Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAn Algorithm for Computing with Brauer's Group Equivariant Neural Network Layers
The learnable, linear neural network layers between tensor power spaces of R^{n} that are equivariant to the orthogonal group, O(n), the special orthogonal group, SO(n), and the symplectic group, Sp(n), were characterised in arXiv:2212.08630. We present an algorithm for multiplying a vector by any weight matrix for each of these groups, using category theoretic constructions to implement the procedure. We achieve a significant reduction in computational cost compared with a naive implementation by making use of Kronecker product matrices to perform the multiplication. We show that our approach extends to the symmetric group, S_n, recovering the algorithm of arXiv:2303.06208 in the process.
Multi-Task Multi-Agent Shared Layers are Universal Cognition of Multi-Agent Coordination
Multi-agent reinforcement learning shines as the pinnacle of multi-agent systems, conquering intricate real-world challenges, fostering collaboration and coordination among agents, and unleashing the potential for intelligent decision-making across domains. However, training a multi-agent reinforcement learning network is a formidable endeavor, demanding substantial computational resources to interact with diverse environmental variables, extract state representations, and acquire decision-making knowledge. The recent breakthroughs in large-scale pre-trained models ignite our curiosity: Can we uncover shared knowledge in multi-agent reinforcement learning and leverage pre-trained models to expedite training for future tasks? Addressing this issue, we present an innovative multi-task learning approach that aims to extract and harness common decision-making knowledge, like cooperation and competition, across different tasks. Our approach involves concurrent training of multiple multi-agent tasks, with each task employing independent front-end perception layers while sharing back-end decision-making layers. This effective decoupling of state representation extraction from decision-making allows for more efficient training and better transferability. To evaluate the efficacy of our proposed approach, we conduct comprehensive experiments in two distinct environments: the StarCraft Multi-agent Challenge (SMAC) and the Google Research Football (GRF) environments. The experimental results unequivocally demonstrate the smooth transferability of the shared decision-making network to other tasks, thereby significantly reducing training costs and improving final performance. Furthermore, visualizations authenticate the presence of general multi-agent decision-making knowledge within the shared network layers, further validating the effectiveness of our approach.
GTrans: Grouping and Fusing Transformer Layers for Neural Machine Translation
Transformer structure, stacked by a sequence of encoder and decoder network layers, achieves significant development in neural machine translation. However, vanilla Transformer mainly exploits the top-layer representation, assuming the lower layers provide trivial or redundant information and thus ignoring the bottom-layer feature that is potentially valuable. In this work, we propose the Group-Transformer model (GTrans) that flexibly divides multi-layer representations of both encoder and decoder into different groups and then fuses these group features to generate target words. To corroborate the effectiveness of the proposed method, extensive experiments and analytic experiments are conducted on three bilingual translation benchmarks and two multilingual translation tasks, including the IWLST-14, IWLST-17, LDC, WMT-14 and OPUS-100 benchmark. Experimental and analytical results demonstrate that our model outperforms its Transformer counterparts by a consistent gain. Furthermore, it can be successfully scaled up to 60 encoder layers and 36 decoder layers.
AANet: Adaptive Aggregation Network for Efficient Stereo Matching
Despite the remarkable progress made by learning based stereo matching algorithms, one key challenge remains unsolved. Current state-of-the-art stereo models are mostly based on costly 3D convolutions, the cubic computational complexity and high memory consumption make it quite expensive to deploy in real-world applications. In this paper, we aim at completely replacing the commonly used 3D convolutions to achieve fast inference speed while maintaining comparable accuracy. To this end, we first propose a sparse points based intra-scale cost aggregation method to alleviate the well-known edge-fattening issue at disparity discontinuities. Further, we approximate traditional cross-scale cost aggregation algorithm with neural network layers to handle large textureless regions. Both modules are simple, lightweight, and complementary, leading to an effective and efficient architecture for cost aggregation. With these two modules, we can not only significantly speed up existing top-performing models (e.g., 41times than GC-Net, 4times than PSMNet and 38times than GA-Net), but also improve the performance of fast stereo models (e.g., StereoNet). We also achieve competitive results on Scene Flow and KITTI datasets while running at 62ms, demonstrating the versatility and high efficiency of the proposed method. Our full framework is available at https://github.com/haofeixu/aanet .
Action in Mind: A Neural Network Approach to Action Recognition and Segmentation
Recognizing and categorizing human actions is an important task with applications in various fields such as human-robot interaction, video analysis, surveillance, video retrieval, health care system and entertainment industry. This thesis presents a novel computational approach for human action recognition through different implementations of multi-layer architectures based on artificial neural networks. Each system level development is designed to solve different aspects of the action recognition problem including online real-time processing, action segmentation and the involvement of objects. The analysis of the experimental results are illustrated and described in six articles. The proposed action recognition architecture of this thesis is composed of several processing layers including a preprocessing layer, an ordered vector representation layer and three layers of neural networks. It utilizes self-organizing neural networks such as Kohonen feature maps and growing grids as the main neural network layers. Thus the architecture presents a biological plausible approach with certain features such as topographic organization of the neurons, lateral interactions, semi-supervised learning and the ability to represent high dimensional input space in lower dimensional maps. For each level of development the system is trained with the input data consisting of consecutive 3D body postures and tested with generalized input data that the system has never met before. The experimental results of different system level developments show that the system performs well with quite high accuracy for recognizing human actions.
Pixelated Butterfly: Simple and Efficient Sparse training for Neural Network Models
Overparameterized neural networks generalize well but are expensive to train. Ideally, one would like to reduce their computational cost while retaining their generalization benefits. Sparse model training is a simple and promising approach to achieve this, but there remain challenges as existing methods struggle with accuracy loss, slow training runtime, or difficulty in sparsifying all model components. The core problem is that searching for a sparsity mask over a discrete set of sparse matrices is difficult and expensive. To address this, our main insight is to optimize over a continuous superset of sparse matrices with a fixed structure known as products of butterfly matrices. As butterfly matrices are not hardware efficient, we propose simple variants of butterfly (block and flat) to take advantage of modern hardware. Our method (Pixelated Butterfly) uses a simple fixed sparsity pattern based on flat block butterfly and low-rank matrices to sparsify most network layers (e.g., attention, MLP). We empirically validate that Pixelated Butterfly is 3x faster than butterfly and speeds up training to achieve favorable accuracy--efficiency tradeoffs. On the ImageNet classification and WikiText-103 language modeling tasks, our sparse models train up to 2.5x faster than the dense MLP-Mixer, Vision Transformer, and GPT-2 medium with no drop in accuracy.
Let the Quantum Creep In: Designing Quantum Neural Network Models by Gradually Swapping Out Classical Components
Artificial Intelligence (AI), with its multiplier effect and wide applications in multiple areas, could potentially be an important application of quantum computing. Since modern AI systems are often built on neural networks, the design of quantum neural networks becomes a key challenge in integrating quantum computing into AI. To provide a more fine-grained characterisation of the impact of quantum components on the performance of neural networks, we propose a framework where classical neural network layers are gradually replaced by quantum layers that have the same type of input and output while keeping the flow of information between layers unchanged, different from most current research in quantum neural network, which favours an end-to-end quantum model. We start with a simple three-layer classical neural network without any normalisation layers or activation functions, and gradually change the classical layers to the corresponding quantum versions. We conduct numerical experiments on image classification datasets such as the MNIST, FashionMNIST and CIFAR-10 datasets to demonstrate the change of performance brought by the systematic introduction of quantum components. Through this framework, our research sheds new light on the design of future quantum neural network models where it could be more favourable to search for methods and frameworks that harness the advantages from both the classical and quantum worlds.
Optimal Brain Apoptosis
The increasing complexity and parameter count of Convolutional Neural Networks (CNNs) and Transformers pose challenges in terms of computational efficiency and resource demands. Pruning has been identified as an effective strategy to address these challenges by removing redundant elements such as neurons, channels, or connections, thereby enhancing computational efficiency without heavily compromising performance. This paper builds on the foundational work of Optimal Brain Damage (OBD) by advancing the methodology of parameter importance estimation using the Hessian matrix. Unlike previous approaches that rely on approximations, we introduce Optimal Brain Apoptosis (OBA), a novel pruning method that calculates the Hessian-vector product value directly for each parameter. By decomposing the Hessian matrix across network layers and identifying conditions under which inter-layer Hessian submatrices are non-zero, we propose a highly efficient technique for computing the second-order Taylor expansion of parameters. This approach allows for a more precise pruning process, particularly in the context of CNNs and Transformers, as validated in our experiments including VGG19, ResNet32, ResNet50, and ViT-B/16 on CIFAR10, CIFAR100 and Imagenet datasets. Our code is available at https://github.com/NEU-REAL/OBA.
Finedeep: Mitigating Sparse Activation in Dense LLMs via Multi-Layer Fine-Grained Experts
Large language models have demonstrated exceptional performance across a wide range of tasks. However, dense models usually suffer from sparse activation, where many activation values tend towards zero (i.e., being inactivated). We argue that this could restrict the efficient exploration of model representation space. To mitigate this issue, we propose Finedeep, a deep-layered fine-grained expert architecture for dense models. Our framework partitions the feed-forward neural network layers of traditional dense models into small experts, arranges them across multiple sub-layers. A novel routing mechanism is proposed to determine each expert's contribution. We conduct extensive experiments across various model sizes, demonstrating that our approach significantly outperforms traditional dense architectures in terms of perplexity and benchmark performance while maintaining a comparable number of parameters and floating-point operations. Moreover, we find that Finedeep achieves optimal results when balancing depth and width, specifically by adjusting the number of expert sub-layers and the number of experts per sub-layer. Empirical results confirm that Finedeep effectively alleviates sparse activation and efficiently utilizes representation capacity in dense models.
Generalizable End-to-End Deep Learning Frameworks for Real-Time Attitude Estimation Using 6DoF Inertial Measurement Units
This paper presents a novel end-to-end deep learning framework for real-time inertial attitude estimation using 6DoF IMU measurements. Inertial Measurement Units are widely used in various applications, including engineering and medical sciences. However, traditional filters used for attitude estimation suffer from poor generalization over different motion patterns and environmental disturbances. To address this problem, we propose two deep learning models that incorporate accelerometer and gyroscope readings as inputs. These models are designed to be generalized to different motion patterns, sampling rates, and environmental disturbances. Our models consist of convolutional neural network layers combined with Bi-Directional Long-Short Term Memory followed by a Fully Forward Neural Network to estimate the quaternion. We evaluate the proposed method on seven publicly available datasets, totaling more than 120 hours and 200 kilometers of IMU measurements. Our results show that the proposed method outperforms state-of-the-art methods in terms of accuracy and robustness. Additionally, our framework demonstrates superior generalization over various motion characteristics and sensor sampling rates. Overall, this paper provides a comprehensive and reliable solution for real-time inertial attitude estimation using 6DoF IMUs, which has significant implications for a wide range of applications.
Scaling Supervised Local Learning with Augmented Auxiliary Networks
Deep neural networks are typically trained using global error signals that backpropagate (BP) end-to-end, which is not only biologically implausible but also suffers from the update locking problem and requires huge memory consumption. Local learning, which updates each layer independently with a gradient-isolated auxiliary network, offers a promising alternative to address the above problems. However, existing local learning methods are confronted with a large accuracy gap with the BP counterpart, particularly for large-scale networks. This is due to the weak coupling between local layers and their subsequent network layers, as there is no gradient communication across layers. To tackle this issue, we put forward an augmented local learning method, dubbed AugLocal. AugLocal constructs each hidden layer's auxiliary network by uniformly selecting a small subset of layers from its subsequent network layers to enhance their synergy. We also propose to linearly reduce the depth of auxiliary networks as the hidden layer goes deeper, ensuring sufficient network capacity while reducing the computational cost of auxiliary networks. Our extensive experiments on four image classification datasets (i.e., CIFAR-10, SVHN, STL-10, and ImageNet) demonstrate that AugLocal can effectively scale up to tens of local layers with a comparable accuracy to BP-trained networks while reducing GPU memory usage by around 40%. The proposed AugLocal method, therefore, opens up a myriad of opportunities for training high-performance deep neural networks on resource-constrained platforms.Code is available at https://github.com/ChenxiangMA/AugLocal.
Commutative Width and Depth Scaling in Deep Neural Networks
This paper is the second in the series Commutative Scaling of Width and Depth (WD) about commutativity of infinite width and depth limits in deep neural networks. Our aim is to understand the behaviour of neural functions (functions that depend on a neural network model) as width and depth go to infinity (in some sense), and eventually identify settings under which commutativity holds, i.e. the neural function tends to the same limit no matter how width and depth limits are taken. In this paper, we formally introduce and define the commutativity framework, and discuss its implications on neural network design and scaling. We study commutativity for the neural covariance kernel which reflects how network layers separate data. Our findings extend previous results established in [55] by showing that taking the width and depth to infinity in a deep neural network with skip connections, when branches are suitably scaled to avoid exploding behaviour, result in the same covariance structure no matter how that limit is taken. This has a number of theoretical and practical implications that we discuss in the paper. The proof techniques in this paper are novel and rely on tools that are more accessible to readers who are not familiar with stochastic calculus (used in the proofs of WD(I))).
Keep Decoding Parallel with Effective Knowledge Distillation from Language Models to End-to-end Speech Recognisers
This study presents a novel approach for knowledge distillation (KD) from a BERT teacher model to an automatic speech recognition (ASR) model using intermediate layers. To distil the teacher's knowledge, we use an attention decoder that learns from BERT's token probabilities. Our method shows that language model (LM) information can be more effectively distilled into an ASR model using both the intermediate layers and the final layer. By using the intermediate layers as distillation target, we can more effectively distil LM knowledge into the lower network layers. Using our method, we achieve better recognition accuracy than with shallow fusion of an external LM, allowing us to maintain fast parallel decoding. Experiments on the LibriSpeech dataset demonstrate the effectiveness of our approach in enhancing greedy decoding with connectionist temporal classification (CTC).
Intermediate Layer Classifiers for OOD generalization
Deep classifiers are known to be sensitive to data distribution shifts, primarily due to their reliance on spurious correlations in training data. It has been suggested that these classifiers can still find useful features in the network's last layer that hold up under such shifts. In this work, we question the use of last-layer representations for out-of-distribution (OOD) generalisation and explore the utility of intermediate layers. To this end, we introduce Intermediate Layer Classifiers (ILCs). We discover that intermediate layer representations frequently offer substantially better generalisation than those from the penultimate layer. In many cases, zero-shot OOD generalisation using earlier-layer representations approaches the few-shot performance of retraining on penultimate layer representations. This is confirmed across multiple datasets, architectures, and types of distribution shifts. Our analysis suggests that intermediate layers are less sensitive to distribution shifts compared to the penultimate layer. These findings highlight the importance of understanding how information is distributed across network layers and its role in OOD generalisation, while also pointing to the limits of penultimate layer representation utility. Code is available at https://github.com/oshapio/intermediate-layer-generalization
CodePrompt: Improving Source Code-Related Classification with Knowledge Features through Prompt Learning
Researchers have explored the potential of utilizing pre-trained language models, such as CodeBERT, to improve source code-related tasks. Previous studies have mainly relied on CodeBERT's text embedding capability and the `[CLS]' sentence embedding information as semantic representations for fine-tuning downstream source code-related tasks. However, these methods require additional neural network layers to extract effective features, resulting in higher computational costs. Furthermore, existing approaches have not leveraged the rich knowledge contained in both source code and related text, which can lead to lower accuracy. This paper presents a novel approach, CodePrompt, which utilizes rich knowledge recalled from a pre-trained model by prompt learning and an attention mechanism to improve source code-related classification tasks. Our approach initially motivates the language model with prompt information to retrieve abundant knowledge associated with the input as representative features, thus avoiding the need for additional neural network layers and reducing computational costs. Subsequently, we employ an attention mechanism to aggregate multiple layers of related knowledge for each task as final features to boost their accuracy. We conducted extensive experiments on four downstream source code-related tasks to evaluate our approach and our results demonstrate that CodePrompt achieves new state-of-the-art performance on the accuracy metric while also exhibiting computation cost-saving capabilities.
Deep Learning Hamiltonian Monte Carlo
We generalize the Hamiltonian Monte Carlo algorithm with a stack of neural network layers and evaluate its ability to sample from different topologies in a two dimensional lattice gauge theory. We demonstrate that our model is able to successfully mix between modes of different topologies, significantly reducing the computational cost required to generated independent gauge field configurations. Our implementation is available at https://github.com/saforem2/l2hmc-qcd .
Analyzing and Improving the Training Dynamics of Diffusion Models
Diffusion models currently dominate the field of data-driven image synthesis with their unparalleled scaling to large datasets. In this paper, we identify and rectify several causes for uneven and ineffective training in the popular ADM diffusion model architecture, without altering its high-level structure. Observing uncontrolled magnitude changes and imbalances in both the network activations and weights over the course of training, we redesign the network layers to preserve activation, weight, and update magnitudes on expectation. We find that systematic application of this philosophy eliminates the observed drifts and imbalances, resulting in considerably better networks at equal computational complexity. Our modifications improve the previous record FID of 2.41 in ImageNet-512 synthesis to 1.81, achieved using fast deterministic sampling. As an independent contribution, we present a method for setting the exponential moving average (EMA) parameters post-hoc, i.e., after completing the training run. This allows precise tuning of EMA length without the cost of performing several training runs, and reveals its surprising interactions with network architecture, training time, and guidance.
BitNet a4.8: 4-bit Activations for 1-bit LLMs
Recent research on the 1-bit Large Language Models (LLMs), such as BitNet b1.58, presents a promising direction for reducing the inference cost of LLMs while maintaining their performance. In this work, we introduce BitNet a4.8, enabling 4-bit activations for 1-bit LLMs. BitNet a4.8 employs a hybrid quantization and sparsification strategy to mitigate the quantization errors introduced by the outlier channels. Specifically, we utilize 4-bit activations for inputs to the attention and feed-forward network layers, while sparsifying intermediate states followed with 8-bit quantization. Extensive experiments demonstrate that BitNet a4.8 achieves performance comparable to BitNet b1.58 with equivalent training costs, while being faster in inference with enabling 4-bit (INT4/FP4) kernels. Additionally, BitNet a4.8 activates only 55% of parameters and supports 3-bit KV cache, further enhancing the efficiency of large-scale LLM deployment and inference.
Efficient Generative Model Training via Embedded Representation Warmup
Diffusion models excel at generating high-dimensional data but fall short in training efficiency and representation quality compared to self-supervised methods. We identify a key bottleneck: the underutilization of high-quality, semantically rich representations during training notably slows down convergence. Our systematic analysis reveals a critical representation processing region -- primarily in the early layers -- where semantic and structural pattern learning takes place before generation can occur. To address this, we propose Embedded Representation Warmup (ERW), a plug-and-play framework where in the first stage we get the ERW module serves as a warmup that initializes the early layers of the diffusion model with high-quality, pretrained representations. This warmup minimizes the burden of learning representations from scratch, thereby accelerating convergence and boosting performance. Our theoretical analysis demonstrates that ERW's efficacy depends on its precise integration into specific neural network layers -- termed the representation processing region -- where the model primarily processes and transforms feature representations for later generation. We further establish that ERW not only accelerates training convergence but also enhances representation quality: empirically, our method achieves a 40times acceleration in training speed compared to REPA, the current state-of-the-art methods. Code is available at https://github.com/LINs-lab/ERW.
LocalMamba: Visual State Space Model with Windowed Selective Scan
Recent advancements in state space models, notably Mamba, have demonstrated significant progress in modeling long sequences for tasks like language understanding. Yet, their application in vision tasks has not markedly surpassed the performance of traditional Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). This paper posits that the key to enhancing Vision Mamba (ViM) lies in optimizing scan directions for sequence modeling. Traditional ViM approaches, which flatten spatial tokens, overlook the preservation of local 2D dependencies, thereby elongating the distance between adjacent tokens. We introduce a novel local scanning strategy that divides images into distinct windows, effectively capturing local dependencies while maintaining a global perspective. Additionally, acknowledging the varying preferences for scan patterns across different network layers, we propose a dynamic method to independently search for the optimal scan choices for each layer, substantially improving performance. Extensive experiments across both plain and hierarchical models underscore our approach's superiority in effectively capturing image representations. For example, our model significantly outperforms Vim-Ti by 3.1% on ImageNet with the same 1.5G FLOPs. Code is available at: https://github.com/hunto/LocalMamba.
Query-Guided Networks for Few-shot Fine-grained Classification and Person Search
Few-shot fine-grained classification and person search appear as distinct tasks and literature has treated them separately. But a closer look unveils important similarities: both tasks target categories that can only be discriminated by specific object details; and the relevant models should generalize to new categories, not seen during training. We propose a novel unified Query-Guided Network (QGN) applicable to both tasks. QGN consists of a Query-guided Siamese-Squeeze-and-Excitation subnetwork which re-weights both the query and gallery features across all network layers, a Query-guided Region Proposal subnetwork for query-specific localisation, and a Query-guided Similarity subnetwork for metric learning. QGN improves on a few recent few-shot fine-grained datasets, outperforming other techniques on CUB by a large margin. QGN also performs competitively on the person search CUHK-SYSU and PRW datasets, where we perform in-depth analysis.
WISE-TTT:Worldwide Information Segmentation Enhancement
Video multi-target segmentation remains a major challenge in long sequences, mainly due to the inherent limitations of existing architectures in capturing global temporal dependencies. We introduce WISE-TTT, a synergistic architecture integrating Test-Time Training (TTT) mechanisms with the Transformer architecture through co-design. The TTT layer systematically compresses historical temporal data to generate hidden states containing worldwide information(Lossless memory to maintain long contextual integrity), while achieving multi-stage contextual aggregation through splicing. Crucially, our framework provides the first empirical validation that implementing worldwide information across multiple network layers is essential for optimal dependency utilization.Ablation studies show TTT modules at high-level features boost global modeling. This translates to 3.1% accuracy improvement(J&F metric) on Davis2017 long-term benchmarks -- the first proof of hierarchical context superiority in video segmentation. We provide the first systematic evidence that worldwide information critically impacts segmentation performance.
De novo protein design using geometric vector field networks
Innovations like protein diffusion have enabled significant progress in de novo protein design, which is a vital topic in life science. These methods typically depend on protein structure encoders to model residue backbone frames, where atoms do not exist. Most prior encoders rely on atom-wise features, such as angles and distances between atoms, which are not available in this context. Thus far, only several simple encoders, such as IPA, have been proposed for this scenario, exposing the frame modeling as a bottleneck. In this work, we proffer the Vector Field Network (VFN), which enables network layers to perform learnable vector computations between coordinates of frame-anchored virtual atoms, thus achieving a higher capability for modeling frames. The vector computation operates in a manner similar to a linear layer, with each input channel receiving 3D virtual atom coordinates instead of scalar values. The multiple feature vectors output by the vector computation are then used to update the residue representations and virtual atom coordinates via attention aggregation. Remarkably, VFN also excels in modeling both frames and atoms, as the real atoms can be treated as the virtual atoms for modeling, positioning VFN as a potential universal encoder. In protein diffusion (frame modeling), VFN exhibits an impressive performance advantage over IPA, excelling in terms of both designability (67.04% vs. 53.58%) and diversity (66.54% vs. 51.98%). In inverse folding (frame and atom modeling), VFN outperforms the previous SoTA model, PiFold (54.7% vs. 51.66%), on sequence recovery rate. We also propose a method of equipping VFN with the ESM model, which significantly surpasses the previous ESM-based SoTA (62.67% vs. 55.65%), LM-Design, by a substantial margin.
A Robust Stacking Framework for Training Deep Graph Models with Multifaceted Node Features
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data. However the numerical node features utilized by GNNs are commonly extracted from raw data which is of text or tabular (numeric/categorical) type in most real-world applications. The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not simple neural network layers and thus are not easily incorporated into a GNN. Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data, which are ensembled and stacked in multiple layers. Our layer-wise framework leverages bagging and stacking strategies to enjoy strong generalization, in a manner which effectively mitigates label leakage and overfitting. Across a variety of graph datasets with tabular/text node features, our method achieves comparable or superior performance relative to both tabular/text and graph neural network models, as well as existing state-of-the-art hybrid strategies that combine the two.
Dense Prediction with Attentive Feature Aggregation
Aggregating information from features across different layers is an essential operation for dense prediction models. Despite its limited expressiveness, feature concatenation dominates the choice of aggregation operations. In this paper, we introduce Attentive Feature Aggregation (AFA) to fuse different network layers with more expressive non-linear operations. AFA exploits both spatial and channel attention to compute weighted average of the layer activations. Inspired by neural volume rendering, we extend AFA with Scale-Space Rendering (SSR) to perform late fusion of multi-scale predictions. AFA is applicable to a wide range of existing network designs. Our experiments show consistent and significant improvements on challenging semantic segmentation benchmarks, including Cityscapes, BDD100K, and Mapillary Vistas, at negligible computational and parameter overhead. In particular, AFA improves the performance of the Deep Layer Aggregation (DLA) model by nearly 6% mIoU on Cityscapes. Our experimental analyses show that AFA learns to progressively refine segmentation maps and to improve boundary details, leading to new state-of-the-art results on boundary detection benchmarks on BSDS500 and NYUDv2. Code and video resources are available at http://vis.xyz/pub/dla-afa.
Language Modeling with Deep Transformers
We explore deep autoregressive Transformer models in language modeling for speech recognition. We focus on two aspects. First, we revisit Transformer model configurations specifically for language modeling. We show that well configured Transformer models outperform our baseline models based on the shallow stack of LSTM recurrent neural network layers. We carry out experiments on the open-source LibriSpeech 960hr task, for both 200K vocabulary word-level and 10K byte-pair encoding subword-level language modeling. We apply our word-level models to conventional hybrid speech recognition by lattice rescoring, and the subword-level models to attention based encoder-decoder models by shallow fusion. Second, we show that deep Transformer language models do not require positional encoding. The positional encoding is an essential augmentation for the self-attention mechanism which is invariant to sequence ordering. However, in autoregressive setup, as is the case for language modeling, the amount of information increases along the position dimension, which is a positional signal by its own. The analysis of attention weights shows that deep autoregressive self-attention models can automatically make use of such positional information. We find that removing the positional encoding even slightly improves the performance of these models.
