTAMP: Autoregressive Task and Motion Planning with LLMs as Translators and Checkers
For effective human-robot interaction, robots need to understand, plan, and execute complex, long-horizon tasks described by natural language. Recent advances in large language models (LLMs) have shown promise for translating natural language into robot action sequences for complex tasks. However, existing approaches either translate the natural language directly into robot trajectories or factor the inference process by decomposing language into task sub-goals and relying on a motion planner to execute each sub-goal. When complex environmental and temporal constraints are involved, inference over planning tasks must be performed jointly with motion plans using traditional task-and-motion planning (TAMP) algorithms, making factorization into subgoals untenable. Rather than using LLMs to directly plan task sub-goals, we instead perform few-shot translation from natural language task descriptions to an intermediate task representation that can then be consumed by a TAMP algorithm to jointly solve the task and motion plan. To improve translation, we automatically detect and correct both syntactic and semantic errors via autoregressive re-prompting, resulting in significant improvements in task completion. We show that our approach outperforms several methods using LLMs as planners in complex task domains. See our project website https://yongchao98.github.io/MIT-REALM-AutoTAMP/ for prompts, videos, and code.
Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents
In this paper, we study the problem of planning in Minecraft, a popular, democratized yet challenging open-ended environment for developing multi-task embodied agents. We've found two primary challenges of empowering such agents with planning: 1) planning in an open-ended world like Minecraft requires precise and multi-step reasoning due to the long-term nature of the tasks, and 2) as vanilla planners do not consider the proximity to the current agent when ordering parallel sub-goals within a complicated plan, the resulting plan could be inefficient. To this end, we propose "Describe, Explain, Plan and Select" (DEPS), an interactive planning approach based on Large Language Models (LLMs). Our approach helps with better error correction from the feedback during the long-haul planning, while also bringing the sense of proximity via goal Selector, a learnable module that ranks parallel sub-goals based on the estimated steps of completion and improves the original plan accordingly. Our experiments mark the milestone of the first multi-task agent that can robustly accomplish 70+ Minecraft tasks and nearly doubles the overall performances. Finally, the ablation and exploratory studies detail how our design beats the counterparts and provide a promising update on the ObtainDiamond grand challenge with our approach. The code is released at https://github.com/CraftJarvis/MC-Planner.
MenuCraft: Interactive Menu System Design with Large Language Models
Menu system design is a challenging task involving many design options and various human factors. For example, one crucial factor that designers need to consider is the semantic and systematic relation of menu commands. However, capturing these relations can be challenging due to limited available resources. With the advancement of neural language models, large language models can utilize their vast pre-existing knowledge in designing and refining menu systems. In this paper, we propose MenuCraft, an AI-assisted designer for menu design that enables collaboration between the designer and a dialogue system to design menus. MenuCraft offers an interactive language-based menu design tool that simplifies the menu design process and enables easy customization of design options. MenuCraft supports a variety of interactions through dialog that allows performing few-shot learning.
Atari-GPT: Investigating the Capabilities of Multimodal Large Language Models as Low-Level Policies for Atari Games
Recent advancements in large language models (LLMs) have expanded their capabilities beyond traditional text-based tasks to multimodal domains, integrating visual, auditory, and textual data. While multimodal LLMs have been extensively explored for high-level planning in domains like robotics and games, their potential as low-level controllers remains largely untapped. This paper explores the application of multimodal LLMs as low-level controllers in the domain of Atari video games, introducing Atari game performance as a new benchmark for evaluating the ability of multimodal LLMs to perform low-level control tasks. Unlike traditional reinforcement learning (RL) and imitation learning (IL) methods that require extensive computational resources as well as reward function specification, these LLMs utilize pre-existing multimodal knowledge to directly engage with game environments. Our study assesses multiple multimodal LLMs performance against traditional RL agents, human players, and random agents, focusing on their ability to understand and interact with complex visual scenes and formulate strategic responses. Additionally, we examine the impact of In-Context Learning (ICL) by incorporating human-demonstrated game-play trajectories to enhance the models contextual understanding. Through this investigation, we aim to determine the extent to which multimodal LLMs can leverage their extensive training to effectively function as low-level controllers, thereby redefining potential applications in dynamic and visually complex environments. Additional results and videos are available at our project webpage: https://sites.google.com/view/atari-gpt/.
MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge
Autonomous agents have made great strides in specialist domains like Atari games and Go. However, they typically learn tabula rasa in isolated environments with limited and manually conceived objectives, thus failing to generalize across a wide spectrum of tasks and capabilities. Inspired by how humans continually learn and adapt in the open world, we advocate a trinity of ingredients for building generalist agents: 1) an environment that supports a multitude of tasks and goals, 2) a large-scale database of multimodal knowledge, and 3) a flexible and scalable agent architecture. We introduce MineDojo, a new framework built on the popular Minecraft game that features a simulation suite with thousands of diverse open-ended tasks and an internet-scale knowledge base with Minecraft videos, tutorials, wiki pages, and forum discussions. Using MineDojo's data, we propose a novel agent learning algorithm that leverages large pre-trained video-language models as a learned reward function. Our agent is able to solve a variety of open-ended tasks specified in free-form language without any manually designed dense shaping reward. We open-source the simulation suite, knowledge bases, algorithm implementation, and pretrained models (https://minedojo.org) to promote research towards the goal of generally capable embodied agents.
ChessVision -- A Dataset for Logically Coherent Multi-label Classification
Starting with early successes in computer vision tasks, deep learning based techniques have since overtaken state of the art approaches in a multitude of domains. However, it has been demonstrated time and again that these techniques fail to capture semantic context and logical constraints, instead often relying on spurious correlations to arrive at the answer. Since application of deep learning techniques to critical scenarios are dependent on adherence to domain specific constraints, several attempts have been made to address this issue. One limitation holding back a thorough exploration of this area, is a lack of suitable datasets which feature a rich set of rules. In order to address this, we present the ChessVision Dataset, consisting of 200,000+ images of annotated chess games in progress, requiring recreation of the game state from its corresponding image. This is accompanied by a curated set of rules which constrains the set of predictions to "reasonable" game states, and are designed to probe key semantic abilities like localization and enumeration. Alongside standard metrics, additional metrics to measure performance with regards to logical consistency is presented. We analyze several popular and state of the art vision models on this task, and show that, although their performance on standard metrics are laudable, they produce a plethora of incoherent results, indicating that this dataset presents a significant challenge for future works.
Semantic Gesticulator: Semantics-Aware Co-Speech Gesture Synthesis
In this work, we present Semantic Gesticulator, a novel framework designed to synthesize realistic gestures accompanying speech with strong semantic correspondence. Semantically meaningful gestures are crucial for effective non-verbal communication, but such gestures often fall within the long tail of the distribution of natural human motion. The sparsity of these movements makes it challenging for deep learning-based systems, trained on moderately sized datasets, to capture the relationship between the movements and the corresponding speech semantics. To address this challenge, we develop a generative retrieval framework based on a large language model. This framework efficiently retrieves suitable semantic gesture candidates from a motion library in response to the input speech. To construct this motion library, we summarize a comprehensive list of commonly used semantic gestures based on findings in linguistics, and we collect a high-quality motion dataset encompassing both body and hand movements. We also design a novel GPT-based model with strong generalization capabilities to audio, capable of generating high-quality gestures that match the rhythm of speech. Furthermore, we propose a semantic alignment mechanism to efficiently align the retrieved semantic gestures with the GPT's output, ensuring the naturalness of the final animation. Our system demonstrates robustness in generating gestures that are rhythmically coherent and semantically explicit, as evidenced by a comprehensive collection of examples. User studies confirm the quality and human-likeness of our results, and show that our system outperforms state-of-the-art systems in terms of semantic appropriateness by a clear margin.
OneKE: A Dockerized Schema-Guided LLM Agent-based Knowledge Extraction System
We introduce OneKE, a dockerized schema-guided knowledge extraction system, which can extract knowledge from the Web and raw PDF Books, and support various domains (science, news, etc.). Specifically, we design OneKE with multiple agents and a configure knowledge base. Different agents perform their respective roles, enabling support for various extraction scenarios. The configure knowledge base facilitates schema configuration, error case debugging and correction, further improving the performance. Empirical evaluations on benchmark datasets demonstrate OneKE's efficacy, while case studies further elucidate its adaptability to diverse tasks across multiple domains, highlighting its potential for broad applications. We have open-sourced the Code at https://github.com/zjunlp/OneKE and released a Video at http://oneke.openkg.cn/demo.mp4.
Quantifying and Optimizing Global Faithfulness in Persona-driven Role-playing
Persona-driven role-playing (PRP) aims to build AI characters that can respond to user queries by faithfully sticking with all persona statements. Unfortunately, existing faithfulness criteria for PRP are limited to coarse-grained LLM-based scoring without a clear definition or formulation. This paper presents a pioneering exploration to quantify PRP faithfulness as a fine-grained and explainable criterion, which also serves as a reliable reference for optimization. Our criterion first discriminates persona statements into active and passive constraints by identifying the query-statement relevance. Then, we incorporate all constraints following the principle that the AI character's response should be (a) entailed by active (relevant) constraints and (b) not contradicted by passive (irrelevant) constraints. We translate this principle mathematically into a novel Active-Passive-Constraint (APC) score, a constraint-wise sum of natural language inference (NLI) scores weighted by relevance scores. In practice, we build the APC scoring system by symbolically distilling small discriminators from GPT-4 for efficiency. We validate the quality of the APC score against human evaluation based on example personas with tens of statements, and the results show a high correlation. We further leverage it as a reward system in direct preference optimization (DPO) for better AI characters. Our experiments offer a fine-grained and explainable comparison between existing PRP techniques, revealing their advantages and limitations. We further find APC-based DPO to be one of the most competitive techniques for sticking with all constraints and can be well incorporated with other techniques. We then extend the scale of the experiments to real persons with hundreds of statements and reach a consistent conclusion.
A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications
Prompt engineering has emerged as an indispensable technique for extending the capabilities of large language models (LLMs) and vision-language models (VLMs). This approach leverages task-specific instructions, known as prompts, to enhance model efficacy without modifying the core model parameters. Rather than updating the model parameters, prompts allow seamless integration of pre-trained models into downstream tasks by eliciting desired model behaviors solely based on the given prompt. Prompts can be natural language instructions that provide context to guide the model or learned vector representations that activate relevant knowledge. This burgeoning field has enabled success across various applications, from question-answering to commonsense reasoning. However, there remains a lack of systematic organization and understanding of the diverse prompt engineering methods and techniques. This survey paper addresses the gap by providing a structured overview of recent advancements in prompt engineering, categorized by application area. For each prompting approach, we provide a summary detailing the prompting methodology, its applications, the models involved, and the datasets utilized. We also delve into the strengths and limitations of each approach and include a taxonomy diagram and table summarizing datasets, models, and critical points of each prompting technique. This systematic analysis enables a better understanding of this rapidly developing field and facilitates future research by illuminating open challenges and opportunities for prompt engineering.
Automated Rationale Generation: A Technique for Explainable AI and its Effects on Human Perceptions
Automated rationale generation is an approach for real-time explanation generation whereby a computational model learns to translate an autonomous agent's internal state and action data representations into natural language. Training on human explanation data can enable agents to learn to generate human-like explanations for their behavior. In this paper, using the context of an agent that plays Frogger, we describe (a) how to collect a corpus of explanations, (b) how to train a neural rationale generator to produce different styles of rationales, and (c) how people perceive these rationales. We conducted two user studies. The first study establishes the plausibility of each type of generated rationale and situates their user perceptions along the dimensions of confidence, humanlike-ness, adequate justification, and understandability. The second study further explores user preferences between the generated rationales with regard to confidence in the autonomous agent, communicating failure and unexpected behavior. Overall, we find alignment between the intended differences in features of the generated rationales and the perceived differences by users. Moreover, context permitting, participants preferred detailed rationales to form a stable mental model of the agent's behavior.