A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction
Deep convolutional neural networks have led to breakthrough results in numerous practical machine learning tasks such as classification of images in the ImageNet data set, control-policy-learning to play Atari games or the board game Go, and image captioning. Many of these applications first perform feature extraction and then feed the results thereof into a trainable classifier. The mathematical analysis of deep convolutional neural networks for feature extraction was initiated by Mallat, 2012. Specifically, Mallat considered so-called scattering networks based on a wavelet transform followed by the modulus non-linearity in each network layer, and proved translation invariance (asymptotically in the wavelet scale parameter) and deformation stability of the corresponding feature extractor. This paper complements Mallat's results by developing a theory that encompasses general convolutional transforms, or in more technical parlance, general semi-discrete frames (including Weyl-Heisenberg filters, curvelets, shearlets, ridgelets, wavelets, and learned filters), general Lipschitz-continuous non-linearities (e.g., rectified linear units, shifted logistic sigmoids, hyperbolic tangents, and modulus functions), and general Lipschitz-continuous pooling operators emulating, e.g., sub-sampling and averaging. In addition, all of these elements can be different in different network layers. For the resulting feature extractor we prove a translation invariance result of vertical nature in the sense of the features becoming progressively more translation-invariant with increasing network depth, and we establish deformation sensitivity bounds that apply to signal classes such as, e.g., band-limited functions, cartoon functions, and Lipschitz functions.
Spatial Mixture-of-Experts
Many data have an underlying dependence on spatial location; it may be weather on the Earth, a simulation on a mesh, or a registered image. Yet this feature is rarely taken advantage of, and violates common assumptions made by many neural network layers, such as translation equivariance. Further, many works that do incorporate locality fail to capture fine-grained structure. To address this, we introduce the Spatial Mixture-of-Experts (SMoE) layer, a sparsely-gated layer that learns spatial structure in the input domain and routes experts at a fine-grained level to utilize it. We also develop new techniques to train SMoEs, including a self-supervised routing loss and damping expert errors. Finally, we show strong results for SMoEs on numerous tasks, and set new state-of-the-art results for medium-range weather prediction and post-processing ensemble weather forecasts.
Merge, Then Compress: Demystify Efficient SMoE with Hints from Its Routing Policy
Sparsely activated Mixture-of-Experts (SMoE) has shown promise to scale up the learning capacity of neural networks, however, they have issues like (a) High Memory Usage, due to duplication of the network layers into multiple copies as experts; and (b) Redundancy in Experts, as common learning-based routing policies suffer from representational collapse. Therefore, vanilla SMoE models are memory inefficient and non-scalable, especially for resource-constrained downstream scenarios. In this paper, we ask: Can we craft a compact SMoE model by consolidating expert information? What is the best recipe to merge multiple experts into fewer but more knowledgeable experts? Our pilot investigation reveals that conventional model merging methods fail to be effective in such expert merging for SMoE. The potential reasons are: (1) redundant information overshadows critical experts; (2) appropriate neuron permutation for each expert is missing to bring all of them in alignment. To address this, we propose M-SMoE, which leverages routing statistics to guide expert merging. Specifically, it starts with neuron permutation alignment for experts; then, dominant experts and their "group members" are formed; lastly, every expert group is merged into a single expert by utilizing each expert's activation frequency as their weight for merging, thus diminishing the impact of insignificant experts. Moreover, we observed that our proposed merging promotes a low dimensionality in the merged expert's weight space, naturally paving the way for additional compression. Hence, our final method, MC-SMoE (i.e., Merge, then Compress SMoE), further decomposes the merged experts into low-rank and structural sparse alternatives. Extensive experiments across 8 benchmarks validate the effectiveness of MC-SMoE. For instance, our MC-SMoE achieves up to 80% memory and a 20% FLOPs reduction, with virtually no loss in performance.
Encrypted Large Model Inference: The Equivariant Encryption Paradigm
Large scale deep learning model, such as modern language models and diffusion architectures, have revolutionized applications ranging from natural language processing to computer vision. However, their deployment in distributed or decentralized environments raises significant privacy concerns, as sensitive data may be exposed during inference. Traditional techniques like secure multi-party computation, homomorphic encryption, and differential privacy offer partial remedies but often incur substantial computational overhead, latency penalties, or limited compatibility with non-linear network operations. In this work, we introduce Equivariant Encryption (EE), a novel paradigm designed to enable secure, "blind" inference on encrypted data with near zero performance overhead. Unlike fully homomorphic approaches that encrypt the entire computational graph, EE selectively obfuscates critical internal representations within neural network layers while preserving the exact functionality of both linear and a prescribed set of non-linear operations. This targeted encryption ensures that raw inputs, intermediate activations, and outputs remain confidential, even when processed on untrusted infrastructure. We detail the theoretical foundations of EE, compare its performance and integration complexity against conventional privacy preserving techniques, and demonstrate its applicability across a range of architectures, from convolutional networks to large language models. Furthermore, our work provides a comprehensive threat analysis, outlining potential attack vectors and baseline strategies, and benchmarks EE against standard inference pipelines in decentralized settings. The results confirm that EE maintains high fidelity and throughput, effectively bridging the gap between robust data confidentiality and the stringent efficiency requirements of modern, large scale model inference.
Efficient Language Modeling for Low-Resource Settings with Hybrid RNN-Transformer Architectures
Transformer-based language models have recently been at the forefront of active research in text generation. However, these models' advances come at the price of prohibitive training costs, with parameter counts in the billions and compute requirements measured in petaflop/s-decades. In this paper, we investigate transformer-based architectures for improving model performance in a low-data regime by selectively replacing attention layers with feed-forward and quasi-recurrent neural network layers. We test these architectures on the standard Enwik8 and Wikitext-103 corpora. Our results show that our reduced architectures outperform existing models with a comparable number of parameters, and obtain comparable performance to larger models while significantly reducing the number of parameters.
SparseSSP: 3D Subcellular Structure Prediction from Sparse-View Transmitted Light Images
Traditional fluorescence staining is phototoxic to live cells, slow, and expensive; thus, the subcellular structure prediction (SSP) from transmitted light (TL) images is emerging as a label-free, faster, low-cost alternative. However, existing approaches utilize 3D networks for one-to-one voxel level dense prediction, which necessitates a frequent and time-consuming Z-axis imaging process. Moreover, 3D convolutions inevitably lead to significant computation and GPU memory overhead. Therefore, we propose an efficient framework, SparseSSP, predicting fluorescent intensities within the target voxel grid in an efficient paradigm instead of relying entirely on 3D topologies. In particular, SparseSSP makes two pivotal improvements to prior works. First, SparseSSP introduces a one-to-many voxel mapping paradigm, which permits the sparse TL slices to reconstruct the subcellular structure. Secondly, we propose a hybrid dimensions topology, which folds the Z-axis information into channel features, enabling the 2D network layers to tackle SSP under low computational cost. We conduct extensive experiments to validate the effectiveness and advantages of SparseSSP on diverse sparse imaging ratios, and our approach achieves a leading performance compared to pure 3D topologies. SparseSSP reduces imaging frequencies compared to previous dense-view SSP (i.e., the number of imaging is reduced up to 87.5% at most), which is significant in visualizing rapid biological dynamics on low-cost devices and samples.
AlignedCut: Visual Concepts Discovery on Brain-Guided Universal Feature Space
We study the intriguing connection between visual data, deep networks, and the brain. Our method creates a universal channel alignment by using brain voxel fMRI response prediction as the training objective. We discover that deep networks, trained with different objectives, share common feature channels across various models. These channels can be clustered into recurring sets, corresponding to distinct brain regions, indicating the formation of visual concepts. Tracing the clusters of channel responses onto the images, we see semantically meaningful object segments emerge, even without any supervised decoder. Furthermore, the universal feature alignment and the clustering of channels produce a picture and quantification of how visual information is processed through the different network layers, which produces precise comparisons between the networks.
The Topology and Geometry of Neural Representations
A central question for neuroscience is how to characterize brain representations of perceptual and cognitive content. An ideal characterization should distinguish different functional regions with robustness to noise and idiosyncrasies of individual brains that do not correspond to computational differences. Previous studies have characterized brain representations by their representational geometry, which is defined by the representational dissimilarity matrix (RDM), a summary statistic that abstracts from the roles of individual neurons (or responses channels) and characterizes the discriminability of stimuli. Here we explore a further step of abstraction: from the geometry to the topology of brain representations. We propose topological representational similarity analysis (tRSA), an extension of representational similarity analysis (RSA) that uses a family of geo-topological summary statistics that generalizes the RDM to characterize the topology while de-emphasizing the geometry. We evaluate this new family of statistics in terms of the sensitivity and specificity for model selection using both simulations and functional MRI (fMRI) data. In the simulations, the ground truth is a data-generating layer representation in a neural network model and the models are the same and other layers in different model instances (trained from different random seeds). In fMRI, the ground truth is a visual area and the models are the same and other areas measured in different subjects. Results show that topology-sensitive characterizations of population codes are robust to noise and interindividual variability and maintain excellent sensitivity to the unique representational signatures of different neural network layers and brain regions.
FedSelect: Customized Selection of Parameters for Fine-Tuning during Personalized Federated Learning
Recent advancements in federated learning (FL) seek to increase client-level performance by fine-tuning client parameters on local data or personalizing architectures for the local task. Existing methods for such personalization either prune a global model or fine-tune a global model on a local client distribution. However, these existing methods either personalize at the expense of retaining important global knowledge, or predetermine network layers for fine-tuning, resulting in suboptimal storage of global knowledge within client models. Enlightened by the lottery ticket hypothesis, we first introduce a hypothesis for finding optimal client subnetworks to locally fine-tune while leaving the rest of the parameters frozen. We then propose a novel FL framework, FedSelect, using this procedure that directly personalizes both client subnetwork structure and parameters, via the simultaneous discovery of optimal parameters for personalization and the rest of parameters for global aggregation during training. We show that this method achieves promising results on CIFAR-10.
Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization
Image clustering is one of the most important computer vision applications, which has been extensively studied in literature. However, current clustering methods mostly suffer from lack of efficiency and scalability when dealing with large-scale and high-dimensional data. In this paper, we propose a new clustering model, called DEeP Embedded RegularIzed ClusTering (DEPICT), which efficiently maps data into a discriminative embedding subspace and precisely predicts cluster assignments. DEPICT generally consists of a multinomial logistic regression function stacked on top of a multi-layer convolutional autoencoder. We define a clustering objective function using relative entropy (KL divergence) minimization, regularized by a prior for the frequency of cluster assignments. An alternating strategy is then derived to optimize the objective by updating parameters and estimating cluster assignments. Furthermore, we employ the reconstruction loss functions in our autoencoder, as a data-dependent regularization term, to prevent the deep embedding function from overfitting. In order to benefit from end-to-end optimization and eliminate the necessity for layer-wise pretraining, we introduce a joint learning framework to minimize the unified clustering and reconstruction loss functions together and train all network layers simultaneously. Experimental results indicate the superiority and faster running time of DEPICT in real-world clustering tasks, where no labeled data is available for hyper-parameter tuning.
Large-Scale Image Retrieval with Attentive Deep Local Features
We propose an attentive local feature descriptor suitable for large-scale image retrieval, referred to as DELF (DEep Local Feature). The new feature is based on convolutional neural networks, which are trained only with image-level annotations on a landmark image dataset. To identify semantically useful local features for image retrieval, we also propose an attention mechanism for keypoint selection, which shares most network layers with the descriptor. This framework can be used for image retrieval as a drop-in replacement for other keypoint detectors and descriptors, enabling more accurate feature matching and geometric verification. Our system produces reliable confidence scores to reject false positives---in particular, it is robust against queries that have no correct match in the database. To evaluate the proposed descriptor, we introduce a new large-scale dataset, referred to as Google-Landmarks dataset, which involves challenges in both database and query such as background clutter, partial occlusion, multiple landmarks, objects in variable scales, etc. We show that DELF outperforms the state-of-the-art global and local descriptors in the large-scale setting by significant margins. Code and dataset can be found at the project webpage: https://github.com/tensorflow/models/tree/master/research/delf .
Inverting Visual Representations with Convolutional Networks
Feature representations, both hand-designed and learned ones, are often hard to analyze and interpret, even when they are extracted from visual data. We propose a new approach to study image representations by inverting them with an up-convolutional neural network. We apply the method to shallow representations (HOG, SIFT, LBP), as well as to deep networks. For shallow representations our approach provides significantly better reconstructions than existing methods, revealing that there is surprisingly rich information contained in these features. Inverting a deep network trained on ImageNet provides several insights into the properties of the feature representation learned by the network. Most strikingly, the colors and the rough contours of an image can be reconstructed from activations in higher network layers and even from the predicted class probabilities.
Transformer Feed-Forward Layers Build Predictions by Promoting Concepts in the Vocabulary Space
Transformer-based language models (LMs) are at the core of modern NLP, but their internal prediction construction process is opaque and largely not understood. In this work, we make a substantial step towards unveiling this underlying prediction process, by reverse-engineering the operation of the feed-forward network (FFN) layers, one of the building blocks of transformer models. We view the token representation as a changing distribution over the vocabulary, and the output from each FFN layer as an additive update to that distribution. Then, we analyze the FFN updates in the vocabulary space, showing that each update can be decomposed to sub-updates corresponding to single FFN parameter vectors, each promoting concepts that are often human-interpretable. We then leverage these findings for controlling LM predictions, where we reduce the toxicity of GPT2 by almost 50%, and for improving computation efficiency with a simple early exit rule, saving 20% of computation on average.
DP-SGD Without Clipping: The Lipschitz Neural Network Way
State-of-the-art approaches for training Differentially Private (DP) Deep Neural Networks (DNN) face difficulties to estimate tight bounds on the sensitivity of the network's layers, and instead rely on a process of per-sample gradient clipping. This clipping process not only biases the direction of gradients but also proves costly both in memory consumption and in computation. To provide sensitivity bounds and bypass the drawbacks of the clipping process, we propose to rely on Lipschitz constrained networks. Our theoretical analysis reveals an unexplored link between the Lipschitz constant with respect to their input and the one with respect to their parameters. By bounding the Lipschitz constant of each layer with respect to its parameters, we prove that we can train these networks with privacy guarantees. Our analysis not only allows the computation of the aforementioned sensitivities at scale, but also provides guidance on how to maximize the gradient-to-noise ratio for fixed privacy guarantees. The code has been released as a Python package available at https://github.com/Algue-Rythme/lip-dp
FFN Fusion: Rethinking Sequential Computation in Large Language Models
We introduce FFN Fusion, an architectural optimization technique that reduces sequential computation in large language models by identifying and exploiting natural opportunities for parallelization. Our key insight is that sequences of Feed-Forward Network (FFN) layers, particularly those remaining after the removal of specific attention layers, can often be parallelized with minimal accuracy impact. We develop a principled methodology for identifying and fusing such sequences, transforming them into parallel operations that significantly reduce inference latency while preserving model behavior. Applying these techniques to Llama-3.1-405B-Instruct, we create Llama-Nemotron-Ultra-253B-Base (Ultra-253B-Base), an efficient and soon-to-be publicly available model that achieves a 1.71X speedup in inference latency and 35X lower per-token cost while maintaining strong performance across benchmarks. Through extensive experiments on models from 49B to 253B parameters, we demonstrate that FFN Fusion becomes increasingly effective at larger scales and can complement existing optimization techniques like quantization and pruning. Most intriguingly, we find that even full transformer blocks containing both attention and FFN layers can sometimes be parallelized, suggesting new directions for neural architecture design.
Layer Collaboration in the Forward-Forward Algorithm
Backpropagation, which uses the chain rule, is the de-facto standard algorithm for optimizing neural networks nowadays. Recently, Hinton (2022) proposed the forward-forward algorithm, a promising alternative that optimizes neural nets layer-by-layer, without propagating gradients throughout the network. Although such an approach has several advantages over back-propagation and shows promising results, the fact that each layer is being trained independently limits the optimization process. Specifically, it prevents the network's layers from collaborating to learn complex and rich features. In this work, we study layer collaboration in the forward-forward algorithm. We show that the current version of the forward-forward algorithm is suboptimal when considering information flow in the network, resulting in a lack of collaboration between layers of the network. We propose an improved version that supports layer collaboration to better utilize the network structure, while not requiring any additional assumptions or computations. We empirically demonstrate the efficacy of the proposed version when considering both information flow and objective metrics. Additionally, we provide a theoretical motivation for the proposed method, inspired by functional entropy theory.
R2L: Distilling Neural Radiance Field to Neural Light Field for Efficient Novel View Synthesis
Recent research explosion on Neural Radiance Field (NeRF) shows the encouraging potential to represent complex scenes with neural networks. One major drawback of NeRF is its prohibitive inference time: Rendering a single pixel requires querying the NeRF network hundreds of times. To resolve it, existing efforts mainly attempt to reduce the number of required sampled points. However, the problem of iterative sampling still exists. On the other hand, Neural Light Field (NeLF) presents a more straightforward representation over NeRF in novel view synthesis -- the rendering of a pixel amounts to one single forward pass without ray-marching. In this work, we present a deep residual MLP network (88 layers) to effectively learn the light field. We show the key to successfully learning such a deep NeLF network is to have sufficient data, for which we transfer the knowledge from a pre-trained NeRF model via data distillation. Extensive experiments on both synthetic and real-world scenes show the merits of our method over other counterpart algorithms. On the synthetic scenes, we achieve 26-35x FLOPs reduction (per camera ray) and 28-31x runtime speedup, meanwhile delivering significantly better (1.4-2.8 dB average PSNR improvement) rendering quality than NeRF without any customized parallelism requirement.
Medical Image Classification with KAN-Integrated Transformers and Dilated Neighborhood Attention
Convolutional networks, transformers, hybrid models, and Mamba-based architectures have demonstrated strong performance across various medical image classification tasks. However, these methods were primarily designed to classify clean images using labeled data. In contrast, real-world clinical data often involve image corruptions that are unique to multi-center studies and stem from variations in imaging equipment across manufacturers. In this paper, we introduce the Medical Vision Transformer (MedViTV2), a novel architecture incorporating Kolmogorov-Arnold Network (KAN) layers into the transformer architecture for the first time, aiming for generalized medical image classification. We have developed an efficient KAN block to reduce computational load while enhancing the accuracy of the original MedViT. Additionally, to counteract the fragility of our MedViT when scaled up, we propose an enhanced Dilated Neighborhood Attention (DiNA), an adaptation of the efficient fused dot-product attention kernel capable of capturing global context and expanding receptive fields to scale the model effectively and addressing feature collapse issues. Moreover, a hierarchical hybrid strategy is introduced to stack our Local Feature Perception and Global Feature Perception blocks in an efficient manner, which balances local and global feature perceptions to boost performance. Extensive experiments on 17 medical image classification datasets and 12 corrupted medical image datasets demonstrate that MedViTV2 achieved state-of-the-art results in 27 out of 29 experiments with reduced computational complexity. MedViTV2 is 44\% more computationally efficient than the previous version and significantly enhances accuracy, achieving improvements of 4.6\% on MedMNIST, 5.8\% on NonMNIST, and 13.4\% on the MedMNIST-C benchmark.
CHESS: Optimizing LLM Inference via Channel-Wise Thresholding and Selective Sparsification
Deploying large language models (LLMs) on edge devices presents significant challenges due to the substantial computational overhead and memory requirements. Activation sparsification can mitigate these challenges by reducing the number of activated neurons during inference. Existing methods typically employ thresholding-based sparsification based on the statistics of activation tensors. However, these methods do not explicitly model the impact of activation sparsification on performance, leading to suboptimal performance degradation. To address this issue, this paper reformulates the activation sparsification problem by introducing a new objective that optimizes the sparsification decisions. Building on this reformulation, we propose CHESS, a general activation sparsification approach via CHannel-wise thrEsholding and Selective Sparsification. First, channel-wise thresholding assigns a unique threshold to each activation channel in the feed-forward network (FFN) layers. Then, selective sparsification involves applying thresholding-based activation sparsification to specific layers within the attention modules. Finally, we detail the implementation of sparse kernels to accelerate LLM inference. Experimental results demonstrate that the proposed CHESS achieves lower performance degradation over 8 downstream tasks while activating fewer parameters compared to existing methods, thus speeding up the LLM inference by up to 1.27x.
Kolmogorov-Arnold Transformer
Transformers stand as the cornerstone of mordern deep learning. Traditionally, these models rely on multi-layer perceptron (MLP) layers to mix the information between channels. In this paper, we introduce the Kolmogorov-Arnold Transformer (KAT), a novel architecture that replaces MLP layers with Kolmogorov-Arnold Network (KAN) layers to enhance the expressiveness and performance of the model. Integrating KANs into transformers, however, is no easy feat, especially when scaled up. Specifically, we identify three key challenges: (C1) Base function. The standard B-spline function used in KANs is not optimized for parallel computing on modern hardware, resulting in slower inference speeds. (C2) Parameter and Computation Inefficiency. KAN requires a unique function for each input-output pair, making the computation extremely large. (C3) Weight initialization. The initialization of weights in KANs is particularly challenging due to their learnable activation functions, which are critical for achieving convergence in deep neural networks. To overcome the aforementioned challenges, we propose three key solutions: (S1) Rational basis. We replace B-spline functions with rational functions to improve compatibility with modern GPUs. By implementing this in CUDA, we achieve faster computations. (S2) Group KAN. We share the activation weights through a group of neurons, to reduce the computational load without sacrificing performance. (S3) Variance-preserving initialization. We carefully initialize the activation weights to make sure that the activation variance is maintained across layers. With these designs, KAT scales effectively and readily outperforms traditional MLP-based transformers.
FinerCut: Finer-grained Interpretable Layer Pruning for Large Language Models
Overparametrized transformer networks are the state-of-the-art architecture for Large Language Models (LLMs). However, such models contain billions of parameters making large compute a necessity, while raising environmental concerns. To address these issues, we propose FinerCut, a new form of fine-grained layer pruning, which in contrast to prior work at the transformer block level, considers all self-attention and feed-forward network (FFN) layers within blocks as individual pruning candidates. FinerCut prunes layers whose removal causes minimal alternation to the model's output -- contributing to a new, lean, interpretable, and task-agnostic pruning method. Tested across 9 benchmarks, our approach retains 90% performance of Llama3-8B with 25% layers removed, and 95% performance of Llama3-70B with 30% layers removed, all without fine-tuning or post-pruning reconstruction. Strikingly, we observe intriguing results with FinerCut: 42% (34 out of 80) of the self-attention layers in Llama3-70B can be removed while preserving 99% of its performance -- without additional fine-tuning after removal. Moreover, FinerCut provides a tool to inspect the types and locations of pruned layers, allowing to observe interesting pruning behaviors. For instance, we observe a preference for pruning self-attention layers, often at deeper consecutive decoder layers. We hope our insights inspire future efficient LLM architecture designs.
N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning
While bigger and deeper neural network architectures continue to advance the state-of-the-art for many computer vision tasks, real-world adoption of these networks is impeded by hardware and speed constraints. Conventional model compression methods attempt to address this problem by modifying the architecture manually or using pre-defined heuristics. Since the space of all reduced architectures is very large, modifying the architecture of a deep neural network in this way is a difficult task. In this paper, we tackle this issue by introducing a principled method for learning reduced network architectures in a data-driven way using reinforcement learning. Our approach takes a larger `teacher' network as input and outputs a compressed `student' network derived from the `teacher' network. In the first stage of our method, a recurrent policy network aggressively removes layers from the large `teacher' model. In the second stage, another recurrent policy network carefully reduces the size of each remaining layer. The resulting network is then evaluated to obtain a reward -- a score based on the accuracy and compression of the network. Our approach uses this reward signal with policy gradients to train the policies to find a locally optimal student network. Our experiments show that we can achieve compression rates of more than 10x for models such as ResNet-34 while maintaining similar performance to the input `teacher' network. We also present a valuable transfer learning result which shows that policies which are pre-trained on smaller `teacher' networks can be used to rapidly speed up training on larger `teacher' networks.
Robust Grasp Planning Over Uncertain Shape Completions
We present a method for planning robust grasps over uncertain shape completed objects. For shape completion, a deep neural network is trained to take a partial view of the object as input and outputs the completed shape as a voxel grid. The key part of the network is dropout layers which are enabled not only during training but also at run-time to generate a set of shape samples representing the shape uncertainty through Monte Carlo sampling. Given the set of shape completed objects, we generate grasp candidates on the mean object shape but evaluate them based on their joint performance in terms of analytical grasp metrics on all the shape candidates. We experimentally validate and benchmark our method against another state-of-the-art method with a Barrett hand on 90000 grasps in simulation and 200 grasps on a real Franka Emika Panda. All experimental results show statistically significant improvements both in terms of grasp quality metrics and grasp success rate, demonstrating that planning shape-uncertainty-aware grasps brings significant advantages over solely planning on a single shape estimate, especially when dealing with complex or unknown objects.
Investigating the Benefits of Projection Head for Representation Learning
An effective technique for obtaining high-quality representations is adding a projection head on top of the encoder during training, then discarding it and using the pre-projection representations. Despite its proven practical effectiveness, the reason behind the success of this technique is poorly understood. The pre-projection representations are not directly optimized by the loss function, raising the question: what makes them better? In this work, we provide a rigorous theoretical answer to this question. We start by examining linear models trained with self-supervised contrastive loss. We reveal that the implicit bias of training algorithms leads to layer-wise progressive feature weighting, where features become increasingly unequal as we go deeper into the layers. Consequently, lower layers tend to have more normalized and less specialized representations. We theoretically characterize scenarios where such representations are more beneficial, highlighting the intricate interplay between data augmentation and input features. Additionally, we demonstrate that introducing non-linearity into the network allows lower layers to learn features that are completely absent in higher layers. Finally, we show how this mechanism improves the robustness in supervised contrastive learning and supervised learning. We empirically validate our results through various experiments on CIFAR-10/100, UrbanCars and shifted versions of ImageNet. We also introduce a potential alternative to projection head, which offers a more interpretable and controllable design.
Fact-Checking the Output of Large Language Models via Token-Level Uncertainty Quantification
Large language models (LLMs) are notorious for hallucinating, i.e., producing erroneous claims in their output. Such hallucinations can be dangerous, as occasional factual inaccuracies in the generated text might be obscured by the rest of the output being generally factual, making it extremely hard for the users to spot them. Current services that leverage LLMs usually do not provide any means for detecting unreliable generations. Here, we aim to bridge this gap. In particular, we propose a novel fact-checking and hallucination detection pipeline based on token-level uncertainty quantification. Uncertainty scores leverage information encapsulated in the output of a neural network or its layers to detect unreliable predictions, and we show that they can be used to fact-check the atomic claims in the LLM output. Moreover, we present a novel token-level uncertainty quantification method that removes the impact of uncertainty about what claim to generate on the current step and what surface form to use. Our method Claim Conditioned Probability (CCP) measures only the uncertainty of particular claim value expressed by the model. Experiments on the task of biography generation demonstrate strong improvements for CCP compared to the baselines for six different LLMs and three languages. Human evaluation reveals that the fact-checking pipeline based on uncertainty quantification is competitive with a fact-checking tool that leverages external knowledge.
Convolutional Hough Matching Networks
Despite advances in feature representation, leveraging geometric relations is crucial for establishing reliable visual correspondences under large variations of images. In this work we introduce a Hough transform perspective on convolutional matching and propose an effective geometric matching algorithm, dubbed Convolutional Hough Matching (CHM). The method distributes similarities of candidate matches over a geometric transformation space and evaluate them in a convolutional manner. We cast it into a trainable neural layer with a semi-isotropic high-dimensional kernel, which learns non-rigid matching with a small number of interpretable parameters. To validate the effect, we develop the neural network with CHM layers that perform convolutional matching in the space of translation and scaling. Our method sets a new state of the art on standard benchmarks for semantic visual correspondence, proving its strong robustness to challenging intra-class variations.
Understanding and Improving Transformer From a Multi-Particle Dynamic System Point of View
The Transformer architecture is widely used in natural language processing. Despite its success, the design principle of the Transformer remains elusive. In this paper, we provide a novel perspective towards understanding the architecture: we show that the Transformer can be mathematically interpreted as a numerical Ordinary Differential Equation (ODE) solver for a convection-diffusion equation in a multi-particle dynamic system. In particular, how words in a sentence are abstracted into contexts by passing through the layers of the Transformer can be interpreted as approximating multiple particles' movement in the space using the Lie-Trotter splitting scheme and the Euler's method. Given this ODE's perspective, the rich literature of numerical analysis can be brought to guide us in designing effective structures beyond the Transformer. As an example, we propose to replace the Lie-Trotter splitting scheme by the Strang-Marchuk splitting scheme, a scheme that is more commonly used and with much lower local truncation errors. The Strang-Marchuk splitting scheme suggests that the self-attention and position-wise feed-forward network (FFN) sub-layers should not be treated equally. Instead, in each layer, two position-wise FFN sub-layers should be used, and the self-attention sub-layer is placed in between. This leads to a brand new architecture. Such an FFN-attention-FFN layer is "Macaron-like", and thus we call the network with this new architecture the Macaron Net. Through extensive experiments, we show that the Macaron Net is superior to the Transformer on both supervised and unsupervised learning tasks. The reproducible codes and pretrained models can be found at https://github.com/zhuohan123/macaron-net
Convolutional Hough Matching Networks for Robust and Efficient Visual Correspondence
Despite advances in feature representation, leveraging geometric relations is crucial for establishing reliable visual correspondences under large variations of images. In this work we introduce a Hough transform perspective on convolutional matching and propose an effective geometric matching algorithm, dubbed Convolutional Hough Matching (CHM). The method distributes similarities of candidate matches over a geometric transformation space and evaluates them in a convolutional manner. We cast it into a trainable neural layer with a semi-isotropic high-dimensional kernel, which learns non-rigid matching with a small number of interpretable parameters. To further improve the efficiency of high-dimensional voting, we also propose to use an efficient kernel decomposition with center-pivot neighbors, which significantly sparsifies the proposed semi-isotropic kernels without performance degradation. To validate the proposed techniques, we develop the neural network with CHM layers that perform convolutional matching in the space of translation and scaling. Our method sets a new state of the art on standard benchmarks for semantic visual correspondence, proving its strong robustness to challenging intra-class variations.
Going Deeper with Convolutions
We propose a deep convolutional neural network architecture codenamed "Inception", which was responsible for setting the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC 2014). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. This was achieved by a carefully crafted design that allows for increasing the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC 2014 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.
Auto-Transfer: Learning to Route Transferrable Representations
Knowledge transfer between heterogeneous source and target networks and tasks has received a lot of attention in recent times as large amounts of quality labeled data can be difficult to obtain in many applications. Existing approaches typically constrain the target deep neural network (DNN) feature representations to be close to the source DNNs feature representations, which can be limiting. We, in this paper, propose a novel adversarial multi-armed bandit approach that automatically learns to route source representations to appropriate target representations following which they are combined in meaningful ways to produce accurate target models. We see upwards of 5\% accuracy improvements compared with the state-of-the-art knowledge transfer methods on four benchmark (target) image datasets CUB200, Stanford Dogs, MIT67, and Stanford40 where the source dataset is ImageNet. We qualitatively analyze the goodness of our transfer scheme by showing individual examples of the important features focused on by our target network at different layers compared with the (closest) competitors. We also observe that our improvement over other methods is higher for smaller target datasets making it an effective tool for small data applications that may benefit from transfer learning.
Benchmarking the Robustness of Instance Segmentation Models
This paper presents a comprehensive evaluation of instance segmentation models with respect to real-world image corruptions as well as out-of-domain image collections, e.g. images captured by a different set-up than the training dataset. The out-of-domain image evaluation shows the generalization capability of models, an essential aspect of real-world applications and an extensively studied topic of domain adaptation. These presented robustness and generalization evaluations are important when designing instance segmentation models for real-world applications and picking an off-the-shelf pretrained model to directly use for the task at hand. Specifically, this benchmark study includes state-of-the-art network architectures, network backbones, normalization layers, models trained starting from scratch versus pretrained networks, and the effect of multi-task training on robustness and generalization. Through this study, we gain several insights. For example, we find that group normalization enhances the robustness of networks across corruptions where the image contents stay the same but corruptions are added on top. On the other hand, batch normalization improves the generalization of the models across different datasets where statistics of image features change. We also find that single-stage detectors do not generalize well to larger image resolutions than their training size. On the other hand, multi-stage detectors can easily be used on images of different sizes. We hope that our comprehensive study will motivate the development of more robust and reliable instance segmentation models.
Knapsack Pruning with Inner Distillation
Neural network pruning reduces the computational cost of an over-parameterized network to improve its efficiency. Popular methods vary from ell_1-norm sparsification to Neural Architecture Search (NAS). In this work, we propose a novel pruning method that optimizes the final accuracy of the pruned network and distills knowledge from the over-parameterized parent network's inner layers. To enable this approach, we formulate the network pruning as a Knapsack Problem which optimizes the trade-off between the importance of neurons and their associated computational cost. Then we prune the network channels while maintaining the high-level structure of the network. The pruned network is fine-tuned under the supervision of the parent network using its inner network knowledge, a technique we refer to as the Inner Knowledge Distillation. Our method leads to state-of-the-art pruning results on ImageNet, CIFAR-10 and CIFAR-100 using ResNet backbones. To prune complex network structures such as convolutions with skip-links and depth-wise convolutions, we propose a block grouping approach to cope with these structures. Through this we produce compact architectures with the same FLOPs as EfficientNet-B0 and MobileNetV3 but with higher accuracy, by 1% and 0.3% respectively on ImageNet, and faster runtime on GPU.
Language models and Automated Essay Scoring
In this paper, we present a new comparative study on automatic essay scoring (AES). The current state-of-the-art natural language processing (NLP) neural network architectures are used in this work to achieve above human-level accuracy on the publicly available Kaggle AES dataset. We compare two powerful language models, BERT and XLNet, and describe all the layers and network architectures in these models. We elucidate the network architectures of BERT and XLNet using clear notation and diagrams and explain the advantages of transformer architectures over traditional recurrent neural network architectures. Linear algebra notation is used to clarify the functions of transformers and attention mechanisms. We compare the results with more traditional methods, such as bag of words (BOW) and long short term memory (LSTM) networks.
A Peek Into the Hidden Layers of a Convolutional Neural Network Through a Factorization Lens
Despite their increasing popularity and success in a variety of supervised learning problems, deep neural networks are extremely hard to interpret and debug: Given and already trained Deep Neural Net, and a set of test inputs, how can we gain insight into how those inputs interact with different layers of the neural network? Furthermore, can we characterize a given deep neural network based on it's observed behavior on different inputs? In this paper we propose a novel factorization based approach on understanding how different deep neural networks operate. In our preliminary results, we identify fascinating patterns that link the factorization rank (typically used as a measure of interestingness in unsupervised data analysis) with how well or poorly the deep network has been trained. Finally, our proposed approach can help provide visual insights on how high-level. interpretable patterns of the network's input behave inside the hidden layers of the deep network.
Network Pruning via Transformable Architecture Search
Network pruning reduces the computation costs of an over-parameterized network without performance damage. Prevailing pruning algorithms pre-define the width and depth of the pruned networks, and then transfer parameters from the unpruned network to pruned networks. To break the structure limitation of the pruned networks, we propose to apply neural architecture search to search directly for a network with flexible channel and layer sizes. The number of the channels/layers is learned by minimizing the loss of the pruned networks. The feature map of the pruned network is an aggregation of K feature map fragments (generated by K networks of different sizes), which are sampled based on the probability distribution.The loss can be back-propagated not only to the network weights, but also to the parameterized distribution to explicitly tune the size of the channels/layers. Specifically, we apply channel-wise interpolation to keep the feature map with different channel sizes aligned in the aggregation procedure. The maximum probability for the size in each distribution serves as the width and depth of the pruned network, whose parameters are learned by knowledge transfer, e.g., knowledge distillation, from the original networks. Experiments on CIFAR-10, CIFAR-100 and ImageNet demonstrate the effectiveness of our new perspective of network pruning compared to traditional network pruning algorithms. Various searching and knowledge transfer approaches are conducted to show the effectiveness of the two components. Code is at: https://github.com/D-X-Y/NAS-Projects.
When Layers Play the Lottery, all Tickets Win at Initialization
Pruning is a standard technique for reducing the computational cost of deep networks. Many advances in pruning leverage concepts from the Lottery Ticket Hypothesis (LTH). LTH reveals that inside a trained dense network exists sparse subnetworks (tickets) able to achieve similar accuracy (i.e., win the lottery - winning tickets). Pruning at initialization focuses on finding winning tickets without training a dense network. Studies on these concepts share the trend that subnetworks come from weight or filter pruning. In this work, we investigate LTH and pruning at initialization from the lens of layer pruning. First, we confirm the existence of winning tickets when the pruning process removes layers. Leveraged by this observation, we propose to discover these winning tickets at initialization, eliminating the requirement of heavy computational resources for training the initial (over-parameterized) dense network. Extensive experiments show that our winning tickets notably speed up the training phase and reduce up to 51% of carbon emission, an important step towards democratization and green Artificial Intelligence. Beyond computational benefits, our winning tickets exhibit robustness against adversarial and out-of-distribution examples. Finally, we show that our subnetworks easily win the lottery at initialization while tickets from filter removal (the standard structured LTH) hardly become winning tickets.
Hierarchically Gated Recurrent Neural Network for Sequence Modeling
Transformers have surpassed RNNs in popularity due to their superior abilities in parallel training and long-term dependency modeling. Recently, there has been a renewed interest in using linear RNNs for efficient sequence modeling. These linear RNNs often employ gating mechanisms in the output of the linear recurrence layer while ignoring the significance of using forget gates within the recurrence. In this paper, we propose a gated linear RNN model dubbed Hierarchically Gated Recurrent Neural Network (HGRN), which includes forget gates that are lower bounded by a learnable value. The lower bound increases monotonically when moving up layers. This allows the upper layers to model long-term dependencies and the lower layers to model more local, short-term dependencies. Experiments on language modeling, image classification, and long-range arena benchmarks showcase the efficiency and effectiveness of our proposed model. The source code is available at https://github.com/OpenNLPLab/HGRN.
Sorted LLaMA: Unlocking the Potential of Intermediate Layers of Large Language Models for Dynamic Inference Using Sorted Fine-Tuning (SoFT)
The rapid advancement of large language models (LLMs) has revolutionized natural language processing (NLP). While these models excel at understanding and generating human-like text, their widespread deployment can be prohibitively expensive. SortedNet is a recent training technique for enabling dynamic inference for deep neural networks. It leverages network modularity to create sub-models with varying computational loads, sorting them based on computation/accuracy characteristics in a nested manner. We extend SortedNet to generative NLP tasks, making large language models dynamic without any pretraining and by only replacing standard Supervised Fine-Tuning (SFT) with Sorted Fine-Tuning (SoFT) at the same costs. Our approach boosts model efficiency, eliminating the need for multiple models for various scenarios during inference. We show that using this approach, we are able to unlock the potential of intermediate layers of transformers in generating the target output. Our sub-models remain integral components of the original model, minimizing storage requirements and transition costs between different computational/latency budgets. By applying this approach on LLaMa 2 13B for tuning on the Stanford Alpaca dataset and comparing it to normal tuning and early exit via PandaLM benchmark, we show that Sorted Fine-Tuning can deliver models twice as fast as the original model while maintaining or exceeding performance.
A joint 3D UNet-Graph Neural Network-based method for Airway Segmentation from chest CTs
We present an end-to-end deep learning segmentation method by combining a 3D UNet architecture with a graph neural network (GNN) model. In this approach, the convolutional layers at the deepest level of the UNet are replaced by a GNN-based module with a series of graph convolutions. The dense feature maps at this level are transformed into a graph input to the GNN module. The incorporation of graph convolutions in the UNet provides nodes in the graph with information that is based on node connectivity, in addition to the local features learnt through the downsampled paths. This information can help improve segmentation decisions. By stacking several graph convolution layers, the nodes can access higher order neighbourhood information without substantial increase in computational expense. We propose two types of node connectivity in the graph adjacency: i) one predefined and based on a regular node neighbourhood, and ii) one dynamically computed during training and using the nearest neighbour nodes in the feature space. We have applied this method to the task of segmenting the airway tree from chest CT scans. Experiments have been performed on 32 CTs from the Danish Lung Cancer Screening Trial dataset. We evaluate the performance of the UNet-GNN models with two types of graph adjacency and compare it with the baseline UNet.
DurIAN-E: Duration Informed Attention Network For Expressive Text-to-Speech Synthesis
This paper introduces an improved duration informed attention neural network (DurIAN-E) for expressive and high-fidelity text-to-speech (TTS) synthesis. Inherited from the original DurIAN model, an auto-regressive model structure in which the alignments between the input linguistic information and the output acoustic features are inferred from a duration model is adopted. Meanwhile the proposed DurIAN-E utilizes multiple stacked SwishRNN-based Transformer blocks as linguistic encoders. Style-Adaptive Instance Normalization (SAIN) layers are exploited into frame-level encoders to improve the modeling ability of expressiveness. A denoiser incorporating both denoising diffusion probabilistic model (DDPM) for mel-spectrograms and SAIN modules is conducted to further improve the synthetic speech quality and expressiveness. Experimental results prove that the proposed expressive TTS model in this paper can achieve better performance than the state-of-the-art approaches in both subjective mean opinion score (MOS) and preference tests.
Neural Network Pruning as Spectrum Preserving Process
Neural networks have achieved remarkable performance in various application domains. Nevertheless, a large number of weights in pre-trained deep neural networks prohibit them from being deployed on smartphones and embedded systems. It is highly desirable to obtain lightweight versions of neural networks for inference in edge devices. Many cost-effective approaches were proposed to prune dense and convolutional layers that are common in deep neural networks and dominant in the parameter space. However, a unified theoretical foundation for the problem mostly is missing. In this paper, we identify the close connection between matrix spectrum learning and neural network training for dense and convolutional layers and argue that weight pruning is essentially a matrix sparsification process to preserve the spectrum. Based on the analysis, we also propose a matrix sparsification algorithm tailored for neural network pruning that yields better pruning result. We carefully design and conduct experiments to support our arguments. Hence we provide a consolidated viewpoint for neural network pruning and enhance the interpretability of deep neural networks by identifying and preserving the critical neural weights.
SpeedUpNet: A Plug-and-Play Hyper-Network for Accelerating Text-to-Image Diffusion Models
Text-to-image diffusion models (SD) exhibit significant advancements while requiring extensive computational resources. Though many acceleration methods have been proposed, they suffer from generation quality degradation or extra training cost generalizing to new fine-tuned models. To address these limitations, we propose a novel and universal Stable-Diffusion (SD) acceleration module called SpeedUpNet(SUN). SUN can be directly plugged into various fine-tuned SD models without extra training. This technique utilizes cross-attention layers to learn the relative offsets in the generated image results between negative and positive prompts achieving classifier-free guidance distillation with negative prompts controllable, and introduces a Multi-Step Consistency (MSC) loss to ensure a harmonious balance between reducing inference steps and maintaining consistency in the generated output. Consequently, SUN significantly reduces the number of inference steps to just 4 steps and eliminates the need for classifier-free guidance. It leads to an overall speedup of more than 10 times for SD models compared to the state-of-the-art 25-step DPM-solver++, and offers two extra advantages: (1) classifier-free guidance distillation with controllable negative prompts and (2) seamless integration into various fine-tuned Stable-Diffusion models without training. The effectiveness of the SUN has been verified through extensive experimentation. Project Page: https://williechai.github.io/speedup-plugin-for-stable-diffusions.github.io
Reconstructing commuters network using machine learning and urban indicators
Human mobility has a significant impact on several layers of society, from infrastructural planning and economics to the spread of diseases and crime. Representing the system as a complex network, in which nodes are assigned to regions (e.g., a city) and links indicate the flow of people between two of them, physics-inspired models have been proposed to quantify the number of people migrating from one city to the other. Despite the advances made by these models, our ability to predict the number of commuters and reconstruct mobility networks remains limited. Here, we propose an alternative approach using machine learning and 22 urban indicators to predict the flow of people and reconstruct the intercity commuters network. Our results reveal that predictions based on machine learning algorithms and urban indicators can reconstruct the commuters network with 90.4% of accuracy and describe 77.6% of the variance observed in the flow of people between cities. We also identify essential features to recover the network structure and the urban indicators mostly related to commuting patterns. As previously reported, distance plays a significant role in commuting, but other indicators, such as Gross Domestic Product (GDP) and unemployment rate, are also driven-forces for people to commute. We believe that our results shed new lights on the modeling of migration and reinforce the role of urban indicators on commuting patterns. Also, because link-prediction and network reconstruction are still open challenges in network science, our results have implications in other areas, like economics, social sciences, and biology, where node attributes can give us information about the existence of links connecting entities in the network.
Mix-LN: Unleashing the Power of Deeper Layers by Combining Pre-LN and Post-LN
Large Language Models (LLMs) have achieved remarkable success, yet recent findings reveal that their deeper layers often contribute minimally and can be pruned without affecting overall performance. While some view this as an opportunity for model compression, we identify it as a training shortfall rooted in the widespread use of Pre-Layer Normalization (Pre-LN). We demonstrate that Pre-LN, commonly employed in models like GPT and LLaMA, leads to diminished gradient norms in its deeper layers, reducing their effectiveness. In contrast, Post-Layer Normalization (Post-LN) preserves larger gradient norms in deeper layers but suffers from vanishing gradients in earlier layers. To address this, we introduce Mix-LN, a novel normalization technique that combines the strengths of Pre-LN and Post-LN within the same model. Mix-LN applies Post-LN to the earlier layers and Pre-LN to the deeper layers, ensuring more uniform gradients across layers. This allows all parts of the network--both shallow and deep layers--to contribute effectively to training. Extensive experiments with various model sizes from 70M to 7B demonstrate that Mix-LN consistently outperforms both Pre-LN and Post-LN, promoting more balanced, healthier gradient norms throughout the network, and enhancing the overall quality of LLM pre-training. Furthermore, we demonstrate that models pre-trained with Mix-LN learn better compared to those using Pre-LN or Post-LN during supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), highlighting the critical importance of high-quality deep layers. By effectively addressing the inefficiencies of deep layers in current LLMs, Mix-LN unlocks their potential, enhancing model capacity without increasing model size. Our code is available at https://github.com/pixeli99/MixLN.
Joint Liver and Hepatic Lesion Segmentation in MRI using a Hybrid CNN with Transformer Layers
Deep learning-based segmentation of the liver and hepatic lesions therein steadily gains relevance in clinical practice due to the increasing incidence of liver cancer each year. Whereas various network variants with overall promising results in the field of medical image segmentation have been successfully developed over the last years, almost all of them struggle with the challenge of accurately segmenting hepatic lesions in magnetic resonance imaging (MRI). This led to the idea of combining elements of convolutional and transformer-based architectures to overcome the existing limitations. This work presents a hybrid network called SWTR-Unet, consisting of a pretrained ResNet, transformer blocks as well as a common Unet-style decoder path. This network was primarily applied to single-modality non-contrast-enhanced liver MRI and additionally to the publicly available computed tomography (CT) data of the liver tumor segmentation (LiTS) challenge to verify the applicability on other modalities. For a broader evaluation, multiple state-of-the-art networks were implemented and applied, ensuring a direct comparability. Furthermore, correlation analysis and an ablation study were carried out, to investigate various influencing factors on the segmentation accuracy of the presented method. With Dice scores of averaged 98+-2% for liver and 81+-28% lesion segmentation on the MRI dataset and 97+-2% and 79+-25%, respectively on the CT dataset, the proposed SWTR-Unet proved to be a precise approach for liver and hepatic lesion segmentation with state-of-the-art results for MRI and competing accuracy in CT imaging. The achieved segmentation accuracy was found to be on par with manually performed expert segmentations as indicated by inter-observer variabilities for liver lesion segmentation. In conclusion, the presented method could save valuable time and resources in clinical practice.
CalibFormer: A Transformer-based Automatic LiDAR-Camera Calibration Network
The fusion of LiDARs and cameras has been increasingly adopted in autonomous driving for perception tasks. The performance of such fusion-based algorithms largely depends on the accuracy of sensor calibration, which is challenging due to the difficulty of identifying common features across different data modalities. Previously, many calibration methods involved specific targets and/or manual intervention, which has proven to be cumbersome and costly. Learning-based online calibration methods have been proposed, but their performance is barely satisfactory in most cases. These methods usually suffer from issues such as sparse feature maps, unreliable cross-modality association, inaccurate calibration parameter regression, etc. In this paper, to address these issues, we propose CalibFormer, an end-to-end network for automatic LiDAR-camera calibration. We aggregate multiple layers of camera and LiDAR image features to achieve high-resolution representations. A multi-head correlation module is utilized to identify correlations between features more accurately. Lastly, we employ transformer architectures to estimate accurate calibration parameters from the correlation information. Our method achieved a mean translation error of 0.8751 cm and a mean rotation error of 0.0562 ^{circ} on the KITTI dataset, surpassing existing state-of-the-art methods and demonstrating strong robustness, accuracy, and generalization capabilities.
Towards A Unified View of Sparse Feed-Forward Network in Pretraining Large Language Model
Large and sparse feed-forward layers (S-FFN) such as Mixture-of-Experts (MoE) have proven effective in scaling up Transformers model size for pretraining large language models. By only activating part of the FFN parameters conditioning on input, S-FFN improves generalization performance while keeping training and inference costs (in FLOPs) fixed. In this work, we analyzed two major design choices of S-FFN: the memory block (a.k.a. expert) size and the memory block selection method under a general conceptual framework of sparse neural memory. Using this unified framework, we compare several S-FFN architectures for language modeling and provide insights into their relative efficacy and efficiency. We found a simpler selection method -- \texttt{Avg-K} that selects blocks through their mean aggregated hidden states, achieving lower perplexity in language model pretraining compared to existing MoE architectures including Switch Transformer (Fedus et al., 2021) and HashLayer (Roller et al., 2021).
Residual Attention Network for Image Classification
In this work, we propose "Residual Attention Network", a convolutional neural network using attention mechanism which can incorporate with state-of-art feed forward network architecture in an end-to-end training fashion. Our Residual Attention Network is built by stacking Attention Modules which generate attention-aware features. The attention-aware features from different modules change adaptively as layers going deeper. Inside each Attention Module, bottom-up top-down feedforward structure is used to unfold the feedforward and feedback attention process into a single feedforward process. Importantly, we propose attention residual learning to train very deep Residual Attention Networks which can be easily scaled up to hundreds of layers. Extensive analyses are conducted on CIFAR-10 and CIFAR-100 datasets to verify the effectiveness of every module mentioned above. Our Residual Attention Network achieves state-of-the-art object recognition performance on three benchmark datasets including CIFAR-10 (3.90% error), CIFAR-100 (20.45% error) and ImageNet (4.8% single model and single crop, top-5 error). Note that, our method achieves 0.6% top-1 accuracy improvement with 46% trunk depth and 69% forward FLOPs comparing to ResNet-200. The experiment also demonstrates that our network is robust against noisy labels.
ShortGPT: Layers in Large Language Models are More Redundant Than You Expect
As Large Language Models (LLMs) continue to advance in performance, their size has escalated significantly, with current LLMs containing billions or even trillions of parameters. However, in this study, we discovered that many layers of LLMs exhibit high similarity, and some layers play a negligible role in network functionality. Based on this observation, we define a metric called Block Influence (BI) to gauge the significance of each layer in LLMs. We then propose a straightforward pruning approach: layer removal, in which we directly delete the redundant layers in LLMs based on their BI scores. Experiments demonstrate that our method, which we call ShortGPT, significantly outperforms previous state-of-the-art (SOTA) methods in model pruning. Moreover, ShortGPT is orthogonal to quantization-like methods, enabling further reduction in parameters and computation. The ability to achieve better results through simple layer removal, as opposed to more complex pruning techniques, suggests a high degree of redundancy in the model architecture.
Stack More Layers Differently: High-Rank Training Through Low-Rank Updates
Despite the dominance and effectiveness of scaling, resulting in large networks with hundreds of billions of parameters, the necessity to train overparametrized models remains poorly understood, and alternative approaches do not necessarily make it cheaper to train high-performance models. In this paper, we explore low-rank training techniques as an alternative approach to training large neural networks. We introduce a novel method called ReLoRA, which utilizes low-rank updates to train high-rank networks. We apply ReLoRA to pre-training transformer language models with up to 350M parameters and demonstrate comparable performance to regular neural network training. Furthermore, we observe that the efficiency of ReLoRA increases with model size, making it a promising approach for training multi-billion-parameter networks efficiently. Our findings shed light on the potential of low-rank training techniques and their implications for scaling laws.
KUIELab-MDX-Net: A Two-Stream Neural Network for Music Demixing
Recently, many methods based on deep learning have been proposed for music source separation. Some state-of-the-art methods have shown that stacking many layers with many skip connections improve the SDR performance. Although such a deep and complex architecture shows outstanding performance, it usually requires numerous computing resources and time for training and evaluation. This paper proposes a two-stream neural network for music demixing, called KUIELab-MDX-Net, which shows a good balance of performance and required resources. The proposed model has a time-frequency branch and a time-domain branch, where each branch separates stems, respectively. It blends results from two streams to generate the final estimation. KUIELab-MDX-Net took second place on leaderboard A and third place on leaderboard B in the Music Demixing Challenge at ISMIR 2021. This paper also summarizes experimental results on another benchmark, MUSDB18. Our source code is available online.