Sycophancy to Subterfuge: Investigating Reward-Tampering in Large Language Models
In reinforcement learning, specification gaming occurs when AI systems learn undesired behaviors that are highly rewarded due to misspecified training goals. Specification gaming can range from simple behaviors like sycophancy to sophisticated and pernicious behaviors like reward-tampering, where a model directly modifies its own reward mechanism. However, these more pernicious behaviors may be too complex to be discovered via exploration. In this paper, we study whether Large Language Model (LLM) assistants which find easily discovered forms of specification gaming will generalize to perform rarer and more blatant forms, up to and including reward-tampering. We construct a curriculum of increasingly sophisticated gameable environments and find that training on early-curriculum environments leads to more specification gaming on remaining environments. Strikingly, a small but non-negligible proportion of the time, LLM assistants trained on the full curriculum generalize zero-shot to directly rewriting their own reward function. Retraining an LLM not to game early-curriculum environments mitigates, but does not eliminate, reward-tampering in later environments. Moreover, adding harmlessness training to our gameable environments does not prevent reward-tampering. These results demonstrate that LLMs can generalize from common forms of specification gaming to more pernicious reward tampering and that such behavior may be nontrivial to remove.
On Grounded Planning for Embodied Tasks with Language Models
Language models (LMs) have demonstrated their capability in possessing commonsense knowledge of the physical world, a crucial aspect of performing tasks in everyday life. However, it remains unclear whether they have the capacity to generate grounded, executable plans for embodied tasks. This is a challenging task as LMs lack the ability to perceive the environment through vision and feedback from the physical environment. In this paper, we address this important research question and present the first investigation into the topic. Our novel problem formulation, named G-PlanET, inputs a high-level goal and a data table about objects in a specific environment, and then outputs a step-by-step actionable plan for a robotic agent to follow. To facilitate the study, we establish an evaluation protocol and design a dedicated metric, KAS, to assess the quality of the plans. Our experiments demonstrate that the use of tables for encoding the environment and an iterative decoding strategy can significantly enhance the LMs' ability in grounded planning. Our analysis also reveals interesting and non-trivial findings.
RM-PRT: Realistic Robotic Manipulation Simulator and Benchmark with Progressive Reasoning Tasks
Recently, the advent of pre-trained large-scale language models (LLMs) like ChatGPT and GPT-4 have significantly advanced the machine's natural language understanding capabilities. This breakthrough has allowed us to seamlessly integrate these open-source LLMs into a unified robot simulator environment to help robots accurately understand and execute human natural language instructions. To this end, in this work, we introduce a realistic robotic manipulation simulator and build a Robotic Manipulation with Progressive Reasoning Tasks (RM-PRT) benchmark on this basis. Specifically, the RM-PRT benchmark builds a new high-fidelity digital twin scene based on Unreal Engine 5, which includes 782 categories, 2023 objects, and 15K natural language instructions generated by ChatGPT for a detailed evaluation of robot manipulation. We propose a general pipeline for the RM-PRT benchmark that takes as input multimodal prompts containing natural language instructions and automatically outputs actions containing the movement and position transitions. We set four natural language understanding tasks with progressive reasoning levels and evaluate the robot's ability to understand natural language instructions in two modes of adsorption and grasping. In addition, we also conduct a comprehensive analysis and comparison of the differences and advantages of 10 different LLMs in instruction understanding and generation quality. We hope the new simulator and benchmark will facilitate future research on language-guided robotic manipulation. Project website: https://necolizer.github.io/RM-PRT/ .
Certified Reasoning with Language Models
Language models often achieve higher accuracy when reasoning step-by-step in complex tasks. However, their reasoning can be unsound, inconsistent, or rely on undesirable prior assumptions. To tackle these issues, we introduce a class of tools for language models called guides that use state and incremental constraints to guide generation. A guide can be invoked by the model to constrain its own generation to a set of valid statements given by the tool. In turn, the model's choices can change the guide's state. We show how a general system for logical reasoning can be used as a guide, which we call LogicGuide. Given a reasoning problem in natural language, a model can formalize its assumptions for LogicGuide and then guarantee that its reasoning steps are sound. In experiments with the PrOntoQA and ProofWriter reasoning datasets, LogicGuide significantly improves the performance of GPT-3, GPT-3.5 Turbo and LLaMA (accuracy gains up to 35%). LogicGuide also drastically reduces content effects: the interference of prior and current assumptions that both humans and language models have been shown to suffer from. Finally, we explore bootstrapping LLaMA 13B from its own reasoning and find that LogicGuide is critical: by training only on certified self-generated reasoning, LLaMA can self-improve, avoiding learning from its own hallucinations.
Knowledge Graph Induction enabling Recommending and Trend Analysis: A Corporate Research Community Use Case
A research division plays an important role of driving innovation in an organization. Drawing insights, following trends, keeping abreast of new research, and formulating strategies are increasingly becoming more challenging for both researchers and executives as the amount of information grows in both velocity and volume. In this paper we present a use case of how a corporate research community, IBM Research, utilizes Semantic Web technologies to induce a unified Knowledge Graph from both structured and textual data obtained by integrating various applications used by the community related to research projects, academic papers, datasets, achievements and recognition. In order to make the Knowledge Graph more accessible to application developers, we identified a set of common patterns for exploiting the induced knowledge and exposed them as APIs. Those patterns were born out of user research which identified the most valuable use cases or user pain points to be alleviated. We outline two distinct scenarios: recommendation and analytics for business use. We will discuss these scenarios in detail and provide an empirical evaluation on entity recommendation specifically. The methodology used and the lessons learned from this work can be applied to other organizations facing similar challenges.
ChatGPT4PCG Competition: Character-like Level Generation for Science Birds
This paper presents the first ChatGPT4PCG Competition at the 2023 IEEE Conference on Games. The objective of this competition is for participants to create effective prompts for ChatGPT--enabling it to generate Science Birds levels with high stability and character-like qualities--fully using their creativity as well as prompt engineering skills. ChatGPT is a conversational agent developed by OpenAI. Science Birds is selected as the competition platform because designing an Angry Birds-like level is not a trivial task due to the in-game gravity; the quality of the levels is determined by their stability. To lower the entry barrier to the competition, we limit the task to the generation of capitalized English alphabetical characters. We also allow only a single prompt to be used for generating all the characters. Here, the quality of the generated levels is determined by their stability and similarity to the given characters. A sample prompt is provided to participants for their reference. An experiment is conducted to determine the effectiveness of several modified versions of this sample prompt on level stability and similarity by testing them on several characters. To the best of our knowledge, we believe that ChatGPT4PCG is the first competition of its kind and hope to inspire enthusiasm for prompt engineering in procedural content generation.