Classification of Non-native Handwritten Characters Using Convolutional Neural Network
The use of convolutional neural networks (CNNs) has accelerated the progress of handwritten character classification/recognition. Handwritten character recognition (HCR) has found applications in various domains, such as traffic signal detection, language translation, and document information extraction. However, the widespread use of existing HCR technology is yet to be seen as it does not provide reliable character recognition with outstanding accuracy. One of the reasons for unreliable HCR is that existing HCR methods do not take the handwriting styles of non-native writers into account. Hence, further improvement is needed to ensure the reliability and extensive deployment of character recognition technologies for critical tasks. In this work, the classification of English characters written by non-native users is performed by proposing a custom-tailored CNN model. We train this CNN with a new dataset called the handwritten isolated English character (HIEC) dataset. This dataset consists of 16,496 images collected from 260 persons. This paper also includes an ablation study of our CNN by adjusting hyperparameters to identify the best model for the HIEC dataset. The proposed model with five convolutional layers and one hidden layer outperforms state-of-the-art models in terms of character recognition accuracy and achieves an accuracy of 97.04%. Compared with the second-best model, the relative improvement of our model in terms of classification accuracy is 4.38%.
Dynamic Neural Network for Multi-Task Learning Searching across Diverse Network Topologies
In this paper, we present a new MTL framework that searches for structures optimized for multiple tasks with diverse graph topologies and shares features among tasks. We design a restricted DAG-based central network with read-in/read-out layers to build topologically diverse task-adaptive structures while limiting search space and time. We search for a single optimized network that serves as multiple task adaptive sub-networks using our three-stage training process. To make the network compact and discretized, we propose a flow-based reduction algorithm and a squeeze loss used in the training process. We evaluate our optimized network on various public MTL datasets and show ours achieves state-of-the-art performance. An extensive ablation study experimentally validates the effectiveness of the sub-module and schemes in our framework.
Designing Network Design Strategies Through Gradient Path Analysis
Designing a high-efficiency and high-quality expressive network architecture has always been the most important research topic in the field of deep learning. Most of today's network design strategies focus on how to integrate features extracted from different layers, and how to design computing units to effectively extract these features, thereby enhancing the expressiveness of the network. This paper proposes a new network design strategy, i.e., to design the network architecture based on gradient path analysis. On the whole, most of today's mainstream network design strategies are based on feed forward path, that is, the network architecture is designed based on the data path. In this paper, we hope to enhance the expressive ability of the trained model by improving the network learning ability. Due to the mechanism driving the network parameter learning is the backward propagation algorithm, we design network design strategies based on back propagation path. We propose the gradient path design strategies for the layer-level, the stage-level, and the network-level, and the design strategies are proved to be superior and feasible from theoretical analysis and experiments.
MDCNN-SID: Multi-scale Dilated Convolution Network for Singer Identification
Most singer identification methods are processed in the frequency domain, which potentially leads to information loss during the spectral transformation. In this paper, instead of the frequency domain, we propose an end-to-end architecture that addresses this problem in the waveform domain. An encoder based on Multi-scale Dilated Convolution Neural Networks (MDCNN) was introduced to generate wave embedding from the raw audio signal. Specifically, dilated convolution layers are used in the proposed method to enlarge the receptive field, aiming to extract song-level features. Furthermore, skip connection in the backbone network integrates the multi-resolution acoustic features learned by the stack of convolution layers. Then, the obtained wave embedding is passed into the following networks for singer identification. In experiments, the proposed method achieves comparable performance on the benchmark dataset of Artist20, which significantly improves related works.
Deep Fusion Network for Image Completion
Deep image completion usually fails to harmonically blend the restored image into existing content, especially in the boundary area. This paper handles with this problem from a new perspective of creating a smooth transition and proposes a concise Deep Fusion Network (DFNet). Firstly, a fusion block is introduced to generate a flexible alpha composition map for combining known and unknown regions. The fusion block not only provides a smooth fusion between restored and existing content, but also provides an attention map to make network focus more on the unknown pixels. In this way, it builds a bridge for structural and texture information, so that information can be naturally propagated from known region into completion. Furthermore, fusion blocks are embedded into several decoder layers of the network. Accompanied by the adjustable loss constraints on each layer, more accurate structure information are achieved. We qualitatively and quantitatively compare our method with other state-of-the-art methods on Places2 and CelebA datasets. The results show the superior performance of DFNet, especially in the aspects of harmonious texture transition, texture detail and semantic structural consistency. Our source code will be avaiable at: https://github.com/hughplay/DFNet
Contextual Encoder-Decoder Network for Visual Saliency Prediction
Predicting salient regions in natural images requires the detection of objects that are present in a scene. To develop robust representations for this challenging task, high-level visual features at multiple spatial scales must be extracted and augmented with contextual information. However, existing models aimed at explaining human fixation maps do not incorporate such a mechanism explicitly. Here we propose an approach based on a convolutional neural network pre-trained on a large-scale image classification task. The architecture forms an encoder-decoder structure and includes a module with multiple convolutional layers at different dilation rates to capture multi-scale features in parallel. Moreover, we combine the resulting representations with global scene information for accurately predicting visual saliency. Our model achieves competitive and consistent results across multiple evaluation metrics on two public saliency benchmarks and we demonstrate the effectiveness of the suggested approach on five datasets and selected examples. Compared to state of the art approaches, the network is based on a lightweight image classification backbone and hence presents a suitable choice for applications with limited computational resources, such as (virtual) robotic systems, to estimate human fixations across complex natural scenes.
How convolutional neural network see the world - A survey of convolutional neural network visualization methods
Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.
Network In Network
We propose a novel deep network structure called "Network In Network" (NIN) to enhance model discriminability for local patches within the receptive field. The conventional convolutional layer uses linear filters followed by a nonlinear activation function to scan the input. Instead, we build micro neural networks with more complex structures to abstract the data within the receptive field. We instantiate the micro neural network with a multilayer perceptron, which is a potent function approximator. The feature maps are obtained by sliding the micro networks over the input in a similar manner as CNN; they are then fed into the next layer. Deep NIN can be implemented by stacking mutiple of the above described structure. With enhanced local modeling via the micro network, we are able to utilize global average pooling over feature maps in the classification layer, which is easier to interpret and less prone to overfitting than traditional fully connected layers. We demonstrated the state-of-the-art classification performances with NIN on CIFAR-10 and CIFAR-100, and reasonable performances on SVHN and MNIST datasets.
Condition-Aware Neural Network for Controlled Image Generation
We present Condition-Aware Neural Network (CAN), a new method for adding control to image generative models. In parallel to prior conditional control methods, CAN controls the image generation process by dynamically manipulating the weight of the neural network. This is achieved by introducing a condition-aware weight generation module that generates conditional weight for convolution/linear layers based on the input condition. We test CAN on class-conditional image generation on ImageNet and text-to-image generation on COCO. CAN consistently delivers significant improvements for diffusion transformer models, including DiT and UViT. In particular, CAN combined with EfficientViT (CaT) achieves 2.78 FID on ImageNet 512x512, surpassing DiT-XL/2 while requiring 52x fewer MACs per sampling step.
Streamlining Redundant Layers to Compress Large Language Models
This paper introduces LLM-Streamline, a novel layer pruning approach for large language models. It is based on the observation that different layers have varying impacts on hidden states, enabling the identification of less important layers. LLMStreamline comprises two parts: layer pruning, which removes consecutive layers with the lowest importance based on target sparsity, and layer replacement, where a lightweight network is trained to replace the pruned layers to mitigate performance loss. Additionally, a new metric called "stability" is proposed to address the limitations of accuracy in evaluating model compression. Experiments show that LLM-Streamline surpasses previous state-of-the-art pruning methods in both accuracy and stability.
On the Effect of Dropping Layers of Pre-trained Transformer Models
Transformer-based NLP models are trained using hundreds of millions or even billions of parameters, limiting their applicability in computationally constrained environments. While the number of parameters generally correlates with performance, it is not clear whether the entire network is required for a downstream task. Motivated by the recent work on pruning and distilling pre-trained models, we explore strategies to drop layers in pre-trained models, and observe the effect of pruning on downstream GLUE tasks. We were able to prune BERT, RoBERTa and XLNet models up to 40%, while maintaining up to 98% of their original performance. Additionally we show that our pruned models are on par with those built using knowledge distillation, both in terms of size and performance. Our experiments yield interesting observations such as, (i) the lower layers are most critical to maintain downstream task performance, (ii) some tasks such as paraphrase detection and sentence similarity are more robust to the dropping of layers, and (iii) models trained using a different objective function exhibit different learning patterns and w.r.t the layer dropping.
Scalable Training of Artificial Neural Networks with Adaptive Sparse Connectivity inspired by Network Science
Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general practice) artificial neural networks, too, should not have fully-connected layers. Here we propose sparse evolutionary training of artificial neural networks, an algorithm which evolves an initial sparse topology (Erdos-R\'enyi random graph) of two consecutive layers of neurons into a scale-free topology, during learning. Our method replaces artificial neural networks fully-connected layers with sparse ones before training, reducing quadratically the number of parameters, with no decrease in accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural networks for unsupervised and supervised learning on 15 datasets. Our approach has the potential to enable artificial neural networks to scale up beyond what is currently possible.
Sequential Compression Layers for Efficient Federated Learning in Foundational Models
Federated Learning (FL) has gained popularity for fine-tuning large language models (LLMs) across multiple nodes, each with its own private data. While LoRA has been widely adopted for parameter efficient federated fine-tuning, recent theoretical and empirical studies highlight its suboptimal performance in the federated learning context. In response, we propose a novel, simple, and more effective parameter-efficient fine-tuning method that does not rely on LoRA. Our approach introduces a small multi-layer perceptron (MLP) layer between two existing MLP layers the up proj (the FFN projection layer following the self-attention module) and down proj within the feed forward network of the transformer block. This solution addresses the bottlenecks associated with LoRA in federated fine tuning and outperforms recent LoRA-based approaches, demonstrating superior performance for both language models and vision encoders.
Reversible Decoupling Network for Single Image Reflection Removal
Recent deep-learning-based approaches to single-image reflection removal have shown promising advances, primarily for two reasons: 1) the utilization of recognition-pretrained features as inputs, and 2) the design of dual-stream interaction networks. However, according to the Information Bottleneck principle, high-level semantic clues tend to be compressed or discarded during layer-by-layer propagation. Additionally, interactions in dual-stream networks follow a fixed pattern across different layers, limiting overall performance. To address these limitations, we propose a novel architecture called Reversible Decoupling Network (RDNet), which employs a reversible encoder to secure valuable information while flexibly decoupling transmission- and reflection-relevant features during the forward pass. Furthermore, we customize a transmission-rate-aware prompt generator to dynamically calibrate features, further boosting performance. Extensive experiments demonstrate the superiority of RDNet over existing SOTA methods on five widely-adopted benchmark datasets. Our code will be made publicly available.
A Multi-Branched Radial Basis Network Approach to Predicting Complex Chaotic Behaviours
In this study, we propose a multi branched network approach to predict the dynamics of a physics attractor characterized by intricate and chaotic behavior. We introduce a unique neural network architecture comprised of Radial Basis Function (RBF) layers combined with an attention mechanism designed to effectively capture nonlinear inter-dependencies inherent in the attractor's temporal evolution. Our results demonstrate successful prediction of the attractor's trajectory across 100 predictions made using a real-world dataset of 36,700 time-series observations encompassing approximately 28 minutes of activity. To further illustrate the performance of our proposed technique, we provide comprehensive visualizations depicting the attractor's original and predicted behaviors alongside quantitative measures comparing observed versus estimated outcomes. Overall, this work showcases the potential of advanced machine learning algorithms in elucidating hidden structures in complex physical systems while offering practical applications in various domains requiring accurate short-term forecasting capabilities.
Scalable Neural Network Kernels
We introduce the concept of scalable neural network kernels (SNNKs), the replacements of regular feedforward layers (FFLs), capable of approximating the latter, but with favorable computational properties. SNNKs effectively disentangle the inputs from the parameters of the neural network in the FFL, only to connect them in the final computation via the dot-product kernel. They are also strictly more expressive, as allowing to model complicated relationships beyond the functions of the dot-products of parameter-input vectors. We also introduce the neural network bundling process that applies SNNKs to compactify deep neural network architectures, resulting in additional compression gains. In its extreme version, it leads to the fully bundled network whose optimal parameters can be expressed via explicit formulae for several loss functions (e.g. mean squared error), opening a possibility to bypass backpropagation. As a by-product of our analysis, we introduce the mechanism of the universal random features (or URFs), applied to instantiate several SNNK variants, and interesting on its own in the context of scalable kernel methods. We provide rigorous theoretical analysis of all these concepts as well as an extensive empirical evaluation, ranging from point-wise kernel estimation to Transformers' fine-tuning with novel adapter layers inspired by SNNKs. Our mechanism provides up to 5x reduction in the number of trainable parameters, while maintaining competitive accuracy.
A Plug-and-Play Image Registration Network
Deformable image registration (DIR) is an active research topic in biomedical imaging. There is a growing interest in developing DIR methods based on deep learning (DL). A traditional DL approach to DIR is based on training a convolutional neural network (CNN) to estimate the registration field between two input images. While conceptually simple, this approach comes with a limitation that it exclusively relies on a pre-trained CNN without explicitly enforcing fidelity between the registered image and the reference. We present plug-and-play image registration network (PIRATE) as a new DIR method that addresses this issue by integrating an explicit data-fidelity penalty and a CNN prior. PIRATE pre-trains a CNN denoiser on the registration field and "plugs" it into an iterative method as a regularizer. We additionally present PIRATE+ that fine-tunes the CNN prior in PIRATE using deep equilibrium models (DEQ). PIRATE+ interprets the fixed-point iteration of PIRATE as a network with effectively infinite layers and then trains the resulting network end-to-end, enabling it to learn more task-specific information and boosting its performance. Our numerical results on OASIS and CANDI datasets show that our methods achieve state-of-the-art performance on DIR.
Point Cloud Network: An Order of Magnitude Improvement in Linear Layer Parameter Count
This paper introduces the Point Cloud Network (PCN) architecture, a novel implementation of linear layers in deep learning networks, and provides empirical evidence to advocate for its preference over the Multilayer Perceptron (MLP) in linear layers. We train several models, including the original AlexNet, using both MLP and PCN architectures for direct comparison of linear layers (Krizhevsky et al., 2012). The key results collected are model parameter count and top-1 test accuracy over the CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009). AlexNet-PCN16, our PCN equivalent to AlexNet, achieves comparable efficacy (test accuracy) to the original architecture with a 99.5% reduction of parameters in its linear layers. All training is done on cloud RTX 4090 GPUs, leveraging pytorch for model construction and training. Code is provided for anyone to reproduce the trials from this paper.
Rank-adaptive spectral pruning of convolutional layers during training
The computing cost and memory demand of deep learning pipelines have grown fast in recent years and thus a variety of pruning techniques have been developed to reduce model parameters. The majority of these techniques focus on reducing inference costs by pruning the network after a pass of full training. A smaller number of methods address the reduction of training costs, mostly based on compressing the network via low-rank layer factorizations. Despite their efficiency for linear layers, these methods fail to effectively handle convolutional filters. In this work, we propose a low-parametric training method that factorizes the convolutions into tensor Tucker format and adaptively prunes the Tucker ranks of the convolutional kernel during training. Leveraging fundamental results from geometric integration theory of differential equations on tensor manifolds, we obtain a robust training algorithm that provably approximates the full baseline performance and guarantees loss descent. A variety of experiments against the full model and alternative low-rank baselines are implemented, showing that the proposed method drastically reduces the training costs, while achieving high performance, comparable to or better than the full baseline, and consistently outperforms competing low-rank approaches.
Gated Compression Layers for Efficient Always-On Models
Mobile and embedded machine learning developers frequently have to compromise between two inferior on-device deployment strategies: sacrifice accuracy and aggressively shrink their models to run on dedicated low-power cores; or sacrifice battery by running larger models on more powerful compute cores such as neural processing units or the main application processor. In this paper, we propose a novel Gated Compression layer that can be applied to transform existing neural network architectures into Gated Neural Networks. Gated Neural Networks have multiple properties that excel for on-device use cases that help significantly reduce power, boost accuracy, and take advantage of heterogeneous compute cores. We provide results across five public image and audio datasets that demonstrate the proposed Gated Compression layer effectively stops up to 96% of negative samples, compresses 97% of positive samples, while maintaining or improving model accuracy.
Generalized Domain Conditioned Adaptation Network
Domain Adaptation (DA) attempts to transfer knowledge learned in the labeled source domain to the unlabeled but related target domain without requiring large amounts of target supervision. Recent advances in DA mainly proceed by aligning the source and target distributions. Despite the significant success, the adaptation performance still degrades accordingly when the source and target domains encounter a large distribution discrepancy. We consider this limitation may attribute to the insufficient exploration of domain-specialized features because most studies merely concentrate on domain-general feature learning in task-specific layers and integrate totally-shared convolutional networks (convnets) to generate common features for both domains. In this paper, we relax the completely-shared convnets assumption adopted by previous DA methods and propose Domain Conditioned Adaptation Network (DCAN), which introduces domain conditioned channel attention module with a multi-path structure to separately excite channel activation for each domain. Such a partially-shared convnets module allows domain-specialized features in low-level to be explored appropriately. Further, given the knowledge transferability varying along with convolutional layers, we develop Generalized Domain Conditioned Adaptation Network (GDCAN) to automatically determine whether domain channel activations should be separately modeled in each attention module. Afterward, the critical domain-specialized knowledge could be adaptively extracted according to the domain statistic gaps. As far as we know, this is the first work to explore the domain-wise convolutional channel activations separately for deep DA networks. Additionally, to effectively match high-level feature distributions across domains, we consider deploying feature adaptation blocks after task-specific layers, which can explicitly mitigate the domain discrepancy.
Transformer Feed-Forward Layers Are Key-Value Memories
Feed-forward layers constitute two-thirds of a transformer model's parameters, yet their role in the network remains under-explored. We show that feed-forward layers in transformer-based language models operate as key-value memories, where each key correlates with textual patterns in the training examples, and each value induces a distribution over the output vocabulary. Our experiments show that the learned patterns are human-interpretable, and that lower layers tend to capture shallow patterns, while upper layers learn more semantic ones. The values complement the keys' input patterns by inducing output distributions that concentrate probability mass on tokens likely to appear immediately after each pattern, particularly in the upper layers. Finally, we demonstrate that the output of a feed-forward layer is a composition of its memories, which is subsequently refined throughout the model's layers via residual connections to produce the final output distribution.
PraNet: Parallel Reverse Attention Network for Polyp Segmentation
Colonoscopy is an effective technique for detecting colorectal polyps, which are highly related to colorectal cancer. In clinical practice, segmenting polyps from colonoscopy images is of great importance since it provides valuable information for diagnosis and surgery. However, accurate polyp segmentation is a challenging task, for two major reasons: (i) the same type of polyps has a diversity of size, color and texture; and (ii) the boundary between a polyp and its surrounding mucosa is not sharp. To address these challenges, we propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images. Specifically, we first aggregate the features in high-level layers using a parallel partial decoder (PPD). Based on the combined feature, we then generate a global map as the initial guidance area for the following components. In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues. Thanks to the recurrent cooperation mechanism between areas and boundaries, our PraNet is capable of calibrating any misaligned predictions, improving the segmentation accuracy. Quantitative and qualitative evaluations on five challenging datasets across six metrics show that our PraNet improves the segmentation accuracy significantly, and presents a number of advantages in terms of generalizability, and real-time segmentation efficiency.
Deep Neural Network Compression for Image Classification and Object Detection
Neural networks have been notorious for being computationally expensive. This is mainly because neural networks are often over-parametrized and most likely have redundant nodes or layers as they are getting deeper and wider. Their demand for hardware resources prohibits their extensive use in embedded devices and puts restrictions on tasks like real-time image classification or object detection. In this work, we propose a network-agnostic model compression method infused with a novel dynamical clustering approach to reduce the computational cost and memory footprint of deep neural networks. We evaluated our new compression method on five different state-of-the-art image classification and object detection networks. In classification networks, we pruned about 95% of network parameters. In advanced detection networks such as YOLOv3, our proposed compression method managed to reduce the model parameters up to 59.70% which yielded 110X less memory without sacrificing much in accuracy.
MeshCNN: A Network with an Edge
Polygonal meshes provide an efficient representation for 3D shapes. They explicitly capture both shape surface and topology, and leverage non-uniformity to represent large flat regions as well as sharp, intricate features. This non-uniformity and irregularity, however, inhibits mesh analysis efforts using neural networks that combine convolution and pooling operations. In this paper, we utilize the unique properties of the mesh for a direct analysis of 3D shapes using MeshCNN, a convolutional neural network designed specifically for triangular meshes. Analogous to classic CNNs, MeshCNN combines specialized convolution and pooling layers that operate on the mesh edges, by leveraging their intrinsic geodesic connections. Convolutions are applied on edges and the four edges of their incident triangles, and pooling is applied via an edge collapse operation that retains surface topology, thereby, generating new mesh connectivity for the subsequent convolutions. MeshCNN learns which edges to collapse, thus forming a task-driven process where the network exposes and expands the important features while discarding the redundant ones. We demonstrate the effectiveness of our task-driven pooling on various learning tasks applied to 3D meshes.
Path Aggregation Network for Instance Segmentation
The way that information propagates in neural networks is of great importance. In this paper, we propose Path Aggregation Network (PANet) aiming at boosting information flow in proposal-based instance segmentation framework. Specifically, we enhance the entire feature hierarchy with accurate localization signals in lower layers by bottom-up path augmentation, which shortens the information path between lower layers and topmost feature. We present adaptive feature pooling, which links feature grid and all feature levels to make useful information in each feature level propagate directly to following proposal subnetworks. A complementary branch capturing different views for each proposal is created to further improve mask prediction. These improvements are simple to implement, with subtle extra computational overhead. Our PANet reaches the 1st place in the COCO 2017 Challenge Instance Segmentation task and the 2nd place in Object Detection task without large-batch training. It is also state-of-the-art on MVD and Cityscapes. Code is available at https://github.com/ShuLiu1993/PANet
A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection in Network Traffic Data
Gated Recurrent Unit (GRU) is a recently-developed variation of the long short-term memory (LSTM) unit, both of which are types of recurrent neural network (RNN). Through empirical evidence, both models have been proven to be effective in a wide variety of machine learning tasks such as natural language processing (Wen et al., 2015), speech recognition (Chorowski et al., 2015), and text classification (Yang et al., 2016). Conventionally, like most neural networks, both of the aforementioned RNN variants employ the Softmax function as its final output layer for its prediction, and the cross-entropy function for computing its loss. In this paper, we present an amendment to this norm by introducing linear support vector machine (SVM) as the replacement for Softmax in the final output layer of a GRU model. Furthermore, the cross-entropy function shall be replaced with a margin-based function. While there have been similar studies (Alalshekmubarak & Smith, 2013; Tang, 2013), this proposal is primarily intended for binary classification on intrusion detection using the 2013 network traffic data from the honeypot systems of Kyoto University. Results show that the GRU-SVM model performs relatively higher than the conventional GRU-Softmax model. The proposed model reached a training accuracy of ~81.54% and a testing accuracy of ~84.15%, while the latter was able to reach a training accuracy of ~63.07% and a testing accuracy of ~70.75%. In addition, the juxtaposition of these two final output layers indicate that the SVM would outperform Softmax in prediction time - a theoretical implication which was supported by the actual training and testing time in the study.
LayerShuffle: Enhancing Robustness in Vision Transformers by Randomizing Layer Execution Order
Due to their architecture and how they are trained, artificial neural networks are typically not robust toward pruning, replacing, or shuffling layers at test time. However, such properties would be desirable for different applications, such as distributed neural network architectures where the order of execution cannot be guaranteed or parts of the network can fail during inference. In this work, we address these issues through a number of proposed training approaches for vision transformers whose most important component is randomizing the execution order of attention modules at training time. We show that with our proposed approaches, vision transformers are indeed capable to adapt to arbitrary layer execution orders at test time assuming one tolerates a reduction (about 20\%) in accuracy at the same model size. We also find that our trained models can be randomly merged with each other resulting in functional ("Frankenstein") models without loss of performance compared to the source models. Finally, we layer-prune our models at test time and find that their performance declines gracefully.
Perception Encoder: The best visual embeddings are not at the output of the network
We introduce Perception Encoder (PE), a state-of-the-art encoder for image and video understanding trained via simple vision-language learning. Traditionally, vision encoders have relied on a variety of pretraining objectives, each tailored to specific downstream tasks such as classification, captioning, or localization. Surprisingly, after scaling our carefully tuned image pretraining recipe and refining with our robust video data engine, we find that contrastive vision-language training alone can produce strong, general embeddings for all of these downstream tasks. There is only one caveat: these embeddings are hidden within the intermediate layers of the network. To draw them out, we introduce two alignment methods, language alignment for multimodal language modeling, and spatial alignment for dense prediction. Together with the core contrastive checkpoint, our PE family of models achieves state-of-the-art performance on a wide variety of tasks, including zero-shot image and video classification and retrieval; document, image, and video Q&A; and spatial tasks such as detection, depth estimation, and tracking. To foster further research, we are releasing our models, code, and a novel dataset of synthetically and human-annotated videos.
NiNformer: A Network in Network Transformer with Token Mixing Generated Gating Function
The Attention mechanism is the main component of the Transformer architecture, and since its introduction, it has led to significant advancements in Deep Learning that span many domains and multiple tasks. The Attention Mechanism was utilized in Computer Vision as the Vision Transformer ViT, and its usage has expanded into many tasks in the vision domain, such as classification, segmentation, object detection, and image generation. While this mechanism is very expressive and capable, it comes with the drawback of being computationally expensive and requiring datasets of considerable size for effective optimization. To address these shortcomings, many designs have been proposed in the literature to reduce the computational burden and alleviate the data size requirements. Examples of such attempts in the vision domain are the MLP-Mixer, the Conv-Mixer, the Perciver-IO, and many more. This paper introduces a new computational block as an alternative to the standard ViT block that reduces the compute burdens by replacing the normal Attention layers with a Network in Network structure that enhances the static approach of the MLP Mixer with a dynamic system of learning an element-wise gating function by a token mixing process. Extensive experimentation shows that the proposed design provides better performance than the baseline architectures on multiple datasets applied in the image classification task of the vision domain.