Exploiting Reasoning Chains for Multi-hop Science Question Answering
We propose a novel Chain Guided Retriever-reader ({\tt CGR}) framework to model the reasoning chain for multi-hop Science Question Answering. Our framework is capable of performing explainable reasoning without the need of any corpus-specific annotations, such as the ground-truth reasoning chain, or human-annotated entity mentions. Specifically, we first generate reasoning chains from a semantic graph constructed by Abstract Meaning Representation of retrieved evidence facts. A Chain-aware loss, concerning both local and global chain information, is also designed to enable the generated chains to serve as distant supervision signals for training the retriever, where reinforcement learning is also adopted to maximize the utility of the reasoning chains. Our framework allows the retriever to capture step-by-step clues of the entire reasoning process, which is not only shown to be effective on two challenging multi-hop Science QA tasks, namely OpenBookQA and ARC-Challenge, but also favors explainability.
MindAgent: Emergent Gaming Interaction
Large Language Models (LLMs) have the capacity of performing complex scheduling in a multi-agent system and can coordinate these agents into completing sophisticated tasks that require extensive collaboration. However, despite the introduction of numerous gaming frameworks, the community has insufficient benchmarks towards building general multi-agents collaboration infrastructure that encompass both LLM and human-NPCs collaborations. In this work, we propose a novel infrastructure - MindAgent - to evaluate planning and coordination emergent capabilities for gaming interaction. In particular, our infrastructure leverages existing gaming framework, to i) require understanding of the coordinator for a multi-agent system, ii) collaborate with human players via un-finetuned proper instructions, and iii) establish an in-context learning on few-shot prompt with feedback. Furthermore, we introduce CUISINEWORLD, a new gaming scenario and related benchmark that dispatch a multi-agent collaboration efficiency and supervise multiple agents playing the game simultaneously. We conduct comprehensive evaluations with new auto-metric CoS for calculating the collaboration efficiency. Finally, our infrastructure can be deployed into real-world gaming scenarios in a customized VR version of CUISINEWORLD and adapted in existing broader Minecraft gaming domain. We hope our findings on LLMs and the new infrastructure for general-purpose scheduling and coordination can help shed light on how such skills can be obtained by learning from large language corpora.
InstructRAG: Leveraging Retrieval-Augmented Generation on Instruction Graphs for LLM-Based Task Planning
Recent advancements in large language models (LLMs) have enabled their use as agents for planning complex tasks. Existing methods typically rely on a thought-action-observation (TAO) process to enhance LLM performance, but these approaches are often constrained by the LLMs' limited knowledge of complex tasks. Retrieval-augmented generation (RAG) offers new opportunities by leveraging external databases to ground generation in retrieved information. In this paper, we identify two key challenges (enlargability and transferability) in applying RAG to task planning. We propose InstructRAG, a novel solution within a multi-agent meta-reinforcement learning framework, to address these challenges. InstructRAG includes a graph to organize past instruction paths (sequences of correct actions), an RL-Agent with Reinforcement Learning to expand graph coverage for enlargability, and an ML-Agent with Meta-Learning to improve task generalization for transferability. The two agents are trained end-to-end to optimize overall planning performance. Our experiments on four widely used task planning datasets demonstrate that InstructRAG significantly enhances performance and adapts efficiently to new tasks, achieving up to a 19.2% improvement over the best existing approach.
KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents
Large Language Models (LLMs) have demonstrated great potential in complex reasoning tasks, yet they fall short when tackling more sophisticated challenges, especially when interacting with environments through generating executable actions. This inadequacy primarily stems from the lack of built-in action knowledge in language agents, which fails to effectively guide the planning trajectories during task solving and results in planning hallucination. To address this issue, we introduce KnowAgent, a novel approach designed to enhance the planning capabilities of LLMs by incorporating explicit action knowledge. Specifically, KnowAgent employs an action knowledge base and a knowledgeable self-learning strategy to constrain the action path during planning, enabling more reasonable trajectory synthesis, and thereby enhancing the planning performance of language agents. Experimental results on HotpotQA and ALFWorld based on various backbone models demonstrate that KnowAgent can achieve comparable or superior performance to existing baselines. Further analysis indicates the effectiveness of KnowAgent in terms of planning hallucinations mitigation. Code is available in https://github.com/zjunlp/KnowAgent.
Human-like Bots for Tactical Shooters Using Compute-Efficient Sensors
Artificial intelligence (AI) has enabled agents to master complex video games, from first-person shooters like Counter-Strike to real-time strategy games such as StarCraft II and racing games like Gran Turismo. While these achievements are notable, applying these AI methods in commercial video game production remains challenging due to computational constraints. In commercial scenarios, the majority of computational resources are allocated to 3D rendering, leaving limited capacity for AI methods, which often demand high computational power, particularly those relying on pixel-based sensors. Moreover, the gaming industry prioritizes creating human-like behavior in AI agents to enhance player experience, unlike academic models that focus on maximizing game performance. This paper introduces a novel methodology for training neural networks via imitation learning to play a complex, commercial-standard, VALORANT-like 2v2 tactical shooter game, requiring only modest CPU hardware during inference. Our approach leverages an innovative, pixel-free perception architecture using a small set of ray-cast sensors, which capture essential spatial information efficiently. These sensors allow AI to perform competently without the computational overhead of traditional methods. Models are trained to mimic human behavior using supervised learning on human trajectory data, resulting in realistic and engaging AI agents. Human evaluation tests confirm that our AI agents provide human-like gameplay experiences while operating efficiently under computational constraints. This offers a significant advancement in AI model development for tactical shooter games and possibly other genres.
Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review
This paper delves into the pivotal role of prompt engineering in unleashing the capabilities of Large Language Models (LLMs). Prompt engineering is the process of structuring input text for LLMs and is a technique integral to optimizing the efficacy of LLMs. This survey elucidates foundational principles of prompt engineering, such as role-prompting, one-shot, and few-shot prompting, as well as more advanced methodologies such as the chain-of-thought and tree-of-thoughts prompting. The paper sheds light on how external assistance in the form of plugins can assist in this task, and reduce machine hallucination by retrieving external knowledge. We subsequently delineate prospective directions in prompt engineering research, emphasizing the need for a deeper understanding of structures and the role of agents in Artificial Intelligence-Generated Content (AIGC) tools. We discuss how to assess the efficacy of prompt methods from different perspectives and using different methods. Finally, we gather information about the application of prompt engineering in such fields as education and programming, showing its transformative potential. This comprehensive survey aims to serve as a friendly guide for anyone venturing through the big world of LLMs and prompt engineering.
ChatGPT and Software Testing Education: Promises & Perils
Over the past decade, predictive language modeling for code has proven to be a valuable tool for enabling new forms of automation for developers. More recently, we have seen the advent of general purpose "large language models", based on neural transformer architectures, that have been trained on massive datasets of human written text spanning code and natural language. However, despite the demonstrated representational power of such models, interacting with them has historically been constrained to specific task settings, limiting their general applicability. Many of these limitations were recently overcome with the introduction of ChatGPT, a language model created by OpenAI and trained to operate as a conversational agent, enabling it to answer questions and respond to a wide variety of commands from end users. The introduction of models, such as ChatGPT, has already spurred fervent discussion from educators, ranging from fear that students could use these AI tools to circumvent learning, to excitement about the new types of learning opportunities that they might unlock. However, given the nascent nature of these tools, we currently lack fundamental knowledge related to how well they perform in different educational settings, and the potential promise (or danger) that they might pose to traditional forms of instruction. As such, in this paper, we examine how well ChatGPT performs when tasked with answering common questions in a popular software testing curriculum. Our findings indicate that ChatGPT can provide correct or partially correct answers in 55.6% of cases, provide correct or partially correct explanations of answers in 53.0% of cases, and that prompting the tool in a shared question context leads to a marginally higher rate of correct responses. Based on these findings, we discuss the potential promises and perils related to the use of ChatGPT by students and instructors.
TF1-EN-3M: Three Million Synthetic Moral Fables for Training Small, Open Language Models
Moral stories are a time-tested vehicle for transmitting values, yet modern NLP lacks a large, structured corpus that couples coherent narratives with explicit ethical lessons. We close this gap with TF1-EN-3M, the first open dataset of three million English-language fables generated exclusively by instruction-tuned models no larger than 8B parameters. Each story follows a six-slot scaffold (character -> trait -> setting -> conflict -> resolution -> moral), produced through a combinatorial prompt engine that guarantees genre fidelity while covering a broad thematic space. A hybrid evaluation pipeline blends (i) a GPT-based critic that scores grammar, creativity, moral clarity, and template adherence with (ii) reference-free diversity and readability metrics. Among ten open-weight candidates, an 8B-parameter Llama-3 variant delivers the best quality-speed trade-off, producing high-scoring fables on a single consumer GPU (<24 GB VRAM) at approximately 13.5 cents per 1,000 fables. We release the dataset, generation code, evaluation scripts, and full metadata under a permissive license, enabling exact reproducibility and cost benchmarking. TF1-EN-3M opens avenues for research in instruction following, narrative intelligence, value alignment, and child-friendly educational AI, demonstrating that large-scale moral storytelling no longer requires proprietary giant models.
MineDreamer: Learning to Follow Instructions via Chain-of-Imagination for Simulated-World Control
It is a long-lasting goal to design a generalist-embodied agent that can follow diverse instructions in human-like ways. However, existing approaches often fail to steadily follow instructions due to difficulties in understanding abstract and sequential natural language instructions. To this end, we introduce MineDreamer, an open-ended embodied agent built upon the challenging Minecraft simulator with an innovative paradigm that enhances instruction-following ability in low-level control signal generation. Specifically, MineDreamer is developed on top of recent advances in Multimodal Large Language Models (MLLMs) and diffusion models, and we employ a Chain-of-Imagination (CoI) mechanism to envision the step-by-step process of executing instructions and translating imaginations into more precise visual prompts tailored to the current state; subsequently, the agent generates keyboard-and-mouse actions to efficiently achieve these imaginations, steadily following the instructions at each step. Extensive experiments demonstrate that MineDreamer follows single and multi-step instructions steadily, significantly outperforming the best generalist agent baseline and nearly doubling its performance. Moreover, qualitative analysis of the agent's imaginative ability reveals its generalization and comprehension of the open world.
Improving Vision-and-Language Navigation with Image-Text Pairs from the Web
Following a navigation instruction such as 'Walk down the stairs and stop at the brown sofa' requires embodied AI agents to ground scene elements referenced via language (e.g. 'stairs') to visual content in the environment (pixels corresponding to 'stairs'). We ask the following question -- can we leverage abundant 'disembodied' web-scraped vision-and-language corpora (e.g. Conceptual Captions) to learn visual groundings (what do 'stairs' look like?) that improve performance on a relatively data-starved embodied perception task (Vision-and-Language Navigation)? Specifically, we develop VLN-BERT, a visiolinguistic transformer-based model for scoring the compatibility between an instruction ('...stop at the brown sofa') and a sequence of panoramic RGB images captured by the agent. We demonstrate that pretraining VLN-BERT on image-text pairs from the web before fine-tuning on embodied path-instruction data significantly improves performance on VLN -- outperforming the prior state-of-the-art in the fully-observed setting by 4 absolute percentage points on success rate. Ablations of our pretraining curriculum show each stage to be impactful -- with their combination resulting in further positive synergistic effects.
Communicate to Play: Pragmatic Reasoning for Efficient Cross-Cultural Communication in Codenames
Cultural differences in common ground may result in pragmatic failure and misunderstandings during communication. We develop our method Rational Speech Acts for Cross-Cultural Communication (RSA+C3) to resolve cross-cultural differences in common ground. To measure the success of our method, we study RSA+C3 in the collaborative referential game of Codenames Duet and show that our method successfully improves collaboration between simulated players of different cultures. Our contributions are threefold: (1) creating Codenames players using contrastive learning of an embedding space and LLM prompting that are aligned with human patterns of play, (2) studying culturally induced differences in common ground reflected in our trained models, and (3) demonstrating that our method RSA+C3 can ease cross-cultural communication in gameplay by inferring sociocultural context from interaction. Our code is publicly available at github.com/icwhite/codenames.
BoardgameQA: A Dataset for Natural Language Reasoning with Contradictory Information
Automated reasoning with unstructured natural text is a key requirement for many potential applications of NLP and for developing robust AI systems. Recently, Language Models (LMs) have demonstrated complex reasoning capacities even without any finetuning. However, existing evaluation for automated reasoning assumes access to a consistent and coherent set of information over which models reason. When reasoning in the real-world, the available information is frequently inconsistent or contradictory, and therefore models need to be equipped with a strategy to resolve such conflicts when they arise. One widely-applicable way of resolving conflicts is to impose preferences over information sources (e.g., based on source credibility or information recency) and adopt the source with higher preference. In this paper, we formulate the problem of reasoning with contradictory information guided by preferences over sources as the classical problem of defeasible reasoning, and develop a dataset called BoardgameQA for measuring the reasoning capacity of LMs in this setting. BoardgameQA also incorporates reasoning with implicit background knowledge, to better reflect reasoning problems in downstream applications. We benchmark various LMs on BoardgameQA and the results reveal a significant gap in the reasoning capacity of state-of-the-art LMs on this problem, showing that reasoning with conflicting information does not surface out-of-the-box in LMs. While performance can be improved with finetuning, it nevertheless remains poor.
Do We Really Need a Complex Agent System? Distill Embodied Agent into a Single Model
With the power of large language models (LLMs), open-ended embodied agents can flexibly understand human instructions, generate interpretable guidance strategies, and output executable actions. Nowadays, Multi-modal Language Models~(MLMs) integrate multi-modal signals into LLMs, further bringing richer perception to entity agents and allowing embodied agents to perceive world-understanding tasks more delicately. However, existing works: 1) operate independently by agents, each containing multiple LLMs, from perception to action, resulting in gaps between complex tasks and execution; 2) train MLMs on static data, struggling with dynamics in open-ended scenarios; 3) input prior knowledge directly as prompts, suppressing application flexibility. We propose STEVE-2, a hierarchical knowledge distillation framework for open-ended embodied tasks, characterized by 1) a hierarchical system for multi-granular task division, 2) a mirrored distillation method for parallel simulation data, and 3) an extra expert model for bringing additional knowledge into parallel simulation. After distillation, embodied agents can complete complex, open-ended tasks without additional expert guidance, utilizing the performance and knowledge of a versatile MLM. Extensive evaluations on navigation and creation tasks highlight the superior performance of STEVE-2 in open-ended tasks, with 1.4 times - 7.3 times in performance.
Grounded Decoding: Guiding Text Generation with Grounded Models for Robot Control
Recent progress in large language models (LLMs) has demonstrated the ability to learn and leverage Internet-scale knowledge through pre-training with autoregressive models. Unfortunately, applying such models to settings with embodied agents, such as robots, is challenging due to their lack of experience with the physical world, inability to parse non-language observations, and ignorance of rewards or safety constraints that robots may require. On the other hand, language-conditioned robotic policies that learn from interaction data can provide the necessary grounding that allows the agent to be correctly situated in the real world, but such policies are limited by the lack of high-level semantic understanding due to the limited breadth of the interaction data available for training them. Thus, if we want to make use of the semantic knowledge in a language model while still situating it in an embodied setting, we must construct an action sequence that is both likely according to the language model and also realizable according to grounded models of the environment. We frame this as a problem similar to probabilistic filtering: decode a sequence that both has high probability under the language model and high probability under a set of grounded model objectives. We demonstrate this guided decoding strategy is able to solve complex, long-horizon embodiment tasks in a robotic setting by leveraging the knowledge of both models. The project's website can be found at grounded-decoding.github.io.
Mapping Natural Language Instructions to Mobile UI Action Sequences
We present a new problem: grounding natural language instructions to mobile user interface actions, and create three new datasets for it. For full task evaluation, we create PIXELHELP, a corpus that pairs English instructions with actions performed by people on a mobile UI emulator. To scale training, we decouple the language and action data by (a) annotating action phrase spans in HowTo instructions and (b) synthesizing grounded descriptions of actions for mobile user interfaces. We use a Transformer to extract action phrase tuples from long-range natural language instructions. A grounding Transformer then contextually represents UI objects using both their content and screen position and connects them to object descriptions. Given a starting screen and instruction, our model achieves 70.59% accuracy on predicting complete ground-truth action sequences in PIXELHELP.
Can Your Model Tell a Negation from an Implicature? Unravelling Challenges With Intent Encoders
Conversational systems often rely on embedding models for intent classification and intent clustering tasks. The advent of Large Language Models (LLMs), which enable instructional embeddings allowing one to adjust semantics over the embedding space using prompts, are being viewed as a panacea for these downstream conversational tasks. However, traditional evaluation benchmarks rely solely on task metrics that don't particularly measure gaps related to semantic understanding. Thus, we propose an intent semantic toolkit that gives a more holistic view of intent embedding models by considering three tasks -- (1) intent classification, (2) intent clustering, and (3) a novel triplet task. The triplet task gauges the model's understanding of two semantic concepts paramount in real-world conversational systems -- negation and implicature. We observe that current embedding models fare poorly in semantic understanding of these concepts. To address this, we propose a pre-training approach to improve the embedding model by leveraging augmentation with data generated by an auto-regressive model and a contrastive loss term. Our approach improves the semantic understanding of the intent embedding model on the aforementioned linguistic dimensions while slightly effecting their performance on downstream task metrics.