DeepNet: Scaling Transformers to 1,000 Layers
In this paper, we propose a simple yet effective method to stabilize extremely deep Transformers. Specifically, we introduce a new normalization function (DeepNorm) to modify the residual connection in Transformer, accompanying with theoretically derived initialization. In-depth theoretical analysis shows that model updates can be bounded in a stable way. The proposed method combines the best of two worlds, i.e., good performance of Post-LN and stable training of Pre-LN, making DeepNorm a preferred alternative. We successfully scale Transformers up to 1,000 layers (i.e., 2,500 attention and feed-forward network sublayers) without difficulty, which is one order of magnitude deeper than previous deep Transformers. Remarkably, on a multilingual benchmark with 7,482 translation directions, our 200-layer model with 3.2B parameters significantly outperforms the 48-layer state-of-the-art model with 12B parameters by 5 BLEU points, which indicates a promising scaling direction.
MixNet: Multi-modality Mix Network for Brain Segmentation
Automated brain structure segmentation is important to many clinical quantitative analysis and diagnoses. In this work, we introduce MixNet, a 2D semantic-wise deep convolutional neural network to segment brain structure in multi-modality MRI images. The network is composed of our modified deep residual learning units. In the unit, we replace the traditional convolution layer with the dilated convolutional layer, which avoids the use of pooling layers and deconvolutional layers, reducing the number of network parameters. Final predictions are made by aggregating information from multiple scales and modalities. A pyramid pooling module is used to capture spatial information of the anatomical structures at the output end. In addition, we test three architectures (MixNetv1, MixNetv2 and MixNetv3) which fuse the modalities differently to see the effect on the results. Our network achieves the state-of-the-art performance. MixNetv2 was submitted to the MRBrainS challenge at MICCAI 2018 and won the 3rd place in the 3-label task. On the MRBrainS2018 dataset, which includes subjects with a variety of pathologies, the overall DSC (Dice Coefficient) of 84.7% (gray matter), 87.3% (white matter) and 83.4% (cerebrospinal fluid) were obtained with only 7 subjects as training data.
Pruning by Explaining: A Novel Criterion for Deep Neural Network Pruning
The success of convolutional neural networks (CNNs) in various applications is accompanied by a significant increase in computation and parameter storage costs. Recent efforts to reduce these overheads involve pruning and compressing the weights of various layers while at the same time aiming to not sacrifice performance. In this paper, we propose a novel criterion for CNN pruning inspired by neural network interpretability: The most relevant units, i.e. weights or filters, are automatically found using their relevance scores obtained from concepts of explainable AI (XAI). By exploring this idea, we connect the lines of interpretability and model compression research. We show that our proposed method can efficiently prune CNN models in transfer-learning setups in which networks pre-trained on large corpora are adapted to specialized tasks. The method is evaluated on a broad range of computer vision datasets. Notably, our novel criterion is not only competitive or better compared to state-of-the-art pruning criteria when successive retraining is performed, but clearly outperforms these previous criteria in the resource-constrained application scenario in which the data of the task to be transferred to is very scarce and one chooses to refrain from fine-tuning. Our method is able to compress the model iteratively while maintaining or even improving accuracy. At the same time, it has a computational cost in the order of gradient computation and is comparatively simple to apply without the need for tuning hyperparameters for pruning.
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization. It also acts as a regularizer, in some cases eliminating the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.9% top-5 validation error (and 4.8% test error), exceeding the accuracy of human raters.
DurIAN-E 2: Duration Informed Attention Network with Adaptive Variational Autoencoder and Adversarial Learning for Expressive Text-to-Speech Synthesis
This paper proposes an improved version of DurIAN-E (DurIAN-E 2), which is also a duration informed attention neural network for expressive and high-fidelity text-to-speech (TTS) synthesis. Similar with the DurIAN-E model, multiple stacked SwishRNN-based Transformer blocks are utilized as linguistic encoders and Style-Adaptive Instance Normalization (SAIN) layers are also exploited into frame-level encoders to improve the modeling ability of expressiveness in the proposed the DurIAN-E 2. Meanwhile, motivated by other TTS models using generative models such as VITS, the proposed DurIAN-E 2 utilizes variational autoencoders (VAEs) augmented with normalizing flows and a BigVGAN waveform generator with adversarial training strategy, which further improve the synthesized speech quality and expressiveness. Both objective test and subjective evaluation results prove that the proposed expressive TTS model DurIAN-E 2 can achieve better performance than several state-of-the-art approaches besides DurIAN-E.
Deep Neural Networks via Complex Network Theory: a Perspective
Deep Neural Networks (DNNs) can be represented as graphs whose links and vertices iteratively process data and solve tasks sub-optimally. Complex Network Theory (CNT), merging statistical physics with graph theory, provides a method for interpreting neural networks by analysing their weights and neuron structures. However, classic works adapt CNT metrics that only permit a topological analysis as they do not account for the effect of the input data. In addition, CNT metrics have been applied to a limited range of architectures, mainly including Fully Connected neural networks. In this work, we extend the existing CNT metrics with measures that sample from the DNNs' training distribution, shifting from a purely topological analysis to one that connects with the interpretability of deep learning. For the novel metrics, in addition to the existing ones, we provide a mathematical formalisation for Fully Connected, AutoEncoder, Convolutional and Recurrent neural networks, of which we vary the activation functions and the number of hidden layers. We show that these metrics differentiate DNNs based on the architecture, the number of hidden layers, and the activation function. Our contribution provides a method rooted in physics for interpreting DNNs that offers insights beyond the traditional input-output relationship and the CNT topological analysis.
LoRAP: Transformer Sub-Layers Deserve Differentiated Structured Compression for Large Language Models
Large language models (LLMs) show excellent performance in difficult tasks, but they often require massive memories and computational resources. How to reduce the parameter scale of LLMs has become research hotspots. In this study, we make an important observation that the multi-head self-attention (MHA) sub-layer of Transformer exhibits noticeable low-rank structure, while the feed-forward network (FFN) sub-layer does not. With this regard, we design a mixed compression model, which organically combines Low-Rank matrix approximation And structured Pruning (LoRAP). For the MHA sub-layer, we propose an input activation weighted singular value decomposition method to strengthen the low-rank characteristic. Furthermore, we discover that the weight matrices in MHA sub-layer have different low-rank degrees. Thus, a novel parameter allocation scheme according to the discrepancy of low-rank degrees is devised. For the FFN sub-layer, we propose a gradient-free structured channel pruning method. During the pruning, we get an interesting finding that the least important 1% of parameter actually play a vital role in model performance. Extensive evaluations on zero-shot perplexity and zero-shot task classification indicate that our proposal is superior to previous structured compression rivals under multiple compression ratios.
FineRecon: Depth-aware Feed-forward Network for Detailed 3D Reconstruction
Recent works on 3D reconstruction from posed images have demonstrated that direct inference of scene-level 3D geometry without test-time optimization is feasible using deep neural networks, showing remarkable promise and high efficiency. However, the reconstructed geometry, typically represented as a 3D truncated signed distance function (TSDF), is often coarse without fine geometric details. To address this problem, we propose three effective solutions for improving the fidelity of inference-based 3D reconstructions. We first present a resolution-agnostic TSDF supervision strategy to provide the network with a more accurate learning signal during training, avoiding the pitfalls of TSDF interpolation seen in previous work. We then introduce a depth guidance strategy using multi-view depth estimates to enhance the scene representation and recover more accurate surfaces. Finally, we develop a novel architecture for the final layers of the network, conditioning the output TSDF prediction on high-resolution image features in addition to coarse voxel features, enabling sharper reconstruction of fine details. Our method, FineRecon, produces smooth and highly accurate reconstructions, showing significant improvements across multiple depth and 3D reconstruction metrics.
CTRAN: CNN-Transformer-based Network for Natural Language Understanding
Intent-detection and slot-filling are the two main tasks in natural language understanding. In this study, we propose CTRAN, a novel encoder-decoder CNN-Transformer-based architecture for intent-detection and slot-filling. In the encoder, we use BERT, followed by several convolutional layers, and rearrange the output using window feature sequence. We use stacked Transformer encoders after the window feature sequence. For the intent-detection decoder, we utilize self-attention followed by a linear layer. In the slot-filling decoder, we introduce the aligned Transformer decoder, which utilizes a zero diagonal mask, aligning output tags with input tokens. We apply our network on ATIS and SNIPS, and surpass the current state-of-the-art in slot-filling on both datasets. Furthermore, we incorporate the language model as word embeddings, and show that this strategy yields a better result when compared to the language model as an encoder.
DeepMAD: Mathematical Architecture Design for Deep Convolutional Neural Network
The rapid advances in Vision Transformer (ViT) refresh the state-of-the-art performances in various vision tasks, overshadowing the conventional CNN-based models. This ignites a few recent striking-back research in the CNN world showing that pure CNN models can achieve as good performance as ViT models when carefully tuned. While encouraging, designing such high-performance CNN models is challenging, requiring non-trivial prior knowledge of network design. To this end, a novel framework termed Mathematical Architecture Design for Deep CNN (DeepMAD) is proposed to design high-performance CNN models in a principled way. In DeepMAD, a CNN network is modeled as an information processing system whose expressiveness and effectiveness can be analytically formulated by their structural parameters. Then a constrained mathematical programming (MP) problem is proposed to optimize these structural parameters. The MP problem can be easily solved by off-the-shelf MP solvers on CPUs with a small memory footprint. In addition, DeepMAD is a pure mathematical framework: no GPU or training data is required during network design. The superiority of DeepMAD is validated on multiple large-scale computer vision benchmark datasets. Notably on ImageNet-1k, only using conventional convolutional layers, DeepMAD achieves 0.7% and 1.5% higher top-1 accuracy than ConvNeXt and Swin on Tiny level, and 0.8% and 0.9% higher on Small level.
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition
We propose RepMLP, a multi-layer-perceptron-style neural network building block for image recognition, which is composed of a series of fully-connected (FC) layers. Compared to convolutional layers, FC layers are more efficient, better at modeling the long-range dependencies and positional patterns, but worse at capturing the local structures, hence usually less favored for image recognition. We propose a structural re-parameterization technique that adds local prior into an FC to make it powerful for image recognition. Specifically, we construct convolutional layers inside a RepMLP during training and merge them into the FC for inference. On CIFAR, a simple pure-MLP model shows performance very close to CNN. By inserting RepMLP in traditional CNN, we improve ResNets by 1.8% accuracy on ImageNet, 2.9% for face recognition, and 2.3% mIoU on Cityscapes with lower FLOPs. Our intriguing findings highlight that combining the global representational capacity and positional perception of FC with the local prior of convolution can improve the performance of neural network with faster speed on both the tasks with translation invariance (e.g., semantic segmentation) and those with aligned images and positional patterns (e.g., face recognition). The code and models are available at https://github.com/DingXiaoH/RepMLP.
PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning
The predictive learning of spatiotemporal sequences aims to generate future images by learning from the historical context, where the visual dynamics are believed to have modular structures that can be learned with compositional subsystems. This paper models these structures by presenting PredRNN, a new recurrent network, in which a pair of memory cells are explicitly decoupled, operate in nearly independent transition manners, and finally form unified representations of the complex environment. Concretely, besides the original memory cell of LSTM, this network is featured by a zigzag memory flow that propagates in both bottom-up and top-down directions across all layers, enabling the learned visual dynamics at different levels of RNNs to communicate. It also leverages a memory decoupling loss to keep the memory cells from learning redundant features. We further propose a new curriculum learning strategy to force PredRNN to learn long-term dynamics from context frames, which can be generalized to most sequence-to-sequence models. We provide detailed ablation studies to verify the effectiveness of each component. Our approach is shown to obtain highly competitive results on five datasets for both action-free and action-conditioned predictive learning scenarios.
RoI Tanh-polar Transformer Network for Face Parsing in the Wild
Face parsing aims to predict pixel-wise labels for facial components of a target face in an image. Existing approaches usually crop the target face from the input image with respect to a bounding box calculated during pre-processing, and thus can only parse inner facial Regions of Interest~(RoIs). Peripheral regions like hair are ignored and nearby faces that are partially included in the bounding box can cause distractions. Moreover, these methods are only trained and evaluated on near-frontal portrait images and thus their performance for in-the-wild cases has been unexplored. To address these issues, this paper makes three contributions. First, we introduce iBugMask dataset for face parsing in the wild, which consists of 21,866 training images and 1,000 testing images. The training images are obtained by augmenting an existing dataset with large face poses. The testing images are manually annotated with 11 facial regions and there are large variations in sizes, poses, expressions and background. Second, we propose RoI Tanh-polar transform that warps the whole image to a Tanh-polar representation with a fixed ratio between the face area and the context, guided by the target bounding box. The new representation contains all information in the original image, and allows for rotation equivariance in the convolutional neural networks~(CNNs). Third, we propose a hybrid residual representation learning block, coined HybridBlock, that contains convolutional layers in both the Tanh-polar space and the Tanh-Cartesian space, allowing for receptive fields of different shapes in CNNs. Through extensive experiments, we show that the proposed method improves the state-of-the-art for face parsing in the wild and does not require facial landmarks for alignment.
PEPSI++: Fast and Lightweight Network for Image Inpainting
Among the various generative adversarial network (GAN)-based image inpainting methods, a coarse-to-fine network with a contextual attention module (CAM) has shown remarkable performance. However, owing to two stacked generative networks, the coarse-to-fine network needs numerous computational resources such as convolution operations and network parameters, which result in low speed. To address this problem, we propose a novel network architecture called PEPSI: parallel extended-decoder path for semantic inpainting network, which aims at reducing the hardware costs and improving the inpainting performance. PEPSI consists of a single shared encoding network and parallel decoding networks called coarse and inpainting paths. The coarse path produces a preliminary inpainting result to train the encoding network for the prediction of features for the CAM. Simultaneously, the inpainting path generates higher inpainting quality using the refined features reconstructed via the CAM. In addition, we propose Diet-PEPSI that significantly reduces the network parameters while maintaining the performance. In Diet-PEPSI, to capture the global contextual information with low hardware costs, we propose novel rate-adaptive dilated convolutional layers, which employ the common weights but produce dynamic features depending on the given dilation rates. Extensive experiments comparing the performance with state-of-the-art image inpainting methods demonstrate that both PEPSI and Diet-PEPSI improve the qualitative scores, i.e. the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), as well as significantly reduce hardware costs such as computational time and the number of network parameters.
An Architecture Combining Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for Image Classification
Convolutional neural networks (CNNs) are similar to "ordinary" neural networks in the sense that they are made up of hidden layers consisting of neurons with "learnable" parameters. These neurons receive inputs, performs a dot product, and then follows it with a non-linearity. The whole network expresses the mapping between raw image pixels and their class scores. Conventionally, the Softmax function is the classifier used at the last layer of this network. However, there have been studies (Alalshekmubarak and Smith, 2013; Agarap, 2017; Tang, 2013) conducted to challenge this norm. The cited studies introduce the usage of linear support vector machine (SVM) in an artificial neural network architecture. This project is yet another take on the subject, and is inspired by (Tang, 2013). Empirical data has shown that the CNN-SVM model was able to achieve a test accuracy of ~99.04% using the MNIST dataset (LeCun, Cortes, and Burges, 2010). On the other hand, the CNN-Softmax was able to achieve a test accuracy of ~99.23% using the same dataset. Both models were also tested on the recently-published Fashion-MNIST dataset (Xiao, Rasul, and Vollgraf, 2017), which is suppose to be a more difficult image classification dataset than MNIST (Zalandoresearch, 2017). This proved to be the case as CNN-SVM reached a test accuracy of ~90.72%, while the CNN-Softmax reached a test accuracy of ~91.86%. The said results may be improved if data preprocessing techniques were employed on the datasets, and if the base CNN model was a relatively more sophisticated than the one used in this study.
Sound event detection using weakly labeled dataset with stacked convolutional and recurrent neural network
This paper proposes a neural network architecture and training scheme to learn the start and end time of sound events (strong labels) in an audio recording given just the list of sound events existing in the audio without time information (weak labels). We achieve this by using a stacked convolutional and recurrent neural network with two prediction layers in sequence one for the strong followed by the weak label. The network is trained using frame-wise log mel-band energy as the input audio feature, and weak labels provided in the dataset as labels for the weak label prediction layer. Strong labels are generated by replicating the weak labels as many number of times as the frames in the input audio feature, and used for strong label layer during training. We propose to control what the network learns from the weak and strong labels by different weighting for the loss computed in the two prediction layers. The proposed method is evaluated on a publicly available dataset of 155 hours with 17 sound event classes. The method achieves the best error rate of 0.84 for strong labels and F-score of 43.3% for weak labels on the unseen test split.
Dynamic Pyramid Network for Efficient Multimodal Large Language Model
Multimodal large language models (MLLMs) have demonstrated impressive performance in various vision-language (VL) tasks, but their expensive computations still limit the real-world application. To address this issue, recent efforts aim to compress the visual features to save the computational costs of MLLMs. However, direct visual compression methods, e.g. efficient projectors, inevitably destroy the visual semantics in MLLM, especially in difficult samples. To overcome this shortcoming, we propose a novel dynamic pyramid network (DPN) for efficient MLLMs. Specifically, DPN formulates MLLM as a hierarchical structure where visual features are gradually compressed with increasing depth. In this case, even with a high compression ratio, fine-grained visual information can still be perceived in shallow layers. To maximize the benefit of DPN, we further propose an innovative Dynamic Pooling Experts (DPE) that can dynamically choose the optimal visual compression rate according to input features. With this design, harder samples will be assigned larger computations, thus preserving the model performance. To validate our approach, we conduct extensive experiments on two popular MLLMs and ten benchmarks. Experimental results show that DPN can save up to 56% average FLOPs on LLaVA while further achieving +0.74% performance gains. Besides, the generalization ability of DPN is also validated on the existing high-resolution MLLM called LLaVA-HR. Our source codes are anonymously released at https://github.com/aihao2000/DPN-LLaVA.
The Unreasonable Ineffectiveness of the Deeper Layers
We empirically study a simple layer-pruning strategy for popular families of open-weight pretrained LLMs, finding minimal degradation of performance on different question-answering benchmarks until after a large fraction (up to half) of the layers are removed. To prune these models, we identify the optimal block of layers to prune by considering similarity across layers; then, to "heal" the damage, we perform a small amount of finetuning. In particular, we use parameter-efficient finetuning (PEFT) methods, specifically quantization and Low Rank Adapters (QLoRA), such that each of our experiments can be performed on a single A100 GPU. From a practical perspective, these results suggest that layer pruning methods can complement other PEFT strategies to further reduce computational resources of finetuning on the one hand, and can improve the memory and latency of inference on the other hand. From a scientific perspective, the robustness of these LLMs to the deletion of layers implies either that current pretraining methods are not properly leveraging the parameters in the deeper layers of the network or that the shallow layers play a critical role in storing knowledge.
LEGNet: Lightweight Edge-Gaussian Driven Network for Low-Quality Remote Sensing Image Object Detection
Remote sensing object detection (RSOD) faces formidable challenges in complex visual environments. Aerial and satellite images inherently suffer from limitations such as low spatial resolution, sensor noise, blurred objects, low-light degradation, and partial occlusions. These degradation factors collectively compromise the feature discriminability in detection models, resulting in three key issues: (1) reduced contrast that hampers foreground-background separation, (2) structural discontinuities in edge representations, and (3) ambiguous feature responses caused by variations in illumination. These collectively weaken model robustness and deployment feasibility. To address these challenges, we propose LEGNet, a lightweight network that incorporates a novel edge-Gaussian aggregation (EGA) module specifically designed for low-quality remote sensing images. Our key innovation lies in the synergistic integration of Scharr operator-based edge priors with uncertainty-aware Gaussian modeling: (a) The orientation-aware Scharr filters preserve high-frequency edge details with rotational invariance; (b) The uncertainty-aware Gaussian layers probabilistically refine low-confidence features through variance estimation. This design enables precision enhancement while maintaining architectural simplicity. Comprehensive evaluations across four RSOD benchmarks (DOTA-v1.0, v1.5, DIOR-R, FAIR1M-v1.0) and a UAV-view dataset (VisDrone2019) demonstrate significant improvements. LEGNet achieves state-of-the-art performance across five benchmark datasets while ensuring computational efficiency, making it well-suited for deployment on resource-constrained edge devices in real-world remote sensing applications. The code is available at https://github.com/lwCVer/LEGNet.
SplitQuant: Layer Splitting for Low-Bit Neural Network Quantization
Quantization for deep neural networks (DNNs) is the process of mapping the parameter values of DNNs from original data types to other data types of lower precision to reduce model sizes and make inference faster. Quantization often maps different original values to a single quantized value because the range of the original values is larger than the range of the quantized values. This leads to the degradation of the accuracy of the quantized DNNs. Outliers are a main cause of the degradation of quantization resolution because they enlarge the range of original values. To solve the problem, the percentile method is often used to clip outliers. However, clipping the outliers has another problem of removing the important and strong signals in the DNNs. This paper proposes SplitQuant to keep the outliers and improve the quantization resolution at the same time. SplitQuant narrows down the range of the original values and mitigates the effect of outliers by splitting each quantizable layer into three mathematically equivalent layers and applies different scaling factors. Especially, weights and biases are clustered into lower, middle and upper clusters for optimized split. By preprocessing DNNs with SplitQuant, quantization algorithms can achieve better results. SplitQuant was applied on two BERT-Tiny models and improved the accuracy of INT2 quantization by 3.3%p and 2.1%p, achieving accuracies comparable to those of the original FP32 models.
Jointly-Learned Exit and Inference for a Dynamic Neural Network : JEI-DNN
Large pretrained models, coupled with fine-tuning, are slowly becoming established as the dominant architecture in machine learning. Even though these models offer impressive performance, their practical application is often limited by the prohibitive amount of resources required for every inference. Early-exiting dynamic neural networks (EDNN) circumvent this issue by allowing a model to make some of its predictions from intermediate layers (i.e., early-exit). Training an EDNN architecture is challenging as it consists of two intertwined components: the gating mechanism (GM) that controls early-exiting decisions and the intermediate inference modules (IMs) that perform inference from intermediate representations. As a result, most existing approaches rely on thresholding confidence metrics for the gating mechanism and strive to improve the underlying backbone network and the inference modules. Although successful, this approach has two fundamental shortcomings: 1) the GMs and the IMs are decoupled during training, leading to a train-test mismatch; and 2) the thresholding gating mechanism introduces a positive bias into the predictive probabilities, making it difficult to readily extract uncertainty information. We propose a novel architecture that connects these two modules. This leads to significant performance improvements on classification datasets and enables better uncertainty characterization capabilities.
Retro-FPN: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation
Learning per-point semantic features from the hierarchical feature pyramid is essential for point cloud semantic segmentation. However, most previous methods suffered from ambiguous region features or failed to refine per-point features effectively, which leads to information loss and ambiguous semantic identification. To resolve this, we propose Retro-FPN to model the per-point feature prediction as an explicit and retrospective refining process, which goes through all the pyramid layers to extract semantic features explicitly for each point. Its key novelty is a retro-transformer for summarizing semantic contexts from the previous layer and accordingly refining the features in the current stage. In this way, the categorization of each point is conditioned on its local semantic pattern. Specifically, the retro-transformer consists of a local cross-attention block and a semantic gate unit. The cross-attention serves to summarize the semantic pattern retrospectively from the previous layer. And the gate unit carefully incorporates the summarized contexts and refines the current semantic features. Retro-FPN is a pluggable neural network that applies to hierarchical decoders. By integrating Retro-FPN with three representative backbones, including both point-based and voxel-based methods, we show that Retro-FPN can significantly improve performance over state-of-the-art backbones. Comprehensive experiments on widely used benchmarks can justify the effectiveness of our design. The source is available at https://github.com/AllenXiangX/Retro-FPN
Word class representations spontaneously emerge in a deep neural network trained on next word prediction
How do humans learn language, and can the first language be learned at all? These fundamental questions are still hotly debated. In contemporary linguistics, there are two major schools of thought that give completely opposite answers. According to Chomsky's theory of universal grammar, language cannot be learned because children are not exposed to sufficient data in their linguistic environment. In contrast, usage-based models of language assume a profound relationship between language structure and language use. In particular, contextual mental processing and mental representations are assumed to have the cognitive capacity to capture the complexity of actual language use at all levels. The prime example is syntax, i.e., the rules by which words are assembled into larger units such as sentences. Typically, syntactic rules are expressed as sequences of word classes. However, it remains unclear whether word classes are innate, as implied by universal grammar, or whether they emerge during language acquisition, as suggested by usage-based approaches. Here, we address this issue from a machine learning and natural language processing perspective. In particular, we trained an artificial deep neural network on predicting the next word, provided sequences of consecutive words as input. Subsequently, we analyzed the emerging activation patterns in the hidden layers of the neural network. Strikingly, we find that the internal representations of nine-word input sequences cluster according to the word class of the tenth word to be predicted as output, even though the neural network did not receive any explicit information about syntactic rules or word classes during training. This surprising result suggests, that also in the human brain, abstract representational categories such as word classes may naturally emerge as a consequence of predictive coding and processing during language acquisition.
Combining Recurrent, Convolutional, and Continuous-time Models with Linear State-Space Layers
Recurrent neural networks (RNNs), temporal convolutions, and neural differential equations (NDEs) are popular families of deep learning models for time-series data, each with unique strengths and tradeoffs in modeling power and computational efficiency. We introduce a simple sequence model inspired by control systems that generalizes these approaches while addressing their shortcomings. The Linear State-Space Layer (LSSL) maps a sequence u mapsto y by simply simulating a linear continuous-time state-space representation x = Ax + Bu, y = Cx + Du. Theoretically, we show that LSSL models are closely related to the three aforementioned families of models and inherit their strengths. For example, they generalize convolutions to continuous-time, explain common RNN heuristics, and share features of NDEs such as time-scale adaptation. We then incorporate and generalize recent theory on continuous-time memorization to introduce a trainable subset of structured matrices A that endow LSSLs with long-range memory. Empirically, stacking LSSL layers into a simple deep neural network obtains state-of-the-art results across time series benchmarks for long dependencies in sequential image classification, real-world healthcare regression tasks, and speech. On a difficult speech classification task with length-16000 sequences, LSSL outperforms prior approaches by 24 accuracy points, and even outperforms baselines that use hand-crafted features on 100x shorter sequences.
LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
Graph Convolution Network (GCN) has become new state-of-the-art for collaborative filtering. Nevertheless, the reasons of its effectiveness for recommendation are not well understood. Existing work that adapts GCN to recommendation lacks thorough ablation analyses on GCN, which is originally designed for graph classification tasks and equipped with many neural network operations. However, we empirically find that the two most common designs in GCNs -- feature transformation and nonlinear activation -- contribute little to the performance of collaborative filtering. Even worse, including them adds to the difficulty of training and degrades recommendation performance. In this work, we aim to simplify the design of GCN to make it more concise and appropriate for recommendation. We propose a new model named LightGCN, including only the most essential component in GCN -- neighborhood aggregation -- for collaborative filtering. Specifically, LightGCN learns user and item embeddings by linearly propagating them on the user-item interaction graph, and uses the weighted sum of the embeddings learned at all layers as the final embedding. Such simple, linear, and neat model is much easier to implement and train, exhibiting substantial improvements (about 16.0\% relative improvement on average) over Neural Graph Collaborative Filtering (NGCF) -- a state-of-the-art GCN-based recommender model -- under exactly the same experimental setting. Further analyses are provided towards the rationality of the simple LightGCN from both analytical and empirical perspectives.