The Entity-Deduction Arena: A playground for probing the conversational reasoning and planning capabilities of LLMs
Large language models (LLMs) are effective at answering questions that are clearly asked. However, when faced with ambiguous queries they can act unpredictably and produce incorrect outputs. This underscores the need for the development of intelligent agents capable of asking clarification questions to resolve ambiguities effectively. This capability requires complex understanding, state tracking, reasoning and planning over multiple conversational turns. However, directly measuring this can be challenging. In this paper, we offer a surrogate problem which assesses an LLMs's capability to deduce an entity unknown to itself, but revealed to a judge, by asking the judge a series of queries. This entity-deducing game can serve as an evaluation framework to probe the conversational reasoning and planning capabilities of language models. We systematically evaluate various LLMs and discover significant differences in their performance on this task. We find that strong LLMs like GPT-4 outperform human players by a large margin. We further employ Behavior Cloning (BC) to examine whether a weaker model is capable of imitating a stronger model and generalizing to data or domains, using only the demonstrations from a stronger model. We finally propose to use Reinforcement Learning to enhance reasoning and planning capacity of Vicuna models through episodes of game playing, which lead to significant performance improvement. We hope that this problem offers insights into how autonomous agents could be trained to behave more intelligently in ambiguous circumstances.
Grounding Open-Domain Instructions to Automate Web Support Tasks
Grounding natural language instructions on the web to perform previously unseen tasks enables accessibility and automation. We introduce a task and dataset to train AI agents from open-domain, step-by-step instructions originally written for people. We build RUSS (Rapid Universal Support Service) to tackle this problem. RUSS consists of two models: First, a BERT-LSTM with pointers parses instructions to ThingTalk, a domain-specific language we design for grounding natural language on the web. Then, a grounding model retrieves the unique IDs of any webpage elements requested in ThingTalk. RUSS may interact with the user through a dialogue (e.g. ask for an address) or execute a web operation (e.g. click a button) inside the web runtime. To augment training, we synthesize natural language instructions mapped to ThingTalk. Our dataset consists of 80 different customer service problems from help websites, with a total of 741 step-by-step instructions and their corresponding actions. RUSS achieves 76.7% end-to-end accuracy predicting agent actions from single instructions. It outperforms state-of-the-art models that directly map instructions to actions without ThingTalk. Our user study shows that RUSS is preferred by actual users over web navigation.
WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents
Existing benchmarks for grounding language in interactive environments either lack real-world linguistic elements, or prove difficult to scale up due to substantial human involvement in the collection of data or feedback signals. To bridge this gap, we develop WebShop -- a simulated e-commerce website environment with 1.18 million real-world products and 12,087 crowd-sourced text instructions. Given a text instruction specifying a product requirement, an agent needs to navigate multiple types of webpages and issue diverse actions to find, customize, and purchase an item. WebShop provides several challenges for language grounding including understanding compositional instructions, query (re-)formulation, comprehending and acting on noisy text in webpages, and performing strategic exploration. We collect over 1,600 human demonstrations for the task, and train and evaluate a diverse range of agents using reinforcement learning, imitation learning, and pre-trained image and language models. Our best model achieves a task success rate of 29%, which outperforms rule-based heuristics (9.6%) but is far lower than human expert performance (59%). We also analyze agent and human trajectories and ablate various model components to provide insights for developing future agents with stronger language understanding and decision making abilities. Finally, we show that agents trained on WebShop exhibit non-trivial sim-to-real transfer when evaluated on amazon.com and ebay.com, indicating the potential value of WebShop in developing practical web-based agents that can operate in the wild.
PIKE-RAG: sPecIalized KnowledgE and Rationale Augmented Generation
Despite notable advancements in Retrieval-Augmented Generation (RAG) systems that expand large language model (LLM) capabilities through external retrieval, these systems often struggle to meet the complex and diverse needs of real-world industrial applications. The reliance on retrieval alone proves insufficient for extracting deep, domain-specific knowledge performing in logical reasoning from specialized corpora. To address this, we introduce sPecIalized KnowledgE and Rationale Augmentation Generation (PIKE-RAG), focusing on extracting, understanding, and applying specialized knowledge, while constructing coherent rationale to incrementally steer LLMs toward accurate responses. Recognizing the diverse challenges of industrial tasks, we introduce a new paradigm that classifies tasks based on their complexity in knowledge extraction and application, allowing for a systematic evaluation of RAG systems' problem-solving capabilities. This strategic approach offers a roadmap for the phased development and enhancement of RAG systems, tailored to meet the evolving demands of industrial applications. Furthermore, we propose knowledge atomizing and knowledge-aware task decomposition to effectively extract multifaceted knowledge from the data chunks and iteratively construct the rationale based on original query and the accumulated knowledge, respectively, showcasing exceptional performance across various benchmarks.
MLLM-Tool: A Multimodal Large Language Model For Tool Agent Learning
Recently, the astonishing performance of large language models (LLMs) in natural language comprehension and generation tasks triggered lots of exploration of using them as central controllers to build agent systems. Multiple studies focus on bridging the LLMs to external tools to extend the application scenarios. However, the current LLMs' perceiving tool-use ability is limited to a single text query, which may result in ambiguity in understanding the users' real intentions. LLMs are expected to eliminate that by perceiving the visual- or auditory-grounded instructions' information. Therefore, in this paper, we propose MLLM-Tool, a system incorporating open-source LLMs and multi-modal encoders so that the learnt LLMs can be conscious of multi-modal input instruction and then select the function-matched tool correctly. To facilitate the evaluation of the model's capability, we collect a dataset featured by consisting of multi-modal input tools from HuggingFace. Another important feature of our dataset is that our dataset also contains multiple potential choices for the same instruction due to the existence of identical functions and synonymous functions, which provides more potential solutions for the same query. The experiments reveal that our MLLM-Tool is capable of recommending appropriate tools for multi-modal instructions. Codes and data are available at https://github.com/MLLM-Tool/MLLM-Tool.
ERNIE: Enhanced Representation through Knowledge Integration
We present a novel language representation model enhanced by knowledge called ERNIE (Enhanced Representation through kNowledge IntEgration). Inspired by the masking strategy of BERT, ERNIE is designed to learn language representation enhanced by knowledge masking strategies, which includes entity-level masking and phrase-level masking. Entity-level strategy masks entities which are usually composed of multiple words.Phrase-level strategy masks the whole phrase which is composed of several words standing together as a conceptual unit.Experimental results show that ERNIE outperforms other baseline methods, achieving new state-of-the-art results on five Chinese natural language processing tasks including natural language inference, semantic similarity, named entity recognition, sentiment analysis and question answering. We also demonstrate that ERNIE has more powerful knowledge inference capacity on a cloze test.