MesoNet: a Compact Facial Video Forgery Detection Network
This paper presents a method to automatically and efficiently detect face tampering in videos, and particularly focuses on two recent techniques used to generate hyper-realistic forged videos: Deepfake and Face2Face. Traditional image forensics techniques are usually not well suited to videos due to the compression that strongly degrades the data. Thus, this paper follows a deep learning approach and presents two networks, both with a low number of layers to focus on the mesoscopic properties of images. We evaluate those fast networks on both an existing dataset and a dataset we have constituted from online videos. The tests demonstrate a very successful detection rate with more than 98% for Deepfake and 95% for Face2Face.
A scalable and efficient convolutional neural network accelerator using HLS for a System on Chip design
This paper presents a configurable Convolutional Neural Network Accelerator (CNNA) for a System on Chip design (SoC). The goal was to accelerate inference of different deep learning networks on an embedded SoC platform. The presented CNNA has a scalable architecture which uses High Level Synthesis (HLS) and SystemC for the hardware accelerator. It is able to accelerate any Convolutional Neural Network (CNN) exported from Python and supports a combination of convolutional, max-pooling, and fully connected layers. A training method with fixed-point quantized weights is proposed and presented in the paper. The CNNA is template-based, enabling it to scale for different targets of the Xilinx Zynq platform. This approach enables design space exploration, which makes it possible to explore several configurations of the CNNA during C- and RTL-simulation, fitting it to the desired platform and model. The CNN VGG16 was used to test the solution on a Xilinx Ultra96 board using PYNQ. The result gave a high level of accuracy in training with an auto-scaled fixed-point Q2.14 format compared to a similar floating-point model. It was able to perform inference in 2.0 seconds, while having an average power consumption of 2.63 W, which corresponds to a power efficiency of 6.0 GOPS/W.
GLA-GCN: Global-local Adaptive Graph Convolutional Network for 3D Human Pose Estimation from Monocular Video
3D human pose estimation has been researched for decades with promising fruits. 3D human pose lifting is one of the promising research directions toward the task where both estimated pose and ground truth pose data are used for training. Existing pose lifting works mainly focus on improving the performance of estimated pose, but they usually underperform when testing on the ground truth pose data. We observe that the performance of the estimated pose can be easily improved by preparing good quality 2D pose, such as fine-tuning the 2D pose or using advanced 2D pose detectors. As such, we concentrate on improving the 3D human pose lifting via ground truth data for the future improvement of more quality estimated pose data. Towards this goal, a simple yet effective model called Global-local Adaptive Graph Convolutional Network (GLA-GCN) is proposed in this work. Our GLA-GCN globally models the spatiotemporal structure via a graph representation and backtraces local joint features for 3D human pose estimation via individually connected layers. To validate our model design, we conduct extensive experiments on three benchmark datasets: Human3.6M, HumanEva-I, and MPI-INF-3DHP. Experimental results show that our GLA-GCN implemented with ground truth 2D poses significantly outperforms state-of-the-art methods (e.g., up to around 3%, 17%, and 14% error reductions on Human3.6M, HumanEva-I, and MPI-INF-3DHP, respectively). GitHub: https://github.com/bruceyo/GLA-GCN.
Single Image Super-Resolution via a Holistic Attention Network
Informative features play a crucial role in the single image super-resolution task. Channel attention has been demonstrated to be effective for preserving information-rich features in each layer. However, channel attention treats each convolution layer as a separate process that misses the correlation among different layers. To address this problem, we propose a new holistic attention network (HAN), which consists of a layer attention module (LAM) and a channel-spatial attention module (CSAM), to model the holistic interdependencies among layers, channels, and positions. Specifically, the proposed LAM adaptively emphasizes hierarchical features by considering correlations among layers. Meanwhile, CSAM learns the confidence at all the positions of each channel to selectively capture more informative features. Extensive experiments demonstrate that the proposed HAN performs favorably against the state-of-the-art single image super-resolution approaches.
Rethinking Attention: Exploring Shallow Feed-Forward Neural Networks as an Alternative to Attention Layers in Transformers
This work presents an analysis of the effectiveness of using standard shallow feed-forward networks to mimic the behavior of the attention mechanism in the original Transformer model, a state-of-the-art architecture for sequence-to-sequence tasks. We substitute key elements of the attention mechanism in the Transformer with simple feed-forward networks, trained using the original components via knowledge distillation. Our experiments, conducted on the IWSLT2017 dataset, reveal the capacity of these "attentionless Transformers" to rival the performance of the original architecture. Through rigorous ablation studies, and experimenting with various replacement network types and sizes, we offer insights that support the viability of our approach. This not only sheds light on the adaptability of shallow feed-forward networks in emulating attention mechanisms but also underscores their potential to streamline complex architectures for sequence-to-sequence tasks.
Qutrit-inspired Fully Self-supervised Shallow Quantum Learning Network for Brain Tumor Segmentation
Classical self-supervised networks suffer from convergence problems and reduced segmentation accuracy due to forceful termination. Qubits or bi-level quantum bits often describe quantum neural network models. In this article, a novel self-supervised shallow learning network model exploiting the sophisticated three-level qutrit-inspired quantum information system referred to as Quantum Fully Self-Supervised Neural Network (QFS-Net) is presented for automated segmentation of brain MR images. The QFS-Net model comprises a trinity of a layered structure of qutrits inter-connected through parametric Hadamard gates using an 8-connected second-order neighborhood-based topology. The non-linear transformation of the qutrit states allows the underlying quantum neural network model to encode the quantum states, thereby enabling a faster self-organized counter-propagation of these states between the layers without supervision. The suggested QFS-Net model is tailored and extensively validated on Cancer Imaging Archive (TCIA) data set collected from Nature repository and also compared with state of the art supervised (U-Net and URes-Net architectures) and the self-supervised QIS-Net model. Results shed promising segmented outcome in detecting tumors in terms of dice similarity and accuracy with minimum human intervention and computational resources.
Evolution and Transformation of Scientific Knowledge over the Sphaera Corpus: A Network Study
We investigated the evolution and transformation of scientific knowledge in the early modern period, analyzing more than 350 different editions of textbooks used for teaching astronomy in European universities from the late fifteenth century to mid-seventeenth century. These historical sources constitute the Sphaera Corpus. By examining different semantic relations among individual parts of each edition on record, we built a multiplex network consisting of six layers, as well as the aggregated network built from the superposition of all the layers. The network analysis reveals the emergence of five different communities. The contribution of each layer in shaping the communities and the properties of each community are studied. The most influential books in the corpus are found by calculating the average age of all the out-going and in-coming links for each book. A small group of editions is identified as a transmitter of knowledge as they bridge past knowledge to the future through a long temporal interval. Our analysis, moreover, identifies the most disruptive books. These books introduce new knowledge that is then adopted by almost all the books published afterwards until the end of the whole period of study. The historical research on the content of the identified books, as an empirical test, finally corroborates the results of all our analyses.
BLAST: Block-Level Adaptive Structured Matrices for Efficient Deep Neural Network Inference
Large-scale foundation models have demonstrated exceptional performance in language and vision tasks. However, the numerous dense matrix-vector operations involved in these large networks pose significant computational challenges during inference. To address these challenges, we introduce the Block-Level Adaptive STructured (BLAST) matrix, designed to learn and leverage efficient structures prevalent in the weight matrices of linear layers within deep learning models. Compared to existing structured matrices, the BLAST matrix offers substantial flexibility, as it can represent various types of structures that are either learned from data or computed from pre-existing weight matrices. We demonstrate the efficiency of using the BLAST matrix for compressing both language and vision tasks, showing that (i) for medium-sized models such as ViT and GPT-2, training with BLAST weights boosts performance while reducing complexity by 70% and 40%, respectively; and (ii) for large foundation models such as Llama-7B and DiT-XL, the BLAST matrix achieves a 2x compression while exhibiting the lowest performance degradation among all tested structured matrices. Our code is available at https://github.com/changwoolee/BLAST.
Sound Event Detection Using Spatial Features and Convolutional Recurrent Neural Network
This paper proposes to use low-level spatial features extracted from multichannel audio for sound event detection. We extend the convolutional recurrent neural network to handle more than one type of these multichannel features by learning from each of them separately in the initial stages. We show that instead of concatenating the features of each channel into a single feature vector the network learns sound events in multichannel audio better when they are presented as separate layers of a volume. Using the proposed spatial features over monaural features on the same network gives an absolute F-score improvement of 6.1% on the publicly available TUT-SED 2016 dataset and 2.7% on the TUT-SED 2009 dataset that is fifteen times larger.
Localization, Detection and Tracking of Multiple Moving Sound Sources with a Convolutional Recurrent Neural Network
This paper investigates the joint localization, detection, and tracking of sound events using a convolutional recurrent neural network (CRNN). We use a CRNN previously proposed for the localization and detection of stationary sources, and show that the recurrent layers enable the spatial tracking of moving sources when trained with dynamic scenes. The tracking performance of the CRNN is compared with a stand-alone tracking method that combines a multi-source (DOA) estimator and a particle filter. Their respective performance is evaluated in various acoustic conditions such as anechoic and reverberant scenarios, stationary and moving sources at several angular velocities, and with a varying number of overlapping sources. The results show that the CRNN manages to track multiple sources more consistently than the parametric method across acoustic scenarios, but at the cost of higher localization error.
Local Relation Networks for Image Recognition
The convolution layer has been the dominant feature extractor in computer vision for years. However, the spatial aggregation in convolution is basically a pattern matching process that applies fixed filters which are inefficient at modeling visual elements with varying spatial distributions. This paper presents a new image feature extractor, called the local relation layer, that adaptively determines aggregation weights based on the compositional relationship of local pixel pairs. With this relational approach, it can composite visual elements into higher-level entities in a more efficient manner that benefits semantic inference. A network built with local relation layers, called the Local Relation Network (LR-Net), is found to provide greater modeling capacity than its counterpart built with regular convolution on large-scale recognition tasks such as ImageNet classification.
Fixup Initialization: Residual Learning Without Normalization
Normalization layers are a staple in state-of-the-art deep neural network architectures. They are widely believed to stabilize training, enable higher learning rate, accelerate convergence and improve generalization, though the reason for their effectiveness is still an active research topic. In this work, we challenge the commonly-held beliefs by showing that none of the perceived benefits is unique to normalization. Specifically, we propose fixed-update initialization (Fixup), an initialization motivated by solving the exploding and vanishing gradient problem at the beginning of training via properly rescaling a standard initialization. We find training residual networks with Fixup to be as stable as training with normalization -- even for networks with 10,000 layers. Furthermore, with proper regularization, Fixup enables residual networks without normalization to achieve state-of-the-art performance in image classification and machine translation.
Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach
In this research, we explore the integration of quantum computing with classical machine learning for image classification tasks, specifically focusing on the MNIST dataset. We propose a hybrid quantum-classical approach that leverages the strengths of both paradigms. The process begins with preprocessing the MNIST dataset, normalizing the pixel values, and reshaping the images into vectors. An autoencoder compresses these 784-dimensional vectors into a 64-dimensional latent space, effectively reducing the data's dimensionality while preserving essential features. These compressed features are then processed using a quantum circuit implemented on a 5-qubit system. The quantum circuit applies rotation gates based on the feature values, followed by Hadamard and CNOT gates to entangle the qubits, and measurements are taken to generate quantum outcomes. These outcomes serve as input for a classical neural network designed to classify the MNIST digits. The classical neural network comprises multiple dense layers with batch normalization and dropout to enhance generalization and performance. We evaluate the performance of this hybrid model and compare it with a purely classical approach. The experimental results indicate that while the hybrid model demonstrates the feasibility of integrating quantum computing with classical techniques, the accuracy of the final model, trained on quantum outcomes, is currently lower than the classical model trained on compressed features. This research highlights the potential of quantum computing in machine learning, though further optimization and advanced quantum algorithms are necessary to achieve superior performance.
Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform
Despite that convolutional neural networks (CNN) have recently demonstrated high-quality reconstruction for single-image super-resolution (SR), recovering natural and realistic texture remains a challenging problem. In this paper, we show that it is possible to recover textures faithful to semantic classes. In particular, we only need to modulate features of a few intermediate layers in a single network conditioned on semantic segmentation probability maps. This is made possible through a novel Spatial Feature Transform (SFT) layer that generates affine transformation parameters for spatial-wise feature modulation. SFT layers can be trained end-to-end together with the SR network using the same loss function. During testing, it accepts an input image of arbitrary size and generates a high-resolution image with just a single forward pass conditioned on the categorical priors. Our final results show that an SR network equipped with SFT can generate more realistic and visually pleasing textures in comparison to state-of-the-art SRGAN and EnhanceNet.
Investigating Sparsity in Recurrent Neural Networks
In the past few years, neural networks have evolved from simple Feedforward Neural Networks to more complex neural networks, such as Convolutional Neural Networks and Recurrent Neural Networks. Where CNNs are a perfect fit for tasks where the sequence is not important such as image recognition, RNNs are useful when order is important such as machine translation. An increasing number of layers in a neural network is one way to improve its performance, but it also increases its complexity making it much more time and power-consuming to train. One way to tackle this problem is to introduce sparsity in the architecture of the neural network. Pruning is one of the many methods to make a neural network architecture sparse by clipping out weights below a certain threshold while keeping the performance near to the original. Another way is to generate arbitrary structures using random graphs and embed them between an input and output layer of an Artificial Neural Network. Many researchers in past years have focused on pruning mainly CNNs, while hardly any research is done for the same in RNNs. The same also holds in creating sparse architectures for RNNs by generating and embedding arbitrary structures. Therefore, this thesis focuses on investigating the effects of the before-mentioned two techniques on the performance of RNNs. We first describe the pruning of RNNs, its impact on the performance of RNNs, and the number of training epochs required to regain accuracy after the pruning is performed. Next, we continue with the creation and training of Sparse Recurrent Neural Networks and identify the relation between the performance and the graph properties of its underlying arbitrary structure. We perform these experiments on RNN with Tanh nonlinearity (RNN-Tanh), RNN with ReLU nonlinearity (RNN-ReLU), GRU, and LSTM. Finally, we analyze and discuss the results achieved from both the experiments.
Supervised Deep Neural Networks (DNNs) for Pricing/Calibration of Vanilla/Exotic Options Under Various Different Processes
We apply supervised deep neural networks (DNNs) for pricing and calibration of both vanilla and exotic options under both diffusion and pure jump processes with and without stochastic volatility. We train our neural network models under different number of layers, neurons per layer, and various different activation functions in order to find which combinations work better empirically. For training, we consider various different loss functions and optimization routines. We demonstrate that deep neural networks exponentially expedite option pricing compared to commonly used option pricing methods which consequently make calibration and parameter estimation super fast.
Identity-Preserving Text-to-Video Generation by Frequency Decomposition
Identity-preserving text-to-video (IPT2V) generation aims to create high-fidelity videos with consistent human identity. It is an important task in video generation but remains an open problem for generative models. This paper pushes the technical frontier of IPT2V in two directions that have not been resolved in literature: (1) A tuning-free pipeline without tedious case-by-case finetuning, and (2) A frequency-aware heuristic identity-preserving DiT-based control scheme. We propose ConsisID, a tuning-free DiT-based controllable IPT2V model to keep human identity consistent in the generated video. Inspired by prior findings in frequency analysis of diffusion transformers, it employs identity-control signals in the frequency domain, where facial features can be decomposed into low-frequency global features and high-frequency intrinsic features. First, from a low-frequency perspective, we introduce a global facial extractor, which encodes reference images and facial key points into a latent space, generating features enriched with low-frequency information. These features are then integrated into shallow layers of the network to alleviate training challenges associated with DiT. Second, from a high-frequency perspective, we design a local facial extractor to capture high-frequency details and inject them into transformer blocks, enhancing the model's ability to preserve fine-grained features. We propose a hierarchical training strategy to leverage frequency information for identity preservation, transforming a vanilla pre-trained video generation model into an IPT2V model. Extensive experiments demonstrate that our frequency-aware heuristic scheme provides an optimal control solution for DiT-based models. Thanks to this scheme, our ConsisID generates high-quality, identity-preserving videos, making strides towards more effective IPT2V.
TryOffAnyone: Tiled Cloth Generation from a Dressed Person
The fashion industry is increasingly leveraging computer vision and deep learning technologies to enhance online shopping experiences and operational efficiencies. In this paper, we address the challenge of generating high-fidelity tiled garment images essential for personalized recommendations, outfit composition, and virtual try-on systems from photos of garments worn by models. Inspired by the success of Latent Diffusion Models (LDMs) in image-to-image translation, we propose a novel approach utilizing a fine-tuned StableDiffusion model. Our method features a streamlined single-stage network design, which integrates garmentspecific masks to isolate and process target clothing items effectively. By simplifying the network architecture through selective training of transformer blocks and removing unnecessary crossattention layers, we significantly reduce computational complexity while achieving state-of-the-art performance on benchmark datasets like VITON-HD. Experimental results demonstrate the effectiveness of our approach in producing high-quality tiled garment images for both full-body and half-body inputs. Code and model are available at: https://github.com/ixarchakos/try-off-anyone
Balanced Mixture of SuperNets for Learning the CNN Pooling Architecture
Downsampling layers, including pooling and strided convolutions, are crucial components of the convolutional neural network architecture that determine both the granularity/scale of image feature analysis as well as the receptive field size of a given layer. To fully understand this problem, we analyse the performance of models independently trained with each pooling configurations on CIFAR10, using a ResNet20 network, and show that the position of the downsampling layers can highly influence the performance of a network and predefined downsampling configurations are not optimal. Network Architecture Search (NAS) might be used to optimize downsampling configurations as an hyperparameter. However, we find that common one-shot NAS based on a single SuperNet does not work for this problem. We argue that this is because a SuperNet trained for finding the optimal pooling configuration fully shares its parameters among all pooling configurations. This makes its training hard, because learning some configurations can harm the performance of others. Therefore, we propose a balanced mixture of SuperNets that automatically associates pooling configurations to different weight models and helps to reduce the weight-sharing and inter-influence of pooling configurations on the SuperNet parameters. We evaluate our proposed approach on CIFAR10, CIFAR100, as well as Food101 and show that in all cases, our model outperforms other approaches and improves over the default pooling configurations.
Exploring Alignment in Shared Cross-lingual Spaces
Despite their remarkable ability to capture linguistic nuances across diverse languages, questions persist regarding the degree of alignment between languages in multilingual embeddings. Drawing inspiration from research on high-dimensional representations in neural language models, we employ clustering to uncover latent concepts within multilingual models. Our analysis focuses on quantifying the alignment and overlap of these concepts across various languages within the latent space. To this end, we introduce two metrics and aimed at quantifying these aspects, enabling a deeper exploration of multilingual embeddings. Our study encompasses three multilingual models (mT5, mBERT, and XLM-R) and three downstream tasks (Machine Translation, Named Entity Recognition, and Sentiment Analysis). Key findings from our analysis include: i) deeper layers in the network demonstrate increased cross-lingual alignment due to the presence of language-agnostic concepts, ii) fine-tuning of the models enhances alignment within the latent space, and iii) such task-specific calibration helps in explaining the emergence of zero-shot capabilities in the models.The code is available at \url{https://github.com/baselmousi/multilingual-latent-concepts}
Wider and Deeper LLM Networks are Fairer LLM Evaluators
Measuring the quality of responses generated by LLMs is a challenging task, particularly when it comes to evaluating whether the response is aligned with human preference. A novel approach involves using the LLM itself to make evaluation and stabilizing the results through multiple independent evaluations, similar to a single-layer narrow LLM network. This network consists of a fixed number of neurons, with each neuron being the same LLM. In this paper, we draw upon the extensive research on deep neural networks to explore whether deeper and wider networks can lead to fairer evaluations. Specifically, inspired by the observation that different neurons in a neural network are responsible for detecting different concepts, we first adaptively generate as many neuron roles as possible for each evaluation sample. Each perspective corresponds to the role of a specific LLM neuron in the first layer. In subsequent layers, we follow the idea that higher layers in deep networks are responsible for more comprehensive features, each layer receives representations from all neurons in the previous layer, integrating the locally learned evaluation information to obtain a more comprehensive evaluation result. Interestingly, this network design resembles the process of academic paper reviewing. To validate the effectiveness of our method, we construct the largest and most diverse English evaluation benchmark LLMEval^2 for LLM evaluators, comprising 15 tasks, 8 abilities, and 2,553 samples. Experimental results demonstrate that a wider network (involving many reviewers) with 2 layers (one round of discussion) performs the best, improving kappa correlation coefficient from 0.28 to 0.34. We also leverage WideDeep to aid in the assessment of Chinese LLMs, which has accelerated the evaluation time by 4.6 times, resulting in a 60% cost saving. WideDeep achieves a remarkable 93% agreement level among humans.
Jointly Predicting Emotion, Age, and Country Using Pre-Trained Acoustic Embedding
In this paper, we demonstrated the benefit of using pre-trained model to extract acoustic embedding to jointly predict (multitask learning) three tasks: emotion, age, and native country. The pre-trained model was trained with wav2vec 2.0 large robust model on the speech emotion corpus. The emotion and age tasks were regression problems, while country prediction was a classification task. A single harmonic mean from three metrics was used to evaluate the performance of multitask learning. The classifier was a linear network with two independent layers and shared layers, including the output layers. This study explores multitask learning on different acoustic features (including the acoustic embedding extracted from a model trained on an affective speech dataset), seed numbers, batch sizes, and normalizations for predicting paralinguistic information from speech.
A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental Learning
Real-world applications require the classification model to adapt to new classes without forgetting old ones. Correspondingly, Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement. Typical CIL methods tend to save representative exemplars from former classes to resist forgetting, while recent works find that storing models from history can substantially boost the performance. However, the stored models are not counted into the memory budget, which implicitly results in unfair comparisons. We find that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work, especially for the case with limited memory budgets. As a result, we need to holistically evaluate different CIL methods at different memory scales and simultaneously consider accuracy and memory size for measurement. On the other hand, we dive deeply into the construction of the memory buffer for memory efficiency. By analyzing the effect of different layers in the network, we find that shallow and deep layers have different characteristics in CIL. Motivated by this, we propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel. MEMO extends specialized layers based on the shared generalized representations, efficiently extracting diverse representations with modest cost and maintaining representative exemplars. Extensive experiments on benchmark datasets validate MEMO's competitive performance. Code is available at: https://github.com/wangkiw/ICLR23-MEMO
Hopfield Networks is All You Need
We introduce a modern Hopfield network with continuous states and a corresponding update rule. The new Hopfield network can store exponentially (with the dimension of the associative space) many patterns, retrieves the pattern with one update, and has exponentially small retrieval errors. It has three types of energy minima (fixed points of the update): (1) global fixed point averaging over all patterns, (2) metastable states averaging over a subset of patterns, and (3) fixed points which store a single pattern. The new update rule is equivalent to the attention mechanism used in transformers. This equivalence enables a characterization of the heads of transformer models. These heads perform in the first layers preferably global averaging and in higher layers partial averaging via metastable states. The new modern Hopfield network can be integrated into deep learning architectures as layers to allow the storage of and access to raw input data, intermediate results, or learned prototypes. These Hopfield layers enable new ways of deep learning, beyond fully-connected, convolutional, or recurrent networks, and provide pooling, memory, association, and attention mechanisms. We demonstrate the broad applicability of the Hopfield layers across various domains. Hopfield layers improved state-of-the-art on three out of four considered multiple instance learning problems as well as on immune repertoire classification with several hundreds of thousands of instances. On the UCI benchmark collections of small classification tasks, where deep learning methods typically struggle, Hopfield layers yielded a new state-of-the-art when compared to different machine learning methods. Finally, Hopfield layers achieved state-of-the-art on two drug design datasets. The implementation is available at: https://github.com/ml-jku/hopfield-layers
Pick-or-Mix: Dynamic Channel Sampling for ConvNets
Channel pruning approaches for convolutional neural networks (ConvNets) deactivate the channels, statically or dynamically, and require special implementation. In addition, channel squeezing in representative ConvNets is carried out via 1x1 convolutions which dominates a large portion of computations and network parameters. Given these challenges, we propose an effective multi-purpose module for dynamic channel sampling, namely Pick-or-Mix (PiX), which does not require special implementation. PiX divides a set of channels into subsets and then picks from them, where the picking decision is dynamically made per each pixel based on the input activations. We plug PiX into prominent ConvNet architectures and verify its multi-purpose utilities. After replacing 1x1 channel squeezing layers in ResNet with PiX, the network becomes 25% faster without losing accuracy. We show that PiX allows ConvNets to learn better data representation than widely adopted approaches to enhance networks' representation power (e.g., SE, CBAM, AFF, SKNet, and DWP). We also show that PiX achieves state-of-the-art performance on network downscaling and dynamic channel pruning applications.
MoEC: Mixture of Expert Clusters
Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead. MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated. However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation. Such problems are especially severe on tasks with limited data, thus hindering the progress for MoE models to improve performance by scaling up. In this work, we propose Mixture of Expert Clusters - a general approach to enable expert layers to learn more diverse and appropriate knowledge by imposing variance-based constraints on the routing stage. We further propose a cluster-level expert dropout strategy specifically designed for the expert cluster structure. Our experiments reveal that MoEC could improve performance on machine translation and natural language understanding tasks, and raise the performance upper bound for scaling up experts under limited data. We also verify that MoEC plays a positive role in mitigating overfitting and sparse data allocation.
EmojiDiff: Advanced Facial Expression Control with High Identity Preservation in Portrait Generation
This paper aims to bring fine-grained expression control to identity-preserving portrait generation. Existing methods tend to synthesize portraits with either neutral or stereotypical expressions. Even when supplemented with control signals like facial landmarks, these models struggle to generate accurate and vivid expressions following user instructions. To solve this, we introduce EmojiDiff, an end-to-end solution to facilitate simultaneous dual control of fine expression and identity. Unlike the conventional methods using coarse control signals, our method directly accepts RGB expression images as input templates to provide extremely accurate and fine-grained expression control in the diffusion process. As its core, an innovative decoupled scheme is proposed to disentangle expression features in the expression template from other extraneous information, such as identity, skin, and style. On one hand, we introduce ID-irrelevant Data Iteration (IDI) to synthesize extremely high-quality cross-identity expression pairs for decoupled training, which is the crucial foundation to filter out identity information hidden in the expressions. On the other hand, we meticulously investigate network layer function and select expression-sensitive layers to inject reference expression features, effectively preventing style leakage from expression signals. To further improve identity fidelity, we propose a novel fine-tuning strategy named ID-enhanced Contrast Alignment (ICA), which eliminates the negative impact of expression control on original identity preservation. Experimental results demonstrate that our method remarkably outperforms counterparts, achieves precise expression control with highly maintained identity, and generalizes well to various diffusion models.
SGD Finds then Tunes Features in Two-Layer Neural Networks with near-Optimal Sample Complexity: A Case Study in the XOR problem
In this work, we consider the optimization process of minibatch stochastic gradient descent (SGD) on a 2-layer neural network with data separated by a quadratic ground truth function. We prove that with data drawn from the d-dimensional Boolean hypercube labeled by the quadratic ``XOR'' function y = -x_ix_j, it is possible to train to a population error o(1) with d :polylog(d) samples. Our result considers simultaneously training both layers of the two-layer-neural network with ReLU activations via standard minibatch SGD on the logistic loss. To our knowledge, this work is the first to give a sample complexity of O(d) for efficiently learning the XOR function on isotropic data on a standard neural network with standard training. Our main technique is showing that the network evolves in two phases: a signal-finding phase where the network is small and many of the neurons evolve independently to find features, and a signal-heavy phase, where SGD maintains and balances the features. We leverage the simultaneous training of the layers to show that it is sufficient for only a small fraction of the neurons to learn features, since those neurons will be amplified by the simultaneous growth of their second layer weights.
Tags2Parts: Discovering Semantic Regions from Shape Tags
We propose a novel method for discovering shape regions that strongly correlate with user-prescribed tags. For example, given a collection of chairs tagged as either "has armrest" or "lacks armrest", our system correctly highlights the armrest regions as the main distinctive parts between the two chair types. To obtain point-wise predictions from shape-wise tags we develop a novel neural network architecture that is trained with tag classification loss, but is designed to rely on segmentation to predict the tag. Our network is inspired by U-Net, but we replicate shallow U structures several times with new skip connections and pooling layers, and call the resulting architecture "WU-Net". We test our method on segmentation benchmarks and show that even with weak supervision of whole shape tags, our method can infer meaningful semantic regions, without ever observing shape segmentations. Further, once trained, the model can process shapes for which the tag is entirely unknown. As a bonus, our architecture is directly operational under full supervision and performs strongly on standard benchmarks. We validate our method through experiments with many variant architectures and prior baselines, and demonstrate several applications.
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Neural Machine Translation (NMT) is an end-to-end learning approach for automated translation, with the potential to overcome many of the weaknesses of conventional phrase-based translation systems. Unfortunately, NMT systems are known to be computationally expensive both in training and in translation inference. Also, most NMT systems have difficulty with rare words. These issues have hindered NMT's use in practical deployments and services, where both accuracy and speed are essential. In this work, we present GNMT, Google's Neural Machine Translation system, which attempts to address many of these issues. Our model consists of a deep LSTM network with 8 encoder and 8 decoder layers using attention and residual connections. To improve parallelism and therefore decrease training time, our attention mechanism connects the bottom layer of the decoder to the top layer of the encoder. To accelerate the final translation speed, we employ low-precision arithmetic during inference computations. To improve handling of rare words, we divide words into a limited set of common sub-word units ("wordpieces") for both input and output. This method provides a good balance between the flexibility of "character"-delimited models and the efficiency of "word"-delimited models, naturally handles translation of rare words, and ultimately improves the overall accuracy of the system. Our beam search technique employs a length-normalization procedure and uses a coverage penalty, which encourages generation of an output sentence that is most likely to cover all the words in the source sentence. On the WMT'14 English-to-French and English-to-German benchmarks, GNMT achieves competitive results to state-of-the-art. Using a human side-by-side evaluation on a set of isolated simple sentences, it reduces translation errors by an average of 60% compared to Google's phrase-based production system.
Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes
In contrast to Connectionist Temporal Classification (CTC) approaches, Sequence-To-Sequence (S2S) models for Handwritten Text Recognition (HTR) suffer from errors such as skipped or repeated words which often occur at the end of a sequence. In this paper, to combine the best of both approaches, we propose to use the CTC-Prefix-Score during S2S decoding. Hereby, during beam search, paths that are invalid according to the CTC confidence matrix are penalised. Our network architecture is composed of a Convolutional Neural Network (CNN) as visual backbone, bidirectional Long-Short-Term-Memory-Cells (LSTMs) as encoder, and a decoder which is a Transformer with inserted mutual attention layers. The CTC confidences are computed on the encoder while the Transformer is only used for character-wise S2S decoding. We evaluate this setup on three HTR data sets: IAM, Rimes, and StAZH. On IAM, we achieve a competitive Character Error Rate (CER) of 2.95% when pretraining our model on synthetic data and including a character-based language model for contemporary English. Compared to other state-of-the-art approaches, our model requires about 10-20 times less parameters. Access our shared implementations via this link to GitHub: https://github.com/Planet-AI-GmbH/tfaip-hybrid-ctc-s2s.
SENetV2: Aggregated dense layer for channelwise and global representations
Convolutional Neural Networks (CNNs) have revolutionized image classification by extracting spatial features and enabling state-of-the-art accuracy in vision-based tasks. The squeeze and excitation network proposed module gathers channelwise representations of the input. Multilayer perceptrons (MLP) learn global representation from the data and in most image classification models used to learn extracted features of the image. In this paper, we introduce a novel aggregated multilayer perceptron, a multi-branch dense layer, within the Squeeze excitation residual module designed to surpass the performance of existing architectures. Our approach leverages a combination of squeeze excitation network module with dense layers. This fusion enhances the network's ability to capture channel-wise patterns and have global knowledge, leading to a better feature representation. This proposed model has a negligible increase in parameters when compared to SENet. We conduct extensive experiments on benchmark datasets to validate the model and compare them with established architectures. Experimental results demonstrate a remarkable increase in the classification accuracy of the proposed model.
Deep Language Networks: Joint Prompt Training of Stacked LLMs using Variational Inference
We view large language models (LLMs) as stochastic language layers in a network, where the learnable parameters are the natural language prompts at each layer. We stack two such layers, feeding the output of one layer to the next. We call the stacked architecture a Deep Language Network (DLN). We first show how to effectively perform prompt optimization for a 1-Layer language network (DLN-1). We then show how to train 2-layer DLNs (DLN-2), where two prompts must be learnt. We consider the output of the first layer as a latent variable to marginalize, and devise a variational inference algorithm for joint prompt training. A DLN-2 reaches higher performance than a single layer, sometimes comparable to few-shot GPT-4 even when each LLM in the network is smaller and less powerful. The DLN code is open source: https://github.com/microsoft/deep-language-networks .
Densely Connected Convolutional Networks
Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections - one between each layer and its subsequent layer - our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet .
SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device
We have witnessed the unprecedented success of diffusion-based video generation over the past year. Recently proposed models from the community have wielded the power to generate cinematic and high-resolution videos with smooth motions from arbitrary input prompts. However, as a supertask of image generation, video generation models require more computation and are thus hosted mostly on cloud servers, limiting broader adoption among content creators. In this work, we propose a comprehensive acceleration framework to bring the power of the large-scale video diffusion model to the hands of edge users. From the network architecture scope, we initialize from a compact image backbone and search out the design and arrangement of temporal layers to maximize hardware efficiency. In addition, we propose a dedicated adversarial fine-tuning algorithm for our efficient model and reduce the denoising steps to 4. Our model, with only 0.6B parameters, can generate a 5-second video on an iPhone 16 PM within 5 seconds. Compared to server-side models that take minutes on powerful GPUs to generate a single video, we accelerate the generation by magnitudes while delivering on-par quality.
Conserve-Update-Revise to Cure Generalization and Robustness Trade-off in Adversarial Training
Adversarial training improves the robustness of neural networks against adversarial attacks, albeit at the expense of the trade-off between standard and robust generalization. To unveil the underlying factors driving this phenomenon, we examine the layer-wise learning capabilities of neural networks during the transition from a standard to an adversarial setting. Our empirical findings demonstrate that selectively updating specific layers while preserving others can substantially enhance the network's learning capacity. We therefore propose CURE, a novel training framework that leverages a gradient prominence criterion to perform selective conservation, updating, and revision of weights. Importantly, CURE is designed to be dataset- and architecture-agnostic, ensuring its applicability across various scenarios. It effectively tackles both memorization and overfitting issues, thus enhancing the trade-off between robustness and generalization and additionally, this training approach also aids in mitigating "robust overfitting". Furthermore, our study provides valuable insights into the mechanisms of selective adversarial training and offers a promising avenue for future research.
How transformers learn structured data: insights from hierarchical filtering
We introduce a hierarchical filtering procedure for generative models of sequences on trees, enabling control over the range of positional correlations in the data. Leveraging this controlled setting, we provide evidence that vanilla encoder-only transformer architectures can implement the optimal Belief Propagation algorithm on both root classification and masked language modeling tasks. Correlations at larger distances corresponding to increasing layers of the hierarchy are sequentially included as the network is trained. We analyze how the transformer layers succeed by focusing on attention maps from models trained with varying degrees of filtering. These attention maps show clear evidence for iterative hierarchical reconstruction of correlations, and we can relate these observations to a plausible implementation of the exact inference algorithm for the network sizes considered.
Efficient Adapter Transfer of Self-Supervised Speech Models for Automatic Speech Recognition
Self-supervised learning (SSL) is a powerful tool that allows learning of underlying representations from unlabeled data. Transformer based models such as wav2vec 2.0 and HuBERT are leading the field in the speech domain. Generally these models are fine-tuned on a small amount of labeled data for a downstream task such as Automatic Speech Recognition (ASR). This involves re-training the majority of the model for each task. Adapters are small lightweight modules which are commonly used in Natural Language Processing (NLP) to adapt pre-trained models to new tasks. In this paper we propose applying adapters to wav2vec 2.0 to reduce the number of parameters required for downstream ASR tasks, and increase scalability of the model to multiple tasks or languages. Using adapters we can perform ASR while training fewer than 10% of parameters per task compared to full fine-tuning with little degradation of performance. Ablations show that applying adapters into just the top few layers of the pre-trained network gives similar performance to full transfer, supporting the theory that higher pre-trained layers encode more phonemic information, and further optimizing efficiency.
DenseGAP: Graph-Structured Dense Correspondence Learning with Anchor Points
Establishing dense correspondence between two images is a fundamental computer vision problem, which is typically tackled by matching local feature descriptors. However, without global awareness, such local features are often insufficient for disambiguating similar regions. And computing the pairwise feature correlation across images is both computation-expensive and memory-intensive. To make the local features aware of the global context and improve their matching accuracy, we introduce DenseGAP, a new solution for efficient Dense correspondence learning with a Graph-structured neural network conditioned on Anchor Points. Specifically, we first propose a graph structure that utilizes anchor points to provide sparse but reliable prior on inter- and intra-image context and propagates them to all image points via directed edges. We also design a graph-structured network to broadcast multi-level contexts via light-weighted message-passing layers and generate high-resolution feature maps at low memory cost. Finally, based on the predicted feature maps, we introduce a coarse-to-fine framework for accurate correspondence prediction using cycle consistency. Our feature descriptors capture both local and global information, thus enabling a continuous feature field for querying arbitrary points at high resolution. Through comprehensive ablative experiments and evaluations on large-scale indoor and outdoor datasets, we demonstrate that our method advances the state-of-the-art of correspondence learning on most benchmarks.
Bristle: Decentralized Federated Learning in Byzantine, Non-i.i.d. Environments
Federated learning (FL) is a privacy-friendly type of machine learning where devices locally train a model on their private data and typically communicate model updates with a server. In decentralized FL (DFL), peers communicate model updates with each other instead. However, DFL is challenging since (1) the training data possessed by different peers is often non-i.i.d. (i.e., distributed differently between the peers) and (2) malicious, or Byzantine, attackers can share arbitrary model updates with other peers to subvert the training process. We address these two challenges and present Bristle, middleware between the learning application and the decentralized network layer. Bristle leverages transfer learning to predetermine and freeze the non-output layers of a neural network, significantly speeding up model training and lowering communication costs. To securely update the output layer with model updates from other peers, we design a fast distance-based prioritizer and a novel performance-based integrator. Their combined effect results in high resilience to Byzantine attackers and the ability to handle non-i.i.d. classes. We empirically show that Bristle converges to a consistent 95% accuracy in Byzantine environments, outperforming all evaluated baselines. In non-Byzantine environments, Bristle requires 83% fewer iterations to achieve 90% accuracy compared to state-of-the-art methods. We show that when the training classes are non-i.i.d., Bristle significantly outperforms the accuracy of the most Byzantine-resilient baselines by 2.3x while reducing communication costs by 90%.
Global Context Networks
The Non-Local Network (NLNet) presents a pioneering approach for capturing long-range dependencies within an image, via aggregating query-specific global context to each query position. However, through a rigorous empirical analysis, we have found that the global contexts modeled by the non-local network are almost the same for different query positions. In this paper, we take advantage of this finding to create a simplified network based on a query-independent formulation, which maintains the accuracy of NLNet but with significantly less computation. We further replace the one-layer transformation function of the non-local block by a two-layer bottleneck, which further reduces the parameter number considerably. The resulting network element, called the global context (GC) block, effectively models global context in a lightweight manner, allowing it to be applied at multiple layers of a backbone network to form a global context network (GCNet). Experiments show that GCNet generally outperforms NLNet on major benchmarks for various recognition tasks. The code and network configurations are available at https://github.com/xvjiarui/GCNet.
Symbolic Semantic Segmentation and Interpretation of COVID-19 Lung Infections in Chest CT volumes based on Emergent Languages
The coronavirus disease (COVID-19) has resulted in a pandemic crippling the a breadth of services critical to daily life. Segmentation of lung infections in computerized tomography (CT) slices could be be used to improve diagnosis and understanding of COVID-19 in patients. Deep learning systems lack interpretability because of their black box nature. Inspired by human communication of complex ideas through language, we propose a symbolic framework based on emergent languages for the segmentation of COVID-19 infections in CT scans of lungs. We model the cooperation between two artificial agents - a Sender and a Receiver. These agents synergistically cooperate using emergent symbolic language to solve the task of semantic segmentation. Our game theoretic approach is to model the cooperation between agents unlike Generative Adversarial Networks (GANs). The Sender retrieves information from one of the higher layers of the deep network and generates a symbolic sentence sampled from a categorical distribution of vocabularies. The Receiver ingests the stream of symbols and cogenerates the segmentation mask. A private emergent language is developed that forms the communication channel used to describe the task of segmentation of COVID infections. We augment existing state of the art semantic segmentation architectures with our symbolic generator to form symbolic segmentation models. Our symbolic segmentation framework achieves state of the art performance for segmentation of lung infections caused by COVID-19. Our results show direct interpretation of symbolic sentences to discriminate between normal and infected regions, infection morphology and image characteristics. We show state of the art results for segmentation of COVID-19 lung infections in CT.
ColBERT: Using BERT Sentence Embedding in Parallel Neural Networks for Computational Humor
Automation of humor detection and rating has interesting use cases in modern technologies, such as humanoid robots, chatbots, and virtual assistants. In this paper, we propose a novel approach for detecting and rating humor in short texts based on a popular linguistic theory of humor. The proposed technical method initiates by separating sentences of the given text and utilizing the BERT model to generate embeddings for each one. The embeddings are fed to separate lines of hidden layers in a neural network (one line for each sentence) to extract latent features. At last, the parallel lines are concatenated to determine the congruity and other relationships between the sentences and predict the target value. We accompany the paper with a novel dataset for humor detection consisting of 200,000 formal short texts. In addition to evaluating our work on the novel dataset, we participated in a live machine learning competition focused on rating humor in Spanish tweets. The proposed model obtained F1 scores of 0.982 and 0.869 in the humor detection experiments which outperform general and state-of-the-art models. The evaluation performed on two contrasting settings confirm the strength and robustness of the model and suggests two important factors in achieving high accuracy in the current task: 1) usage of sentence embeddings and 2) utilizing the linguistic structure of humor in designing the proposed model.
Region Normalization for Image Inpainting
Feature Normalization (FN) is an important technique to help neural network training, which typically normalizes features across spatial dimensions. Most previous image inpainting methods apply FN in their networks without considering the impact of the corrupted regions of the input image on normalization, e.g. mean and variance shifts. In this work, we show that the mean and variance shifts caused by full-spatial FN limit the image inpainting network training and we propose a spatial region-wise normalization named Region Normalization (RN) to overcome the limitation. RN divides spatial pixels into different regions according to the input mask, and computes the mean and variance in each region for normalization. We develop two kinds of RN for our image inpainting network: (1) Basic RN (RN-B), which normalizes pixels from the corrupted and uncorrupted regions separately based on the original inpainting mask to solve the mean and variance shift problem; (2) Learnable RN (RN-L), which automatically detects potentially corrupted and uncorrupted regions for separate normalization, and performs global affine transformation to enhance their fusion. We apply RN-B in the early layers and RN-L in the latter layers of the network respectively. Experiments show that our method outperforms current state-of-the-art methods quantitatively and qualitatively. We further generalize RN to other inpainting networks and achieve consistent performance improvements. Our code is available at https://github.com/geekyutao/RN.
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
The Non-Local Network (NLNet) presents a pioneering approach for capturing long-range dependencies, via aggregating query-specific global context to each query position. However, through a rigorous empirical analysis, we have found that the global contexts modeled by non-local network are almost the same for different query positions within an image. In this paper, we take advantage of this finding to create a simplified network based on a query-independent formulation, which maintains the accuracy of NLNet but with significantly less computation. We further observe that this simplified design shares similar structure with Squeeze-Excitation Network (SENet). Hence we unify them into a three-step general framework for global context modeling. Within the general framework, we design a better instantiation, called the global context (GC) block, which is lightweight and can effectively model the global context. The lightweight property allows us to apply it for multiple layers in a backbone network to construct a global context network (GCNet), which generally outperforms both simplified NLNet and SENet on major benchmarks for various recognition tasks. The code and configurations are released at https://github.com/xvjiarui/GCNet.
i-RevNet: Deep Invertible Networks
It is widely believed that the success of deep convolutional networks is based on progressively discarding uninformative variability about the input with respect to the problem at hand. This is supported empirically by the difficulty of recovering images from their hidden representations, in most commonly used network architectures. In this paper we show via a one-to-one mapping that this loss of information is not a necessary condition to learn representations that generalize well on complicated problems, such as ImageNet. Via a cascade of homeomorphic layers, we build the i-RevNet, a network that can be fully inverted up to the final projection onto the classes, i.e. no information is discarded. Building an invertible architecture is difficult, for one, because the local inversion is ill-conditioned, we overcome this by providing an explicit inverse. An analysis of i-RevNets learned representations suggests an alternative explanation for the success of deep networks by a progressive contraction and linear separation with depth. To shed light on the nature of the model learned by the i-RevNet we reconstruct linear interpolations between natural image representations.
Security in Wireless Sensor Networks
Wireless sensor networks have attracted a lot of interest over the last decade in wireless and mobile computing research community. Applications of these networks are numerous and growing, which range from indoor deployment scenarios in the home and office to outdoor deployment in adversary's territory in a tactical battleground. However, due to distributed nature and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their performance. This chapter provides a comprehensive discussion on the state of the art in security technologies for wireless sensor networks. It identifies various possible attacks at different layers of the communication protocol stack in a typical sensor network and their possible countermeasures. A brief discussion on the future direction of research in WSN security is also included.
Hyper-Connections
We present hyper-connections, a simple yet effective method that can serve as an alternative to residual connections. This approach specifically addresses common drawbacks observed in residual connection variants, such as the seesaw effect between gradient vanishing and representation collapse. Theoretically, hyper-connections allow the network to adjust the strength of connections between features at different depths and dynamically rearrange layers. We conduct experiments focusing on the pre-training of large language models, including dense and sparse models, where hyper-connections show significant performance improvements over residual connections. Additional experiments conducted on vision tasks also demonstrate similar improvements. We anticipate that this method will be broadly applicable and beneficial across a wide range of AI problems.
CoTracker: It is Better to Track Together
Methods for video motion prediction either estimate jointly the instantaneous motion of all points in a given video frame using optical flow or independently track the motion of individual points throughout the video. The latter is true even for powerful deep-learning methods that can track points through occlusions. Tracking points individually ignores the strong correlation that can exist between the points, for instance, because they belong to the same physical object, potentially harming performance. In this paper, we thus propose CoTracker, an architecture that jointly tracks multiple points throughout an entire video. This architecture combines several ideas from the optical flow and tracking literature in a new, flexible and powerful design. It is based on a transformer network that models the correlation of different points in time via specialised attention layers. The transformer iteratively updates an estimate of several trajectories. It can be applied in a sliding-window manner to very long videos, for which we engineer an unrolled training loop. It can track from one to several points jointly and supports adding new points to track at any time. The result is a flexible and powerful tracking algorithm that outperforms state-of-the-art methods in almost all benchmarks.
Build a Robust QA System with Transformer-based Mixture of Experts
In this paper, we aim to build a robust question answering system that can adapt to out-of-domain datasets. A single network may overfit to the superficial correlation in the training distribution, but with a meaningful number of expert sub-networks, a gating network that selects a sparse combination of experts for each input, and careful balance on the importance of expert sub-networks, the Mixture-of-Experts (MoE) model allows us to train a multi-task learner that can be generalized to out-of-domain datasets. We also explore the possibility of bringing the MoE layers up to the middle of the DistilBERT and replacing the dense feed-forward network with a sparsely-activated switch FFN layers, similar to the Switch Transformer architecture, which simplifies the MoE routing algorithm with reduced communication and computational costs. In addition to model architectures, we explore techniques of data augmentation including Easy Data Augmentation (EDA) and back translation, to create more meaningful variance among the small out-of-domain training data, therefore boosting the performance and robustness of our models. In this paper, we show that our combination of best architecture and data augmentation techniques achieves a 53.477 F1 score in the out-of-domain evaluation, which is a 9.52% performance gain over the baseline. On the final test set, we reported a higher 59.506 F1 and 41.651 EM. We successfully demonstrate the effectiveness of Mixture-of-Expert architecture in a Robust QA task.
SkyReconNet: A Cross-Resolution Contextual Integration Framework for Inpainting with Application to Enhanced CMB Map Reconstruction
We introduce a novel neural network, SkyReconNet, which combines the expanded receptive fields of dilated convolutional layers along with standard convolutions, to capture both the global and local features for reconstructing the missing information in an image. We implement our network to inpaint the masked regions in a full-sky Cosmic Microwave Background (CMB) map. Inpainting CMB maps is a particularly formidable challenge when dealing with extensive and irregular masks, such as galactic masks which can obscure substantial fractions of the sky. The hybrid design of SkyReconNet leverages the strengths of standard and dilated convolutions to accurately predict CMB fluctuations in the masked regions, by effectively utilizing the information from surrounding unmasked areas. During training, the network optimizes its weights by minimizing a composite loss function that combines the Structural Similarity Index Measure (SSIM) and mean squared error (MSE). SSIM preserves the essential structural features of the CMB, ensuring an accurate and coherent reconstruction of the missing CMB fluctuations, while MSE minimizes the pixel-wise deviations, enhancing the overall accuracy of the predictions. The predicted CMB maps and their corresponding angular power spectra align closely with the targets, achieving the performance limited only by the fundamental uncertainty of cosmic variance. The network's generic architecture enables application to other physics-based challenges involving data with missing or defective pixels, systematic artefacts etc. Our results demonstrate its effectiveness in addressing the challenges posed by large irregular masks, offering a significant inpainting tool not only for CMB analyses but also for image-based experiments across disciplines where such data imperfections are prevalent.
Neural Fine-Tuning Search for Few-Shot Learning
In few-shot recognition, a classifier that has been trained on one set of classes is required to rapidly adapt and generalize to a disjoint, novel set of classes. To that end, recent studies have shown the efficacy of fine-tuning with carefully crafted adaptation architectures. However this raises the question of: How can one design the optimal adaptation strategy? In this paper, we study this question through the lens of neural architecture search (NAS). Given a pre-trained neural network, our algorithm discovers the optimal arrangement of adapters, which layers to keep frozen and which to fine-tune. We demonstrate the generality of our NAS method by applying it to both residual networks and vision transformers and report state-of-the-art performance on Meta-Dataset and Meta-Album.
APNet: An All-Frame-Level Neural Vocoder Incorporating Direct Prediction of Amplitude and Phase Spectra
This paper presents a novel neural vocoder named APNet which reconstructs speech waveforms from acoustic features by predicting amplitude and phase spectra directly. The APNet vocoder is composed of an amplitude spectrum predictor (ASP) and a phase spectrum predictor (PSP). The ASP is a residual convolution network which predicts frame-level log amplitude spectra from acoustic features. The PSP also adopts a residual convolution network using acoustic features as input, then passes the output of this network through two parallel linear convolution layers respectively, and finally integrates into a phase calculation formula to estimate frame-level phase spectra. Finally, the outputs of ASP and PSP are combined to reconstruct speech waveforms by inverse short-time Fourier transform (ISTFT). All operations of the ASP and PSP are performed at the frame level. We train the ASP and PSP jointly and define multilevel loss functions based on amplitude mean square error, phase anti-wrapping error, short-time spectral inconsistency error and time domain reconstruction error. Experimental results show that our proposed APNet vocoder achieves an approximately 8x faster inference speed than HiFi-GAN v1 on a CPU due to the all-frame-level operations, while its synthesized speech quality is comparable to HiFi-GAN v1. The synthesized speech quality of the APNet vocoder is also better than that of several equally efficient models. Ablation experiments also confirm that the proposed parallel phase estimation architecture is essential to phase modeling and the proposed loss functions are helpful for improving the synthesized speech quality.
Deterministic equivalent and error universality of deep random features learning
This manuscript considers the problem of learning a random Gaussian network function using a fully connected network with frozen intermediate layers and trainable readout layer. This problem can be seen as a natural generalization of the widely studied random features model to deeper architectures. First, we prove Gaussian universality of the test error in a ridge regression setting where the learner and target networks share the same intermediate layers, and provide a sharp asymptotic formula for it. Establishing this result requires proving a deterministic equivalent for traces of the deep random features sample covariance matrices which can be of independent interest. Second, we conjecture the asymptotic Gaussian universality of the test error in the more general setting of arbitrary convex losses and generic learner/target architectures. We provide extensive numerical evidence for this conjecture, which requires the derivation of closed-form expressions for the layer-wise post-activation population covariances. In light of our results, we investigate the interplay between architecture design and implicit regularization.