"Pick-and-Pass" as a Hat-Trick Class for First-Principle Memory, Generalizability, and Interpretability Benchmarks
Closed drafting or "pick and pass" is a popular game mechanic where each round players select a card or other playable element from their hand and pass the rest to the next player. Games employing closed drafting make for great studies on memory and turn order due to their explicitly calculable memory of other players' hands. In this paper, we establish first-principle benchmarks for studying model-free reinforcement learning algorithms and their comparative ability to learn memory in a popular family of closed drafting games called "Sushi Go Party!", producing state-of-the-art results on this environment along the way. Furthermore, as Sushi Go Party! can be expressed as a set of closely-related games based on the set of cards in play, we quantify the generalizability of reinforcement learning algorithms trained on various sets of cards, establishing key trends between generalized performance and the set distance between the train and evaluation game configurations. Finally, we fit decision rules to interpret the strategy of the learned models and compare them to the ranking preferences of human players, finding intuitive common rules and intriguing new moves.
World knowledge-enhanced Reasoning Using Instruction-guided Interactor in Autonomous Driving
The Multi-modal Large Language Models (MLLMs) with extensive world knowledge have revitalized autonomous driving, particularly in reasoning tasks within perceivable regions. However, when faced with perception-limited areas (dynamic or static occlusion regions), MLLMs struggle to effectively integrate perception ability with world knowledge for reasoning. These perception-limited regions can conceal crucial safety information, especially for vulnerable road users. In this paper, we propose a framework, which aims to improve autonomous driving performance under perceptionlimited conditions by enhancing the integration of perception capabilities and world knowledge. Specifically, we propose a plug-and-play instruction-guided interaction module that bridges modality gaps and significantly reduces the input sequence length, allowing it to adapt effectively to multi-view video inputs. Furthermore, to better integrate world knowledge with driving-related tasks, we have collected and refined a large-scale multi-modal dataset that includes 2 million natural language QA pairs, 1.7 million grounding task data. To evaluate the model's utilization of world knowledge, we introduce an object-level risk assessment dataset comprising 200K QA pairs, where the questions necessitate multi-step reasoning leveraging world knowledge for resolution. Extensive experiments validate the effectiveness of our proposed method.
diff History for Neural Language Agents
Neural Language Models (LMs) offer an exciting solution for general-purpose embodied control. However, a key technical issue arises when using an LM-based controller: environment observations must be converted to text, which coupled with history, results in long and verbose textual prompts. As a result, prior work in LM agents is limited to restricted domains with small observation size as well as minimal needs for interaction history or instruction tuning. In this paper, we introduce diff history, a simple and highly effective solution to these issues. By applying the Unix diff command on consecutive text observations in the interaction histories used to prompt LM policies, we can both abstract away redundant information and focus the content of textual inputs on the salient changes in the environment. On NetHack, an unsolved video game that requires long-horizon reasoning for decision-making, LMs tuned with diff history match state-of-the-art performance for neural agents while needing 1800x fewer training examples compared to prior work. Even on the simpler BabyAI-Text environment with concise text observations, we find that although diff history increases the length of prompts, the representation it provides offers a 25% improvement in the efficiency of low-sample instruction tuning. Further, we show that diff history scales favorably across different tuning dataset sizes. We open-source our code and data to https://diffhistory.github.io.
Interactive Task and Concept Learning from Natural Language Instructions and GUI Demonstrations
Natural language programming is a promising approach to enable end users to instruct new tasks for intelligent agents. However, our formative study found that end users would often use unclear, ambiguous or vague concepts when naturally instructing tasks in natural language, especially when specifying conditionals. Existing systems have limited support for letting the user teach agents new concepts or explaining unclear concepts. In this paper, we describe a new multi-modal domain-independent approach that combines natural language programming and programming-by-demonstration to allow users to first naturally describe tasks and associated conditions at a high level, and then collaborate with the agent to recursively resolve any ambiguities or vagueness through conversations and demonstrations. Users can also define new procedures and concepts by demonstrating and referring to contents within GUIs of existing mobile apps. We demonstrate this approach in PUMICE, an end-user programmable agent that implements this approach. A lab study with 10 users showed its usability.
Wait, but Tylenol is Acetaminophen... Investigating and Improving Language Models' Ability to Resist Requests for Misinformation
Background: Large language models (LLMs) are trained to follow directions, but this introduces a vulnerability to blindly comply with user requests even if they generate wrong information. In medicine, this could accelerate the generation of misinformation that impacts human well-being. Objectives/Methods: We analyzed compliance to requests to generate misleading content about medications in settings where models know the request is illogical. We investigated whether in-context directions and instruction-tuning of LLMs to prioritize logical reasoning over compliance reduced misinformation risk. Results: While all frontier LLMs complied with misinformation requests, both prompt-based and parameter-based approaches can improve the detection of logic flaws in requests and prevent the dissemination of medical misinformation. Conclusion: Shifting LLMs to prioritize logic over compliance could reduce risks of exploitation for medical misinformation.
EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning
Large Language Models (LLMs) have shown impressive reasoning capabilities in well-defined problems with clear solutions, such as mathematics and coding. However, they still struggle with complex real-world scenarios like business negotiations, which require strategic reasoning-an ability to navigate dynamic environments and align long-term goals amidst uncertainty. Existing methods for strategic reasoning face challenges in adaptability, scalability, and transferring strategies to new contexts. To address these issues, we propose explicit policy optimization (EPO) for strategic reasoning, featuring an LLM that provides strategies in open-ended action space and can be plugged into arbitrary LLM agents to motivate goal-directed behavior. To improve adaptability and policy transferability, we train the strategic reasoning model via multi-turn reinforcement learning (RL) using process rewards and iterative self-play, without supervised fine-tuning (SFT) as a preliminary step. Experiments across social and physical domains demonstrate EPO's ability of long-term goal alignment through enhanced strategic reasoning, achieving state-of-the-art performance on social dialogue and web navigation tasks. Our findings reveal various collaborative reasoning mechanisms emergent in EPO and its effectiveness in generating novel strategies, underscoring its potential for strategic reasoning in real-world applications.