Opening the Blackbox: Accelerating Neural Differential Equations by Regularizing Internal Solver Heuristics
Democratization of machine learning requires architectures that automatically adapt to new problems. Neural Differential Equations (NDEs) have emerged as a popular modeling framework by removing the need for ML practitioners to choose the number of layers in a recurrent model. While we can control the computational cost by choosing the number of layers in standard architectures, in NDEs the number of neural network evaluations for a forward pass can depend on the number of steps of the adaptive ODE solver. But, can we force the NDE to learn the version with the least steps while not increasing the training cost? Current strategies to overcome slow prediction require high order automatic differentiation, leading to significantly higher training time. We describe a novel regularization method that uses the internal cost heuristics of adaptive differential equation solvers combined with discrete adjoint sensitivities to guide the training process towards learning NDEs that are easier to solve. This approach opens up the blackbox numerical analysis behind the differential equation solver's algorithm and directly uses its local error estimates and stiffness heuristics as cheap and accurate cost estimates. We incorporate our method without any change in the underlying NDE framework and show that our method extends beyond Ordinary Differential Equations to accommodate Neural Stochastic Differential Equations. We demonstrate how our approach can halve the prediction time and, unlike other methods which can increase the training time by an order of magnitude, we demonstrate similar reduction in training times. Together this showcases how the knowledge embedded within state-of-the-art equation solvers can be used to enhance machine learning.
Learning to Branch for Multi-Task Learning
Training multiple tasks jointly in one deep network yields reduced latency during inference and better performance over the single-task counterpart by sharing certain layers of a network. However, over-sharing a network could erroneously enforce over-generalization, causing negative knowledge transfer across tasks. Prior works rely on human intuition or pre-computed task relatedness scores for ad hoc branching structures. They provide sub-optimal end results and often require huge efforts for the trial-and-error process. In this work, we present an automated multi-task learning algorithm that learns where to share or branch within a network, designing an effective network topology that is directly optimized for multiple objectives across tasks. Specifically, we propose a novel tree-structured design space that casts a tree branching operation as a gumbel-softmax sampling procedure. This enables differentiable network splitting that is end-to-end trainable. We validate the proposed method on controlled synthetic data, CelebA, and Taskonomy.
Self-Supervised Feature Learning by Learning to Spot Artifacts
We introduce a novel self-supervised learning method based on adversarial training. Our objective is to train a discriminator network to distinguish real images from images with synthetic artifacts, and then to extract features from its intermediate layers that can be transferred to other data domains and tasks. To generate images with artifacts, we pre-train a high-capacity autoencoder and then we use a damage and repair strategy: First, we freeze the autoencoder and damage the output of the encoder by randomly dropping its entries. Second, we augment the decoder with a repair network, and train it in an adversarial manner against the discriminator. The repair network helps generate more realistic images by inpainting the dropped feature entries. To make the discriminator focus on the artifacts, we also make it predict what entries in the feature were dropped. We demonstrate experimentally that features learned by creating and spotting artifacts achieve state of the art performance in several benchmarks.
Deep Layer Aggregation
Visual recognition requires rich representations that span levels from low to high, scales from small to large, and resolutions from fine to coarse. Even with the depth of features in a convolutional network, a layer in isolation is not enough: compounding and aggregating these representations improves inference of what and where. Architectural efforts are exploring many dimensions for network backbones, designing deeper or wider architectures, but how to best aggregate layers and blocks across a network deserves further attention. Although skip connections have been incorporated to combine layers, these connections have been "shallow" themselves, and only fuse by simple, one-step operations. We augment standard architectures with deeper aggregation to better fuse information across layers. Our deep layer aggregation structures iteratively and hierarchically merge the feature hierarchy to make networks with better accuracy and fewer parameters. Experiments across architectures and tasks show that deep layer aggregation improves recognition and resolution compared to existing branching and merging schemes. The code is at https://github.com/ucbdrive/dla.
ImageBind-LLM: Multi-modality Instruction Tuning
We present ImageBind-LLM, a multi-modality instruction tuning method of large language models (LLMs) via ImageBind. Existing works mainly focus on language and image instruction tuning, different from which, our ImageBind-LLM can respond to multi-modality conditions, including audio, 3D point clouds, video, and their embedding-space arithmetic by only image-text alignment training. During training, we adopt a learnable bind network to align the embedding space between LLaMA and ImageBind's image encoder. Then, the image features transformed by the bind network are added to word tokens of all layers in LLaMA, which progressively injects visual instructions via an attention-free and zero-initialized gating mechanism. Aided by the joint embedding of ImageBind, the simple image-text training enables our model to exhibit superior multi-modality instruction-following capabilities. During inference, the multi-modality inputs are fed into the corresponding ImageBind encoders, and processed by a proposed visual cache model for further cross-modal embedding enhancement. The training-free cache model retrieves from three million image features extracted by ImageBind, which effectively mitigates the training-inference modality discrepancy. Notably, with our approach, ImageBind-LLM can respond to instructions of diverse modalities and demonstrate significant language generation quality. Code is released at https://github.com/OpenGVLab/LLaMA-Adapter.
RAPHAEL: Text-to-Image Generation via Large Mixture of Diffusion Paths
Text-to-image generation has recently witnessed remarkable achievements. We introduce a text-conditional image diffusion model, termed RAPHAEL, to generate highly artistic images, which accurately portray the text prompts, encompassing multiple nouns, adjectives, and verbs. This is achieved by stacking tens of mixture-of-experts (MoEs) layers, i.e., space-MoE and time-MoE layers, enabling billions of diffusion paths (routes) from the network input to the output. Each path intuitively functions as a "painter" for depicting a particular textual concept onto a specified image region at a diffusion timestep. Comprehensive experiments reveal that RAPHAEL outperforms recent cutting-edge models, such as Stable Diffusion, ERNIE-ViLG 2.0, DeepFloyd, and DALL-E 2, in terms of both image quality and aesthetic appeal. Firstly, RAPHAEL exhibits superior performance in switching images across diverse styles, such as Japanese comics, realism, cyberpunk, and ink illustration. Secondly, a single model with three billion parameters, trained on 1,000 A100 GPUs for two months, achieves a state-of-the-art zero-shot FID score of 6.61 on the COCO dataset. Furthermore, RAPHAEL significantly surpasses its counterparts in human evaluation on the ViLG-300 benchmark. We believe that RAPHAEL holds the potential to propel the frontiers of image generation research in both academia and industry, paving the way for future breakthroughs in this rapidly evolving field. More details can be found on a project webpage: https://raphael-painter.github.io/.
Efficient Transformer Encoders for Mask2Former-style models
Vision transformer based models bring significant improvements for image segmentation tasks. Although these architectures offer powerful capabilities irrespective of specific segmentation tasks, their use of computational resources can be taxing on deployed devices. One way to overcome this challenge is by adapting the computation level to the specific needs of the input image rather than the current one-size-fits-all approach. To this end, we introduce ECO-M2F or EffiCient TransfOrmer Encoders for Mask2Former-style models. Noting that the encoder module of M2F-style models incur high resource-intensive computations, ECO-M2F provides a strategy to self-select the number of hidden layers in the encoder, conditioned on the input image. To enable this self-selection ability for providing a balance between performance and computational efficiency, we present a three step recipe. The first step is to train the parent architecture to enable early exiting from the encoder. The second step is to create an derived dataset of the ideal number of encoder layers required for each training example. The third step is to use the aforementioned derived dataset to train a gating network that predicts the number of encoder layers to be used, conditioned on the input image. Additionally, to change the computational-accuracy tradeoff, only steps two and three need to be repeated which significantly reduces retraining time. Experiments on the public datasets show that the proposed approach reduces expected encoder computational cost while maintaining performance, adapts to various user compute resources, is flexible in architecture configurations, and can be extended beyond the segmentation task to object detection.
ELITE: Encoding Visual Concepts into Textual Embeddings for Customized Text-to-Image Generation
Despite unprecedented ability in imaginary creation, large text-to-image models are further expected to express customized concepts. Existing works generally learn such concepts in an optimization-based manner, yet bringing excessive computation or memory burden. In this paper, we instead propose a learning-based encoder for fast and accurate concept customization, which consists of global and local mapping networks. In specific, the global mapping network separately projects the hierarchical features of a given image into multiple ``new'' words in the textual word embedding space, i.e., one primary word for well-editable concept and other auxiliary words to exclude irrelevant disturbances (e.g., background). In the meantime, a local mapping network injects the encoded patch features into cross attention layers to provide omitted details, without sacrificing the editability of primary concepts. We compare our method with prior optimization-based approaches on a variety of user-defined concepts, and demonstrate that our method enables more high-fidelity inversion and robust editability with a significantly faster encoding process. Our code will be publicly available at https://github.com/csyxwei/ELITE.
LiNeS: Post-training Layer Scaling Prevents Forgetting and Enhances Model Merging
Fine-tuning pre-trained models has become the standard approach to endow them with specialized knowledge, but it poses fundamental challenges. In particular, (i) fine-tuning often leads to catastrophic forgetting, where improvements on a target domain degrade generalization on other tasks, and (ii) merging fine-tuned checkpoints from disparate tasks can lead to significant performance loss. To address these challenges, we introduce LiNeS, Layer-increasing Network Scaling, a post-training editing technique designed to preserve pre-trained generalization while enhancing fine-tuned task performance. LiNeS scales parameter updates linearly based on their layer depth within the network, maintaining shallow layers close to their pre-trained values to preserve general features while allowing deeper layers to retain task-specific representations. In multi-task model merging scenarios, layer-wise scaling of merged parameters reduces negative task interference. LiNeS demonstrates significant improvements in both single-task and multi-task settings across various benchmarks in vision and natural language processing. It mitigates forgetting, enhances out-of-distribution generalization, integrates seamlessly with existing multi-task model merging baselines improving their performance across benchmarks and model sizes, and can boost generalization when merging LLM policies aligned with different rewards via RLHF. Our method is simple to implement, computationally efficient and complementary to many existing techniques. Our source code is available at https://github.com/wang-kee/LiNeS
Revisiting Neural Networks for Continual Learning: An Architectural Perspective
Efforts to overcome catastrophic forgetting have primarily centered around developing more effective Continual Learning (CL) methods. In contrast, less attention was devoted to analyzing the role of network architecture design (e.g., network depth, width, and components) in contributing to CL. This paper seeks to bridge this gap between network architecture design and CL, and to present a holistic study on the impact of network architectures on CL. This work considers architecture design at the network scaling level, i.e., width and depth, and also at the network components, i.e., skip connections, global pooling layers, and down-sampling. In both cases, we first derive insights through systematically exploring how architectural designs affect CL. Then, grounded in these insights, we craft a specialized search space for CL and further propose a simple yet effective ArchCraft method to steer a CL-friendly architecture, namely, this method recrafts AlexNet/ResNet into AlexAC/ResAC. Experimental validation across various CL settings and scenarios demonstrates that improved architectures are parameter-efficient, achieving state-of-the-art performance of CL while being 86%, 61%, and 97% more compact in terms of parameters than the naive CL architecture in Task IL and Class IL. Code is available at https://github.com/byyx666/ArchCraft.
Recasting Regional Lighting for Shadow Removal
Removing shadows requires an understanding of both lighting conditions and object textures in a scene. Existing methods typically learn pixel-level color mappings between shadow and non-shadow images, in which the joint modeling of lighting and object textures is implicit and inadequate. We observe that in a shadow region, the degradation degree of object textures depends on the local illumination, while simply enhancing the local illumination cannot fully recover the attenuated textures. Based on this observation, we propose to condition the restoration of attenuated textures on the corrected local lighting in the shadow region. Specifically, We first design a shadow-aware decomposition network to estimate the illumination and reflectance layers of shadow regions explicitly. We then propose a novel bilateral correction network to recast the lighting of shadow regions in the illumination layer via a novel local lighting correction module, and to restore the textures conditioned on the corrected illumination layer via a novel illumination-guided texture restoration module. We further annotate pixel-wise shadow masks for the public SRD dataset, which originally contains only image pairs. Experiments on three benchmarks show that our method outperforms existing state-of-the-art shadow removal methods.
Implicit Variational Inference for High-Dimensional Posteriors
In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution. We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors in high-dimensional spaces. Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler. This is distinct from existing methods that rely on additional discriminator networks and unstable adversarial objectives. Furthermore, we present a new sampler architecture that, for the first time, enables implicit distributions over tens of millions of latent variables, addressing computational concerns by using differentiable numerical approximations. We empirically show that our method is capable of recovering correlations across layers in large Bayesian neural networks, a property that is crucial for a network's performance but notoriously challenging to achieve. To the best of our knowledge, no other method has been shown to accomplish this task for such large models. Through experiments in downstream tasks, we demonstrate that our expressive posteriors outperform state-of-the-art uncertainty quantification methods, validating the effectiveness of our training algorithm and the quality of the learned implicit approximation.
Overcoming Simplicity Bias in Deep Networks using a Feature Sieve
Simplicity bias is the concerning tendency of deep networks to over-depend on simple, weakly predictive features, to the exclusion of stronger, more complex features. This is exacerbated in real-world applications by limited training data and spurious feature-label correlations, leading to biased, incorrect predictions. We propose a direct, interventional method for addressing simplicity bias in DNNs, which we call the feature sieve. We aim to automatically identify and suppress easily-computable spurious features in lower layers of the network, thereby allowing the higher network levels to extract and utilize richer, more meaningful representations. We provide concrete evidence of this differential suppression & enhancement of relevant features on both controlled datasets and real-world images, and report substantial gains on many real-world debiasing benchmarks (11.4% relative gain on Imagenet-A; 3.2% on BAR, etc). Crucially, we do not depend on prior knowledge of spurious attributes or features, and in fact outperform many baselines that explicitly incorporate such information. We believe that our feature sieve work opens up exciting new research directions in automated adversarial feature extraction and representation learning for deep networks.
SqueezeBERT: What can computer vision teach NLP about efficient neural networks?
Humans read and write hundreds of billions of messages every day. Further, due to the availability of large datasets, large computing systems, and better neural network models, natural language processing (NLP) technology has made significant strides in understanding, proofreading, and organizing these messages. Thus, there is a significant opportunity to deploy NLP in myriad applications to help web users, social networks, and businesses. In particular, we consider smartphones and other mobile devices as crucial platforms for deploying NLP models at scale. However, today's highly-accurate NLP neural network models such as BERT and RoBERTa are extremely computationally expensive, with BERT-base taking 1.7 seconds to classify a text snippet on a Pixel 3 smartphone. In this work, we observe that methods such as grouped convolutions have yielded significant speedups for computer vision networks, but many of these techniques have not been adopted by NLP neural network designers. We demonstrate how to replace several operations in self-attention layers with grouped convolutions, and we use this technique in a novel network architecture called SqueezeBERT, which runs 4.3x faster than BERT-base on the Pixel 3 while achieving competitive accuracy on the GLUE test set. The SqueezeBERT code will be released.
Controllable Attention for Structured Layered Video Decomposition
The objective of this paper is to be able to separate a video into its natural layers, and to control which of the separated layers to attend to. For example, to be able to separate reflections, transparency or object motion. We make the following three contributions: (i) we introduce a new structured neural network architecture that explicitly incorporates layers (as spatial masks) into its design. This improves separation performance over previous general purpose networks for this task; (ii) we demonstrate that we can augment the architecture to leverage external cues such as audio for controllability and to help disambiguation; and (iii) we experimentally demonstrate the effectiveness of our approach and training procedure with controlled experiments while also showing that the proposed model can be successfully applied to real-word applications such as reflection removal and action recognition in cluttered scenes.
End-to-end Domain-Adversarial Voice Activity Detection
Voice activity detection is the task of detecting speech regions in a given audio stream or recording. First, we design a neural network combining trainable filters and recurrent layers to tackle voice activity detection directly from the waveform. Experiments on the challenging DIHARD dataset show that the proposed end-to-end model reaches state-of-the-art performance and outperforms a variant where trainable filters are replaced by standard cepstral coefficients. Our second contribution aims at making the proposed voice activity detection model robust to domain mismatch. To that end, a domain classification branch is added to the network and trained in an adversarial manner. The same DIHARD dataset, drawn from 11 different domains is used for evaluation under two scenarios. In the in-domain scenario where the training and test sets cover the exact same domains, we show that the domain-adversarial approach does not degrade performance of the proposed end-to-end model. In the out-domain scenario where the test domain is different from training domains, it brings a relative improvement of more than 10%. Finally, our last contribution is the provision of a fully reproducible open-source pipeline than can be easily adapted to other datasets.
Sequential Training of Neural Networks with Gradient Boosting
This paper presents a novel technique based on gradient boosting to train the final layers of a neural network (NN). Gradient boosting is an additive expansion algorithm in which a series of models are trained sequentially to approximate a given function. A neural network can also be seen as an additive expansion where the scalar product of the responses of the last hidden layer and its weights provide the final output of the network. Instead of training the network as a whole, the proposed algorithm trains the network sequentially in T steps. First, the bias term of the network is initialized with a constant approximation that minimizes the average loss of the data. Then, at each step, a portion of the network, composed of J neurons, is trained to approximate the pseudo-residuals on the training data computed from the previous iterations. Finally, the T partial models and bias are integrated as a single NN with T times J neurons in the hidden layer. Extensive experiments in classification and regression tasks, as well as in combination with deep neural networks, are carried out showing a competitive generalization performance with respect to neural networks trained with different standard solvers, such as Adam, L-BFGS, SGD and deep models. Furthermore, we show that the proposed method design permits to switch off a number of hidden units during test (the units that were last trained) without a significant reduction of its generalization ability. This permits the adaptation of the model to different classification speed requirements on the fly.
Unsupervised Learning of Neural Networks to Explain Neural Networks
This paper presents an unsupervised method to learn a neural network, namely an explainer, to interpret a pre-trained convolutional neural network (CNN), i.e., explaining knowledge representations hidden in middle conv-layers of the CNN. Given feature maps of a certain conv-layer of the CNN, the explainer performs like an auto-encoder, which first disentangles the feature maps into object-part features and then inverts object-part features back to features of higher conv-layers of the CNN. More specifically, the explainer contains interpretable conv-layers, where each filter disentangles the representation of a specific object part from chaotic input feature maps. As a paraphrase of CNN features, the disentangled representations of object parts help people understand the logic inside the CNN. We also learn the explainer to use object-part features to reconstruct features of higher CNN layers, in order to minimize loss of information during the feature disentanglement. More crucially, we learn the explainer via network distillation without using any annotations of sample labels, object parts, or textures for supervision. We have applied our method to different types of CNNs for evaluation, and explainers have significantly boosted the interpretability of CNN features.
RepGhost: A Hardware-Efficient Ghost Module via Re-parameterization
Feature reuse has been a key technique in light-weight convolutional neural networks (CNNs) design. Current methods usually utilize a concatenation operator to keep large channel numbers cheaply (thus large network capacity) by reusing feature maps from other layers. Although concatenation is parameters- and FLOPs-free, its computational cost on hardware devices is non-negligible. To address this, this paper provides a new perspective to realize feature reuse via structural re-parameterization technique. A novel hardware-efficient RepGhost module is proposed for implicit feature reuse via re-parameterization, instead of using concatenation operator. Based on the RepGhost module, we develop our efficient RepGhost bottleneck and RepGhostNet. Experiments on ImageNet and COCO benchmarks demonstrate that the proposed RepGhostNet is much more effective and efficient than GhostNet and MobileNetV3 on mobile devices. Specially, our RepGhostNet surpasses GhostNet 0.5x by 2.5% Top-1 accuracy on ImageNet dataset with less parameters and comparable latency on an ARM-based mobile phone.
Graph-Based Multilingual Label Propagation for Low-Resource Part-of-Speech Tagging
Part-of-Speech (POS) tagging is an important component of the NLP pipeline, but many low-resource languages lack labeled data for training. An established method for training a POS tagger in such a scenario is to create a labeled training set by transferring from high-resource languages. In this paper, we propose a novel method for transferring labels from multiple high-resource source to low-resource target languages. We formalize POS tag projection as graph-based label propagation. Given translations of a sentence in multiple languages, we create a graph with words as nodes and alignment links as edges by aligning words for all language pairs. We then propagate node labels from source to target using a Graph Neural Network augmented with transformer layers. We show that our propagation creates training sets that allow us to train POS taggers for a diverse set of languages. When combined with enhanced contextualized embeddings, our method achieves a new state-of-the-art for unsupervised POS tagging of low-resource languages.
Cache Me if You Can: Accelerating Diffusion Models through Block Caching
Diffusion models have recently revolutionized the field of image synthesis due to their ability to generate photorealistic images. However, one of the major drawbacks of diffusion models is that the image generation process is costly. A large image-to-image network has to be applied many times to iteratively refine an image from random noise. While many recent works propose techniques to reduce the number of required steps, they generally treat the underlying denoising network as a black box. In this work, we investigate the behavior of the layers within the network and find that 1) the layers' output changes smoothly over time, 2) the layers show distinct patterns of change, and 3) the change from step to step is often very small. We hypothesize that many layer computations in the denoising network are redundant. Leveraging this, we introduce block caching, in which we reuse outputs from layer blocks of previous steps to speed up inference. Furthermore, we propose a technique to automatically determine caching schedules based on each block's changes over timesteps. In our experiments, we show through FID, human evaluation and qualitative analysis that Block Caching allows to generate images with higher visual quality at the same computational cost. We demonstrate this for different state-of-the-art models (LDM and EMU) and solvers (DDIM and DPM).
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows
We present CSWin Transformer, an efficient and effective Transformer-based backbone for general-purpose vision tasks. A challenging issue in Transformer design is that global self-attention is very expensive to compute whereas local self-attention often limits the field of interactions of each token. To address this issue, we develop the Cross-Shaped Window self-attention mechanism for computing self-attention in the horizontal and vertical stripes in parallel that form a cross-shaped window, with each stripe obtained by splitting the input feature into stripes of equal width. We provide a mathematical analysis of the effect of the stripe width and vary the stripe width for different layers of the Transformer network which achieves strong modeling capability while limiting the computation cost. We also introduce Locally-enhanced Positional Encoding (LePE), which handles the local positional information better than existing encoding schemes. LePE naturally supports arbitrary input resolutions, and is thus especially effective and friendly for downstream tasks. Incorporated with these designs and a hierarchical structure, CSWin Transformer demonstrates competitive performance on common vision tasks. Specifically, it achieves 85.4\% Top-1 accuracy on ImageNet-1K without any extra training data or label, 53.9 box AP and 46.4 mask AP on the COCO detection task, and 52.2 mIOU on the ADE20K semantic segmentation task, surpassing previous state-of-the-art Swin Transformer backbone by +1.2, +2.0, +1.4, and +2.0 respectively under the similar FLOPs setting. By further pretraining on the larger dataset ImageNet-21K, we achieve 87.5% Top-1 accuracy on ImageNet-1K and high segmentation performance on ADE20K with 55.7 mIoU. The code and models are available at https://github.com/microsoft/CSWin-Transformer.
Distillation-Supervised Convolutional Low-Rank Adaptation for Efficient Image Super-Resolution
Convolutional neural networks (CNNs) have been widely used in efficient image super-resolution. However, for CNN-based methods, performance gains often require deeper networks and larger feature maps, which increase complexity and inference costs. Inspired by LoRA's success in fine-tuning large language models, we explore its application to lightweight models and propose Distillation-Supervised Convolutional Low-Rank Adaptation (DSCLoRA), which improves model performance without increasing architectural complexity or inference costs. Specifically, we integrate ConvLoRA into the efficient SR network SPAN by replacing the SPAB module with the proposed SConvLB module and incorporating ConvLoRA layers into both the pixel shuffle block and its preceding convolutional layer. DSCLoRA leverages low-rank decomposition for parameter updates and employs a spatial feature affinity-based knowledge distillation strategy to transfer second-order statistical information from teacher models (pre-trained SPAN) to student models (ours). This method preserves the core knowledge of lightweight models and facilitates optimal solution discovery under certain conditions. Experiments on benchmark datasets show that DSCLoRA improves PSNR and SSIM over SPAN while maintaining its efficiency and competitive image quality. Notably, DSCLoRA ranked first in the Overall Performance Track of the NTIRE 2025 Efficient Super-Resolution Challenge. Our code and models are made publicly available at https://github.com/Yaozzz666/DSCF-SR.
Information-Theoretic Generalization Bounds for Deep Neural Networks
Deep neural networks (DNNs) exhibit an exceptional capacity for generalization in practical applications. This work aims to capture the effect and benefits of depth for supervised learning via information-theoretic generalization bounds. We first derive two hierarchical bounds on the generalization error in terms of the Kullback-Leibler (KL) divergence or the 1-Wasserstein distance between the train and test distributions of the network internal representations. The KL divergence bound shrinks as the layer index increases, while the Wasserstein bound implies the existence of a layer that serves as a generalization funnel, which attains a minimal 1-Wasserstein distance. Analytic expressions for both bounds are derived under the setting of binary Gaussian classification with linear DNNs. To quantify the contraction of the relevant information measures when moving deeper into the network, we analyze the strong data processing inequality (SDPI) coefficient between consecutive layers of three regularized DNN models: Dropout, DropConnect, and Gaussian noise injection. This enables refining our generalization bounds to capture the contraction as a function of the network architecture parameters. Specializing our results to DNNs with a finite parameter space and the Gibbs algorithm reveals that deeper yet narrower network architectures generalize better in those examples, although how broadly this statement applies remains a question.
Deep Spatiotemporal Clutter Filtering of Transthoracic Echocardiographic Images: Leveraging Contextual Attention and Residual Learning
This study presents a deep convolutional autoencoder network for filtering reverberation clutter from transthoracic echocardiographic (TTE) image sequences. Given the spatiotemporal nature of this type of clutter, the filtering network employs 3D convolutional layers to suppress it throughout the cardiac cycle. The design of the network incorporates two key features that contribute to the effectiveness of the filter: 1) an attention mechanism for focusing on cluttered regions and leveraging contextual information, and 2) residual learning for preserving fine image structures. To train the network, a diverse set of artifact patterns was simulated and superimposed onto ultra-realistic synthetic TTE sequences from six ultrasound vendors, generating input for the filtering network. The artifact-free sequences served as ground-truth. Performance of the filtering network was evaluated using unseen synthetic and in vivo artifactual sequences. Results from the in vivo dataset confirmed the network's strong generalization capabilities, despite being trained solely on synthetic data and simulated artifacts. The suitability of the filtered sequences for downstream processing was assessed by computing segmental strain curves. A significant reduction in the discrepancy between strain profiles computed from cluttered and clutter-free segments was observed after filtering the cluttered sequences with the proposed network. The trained network processes a TTE sequence in a fraction of a second, enabling real-time clutter filtering and potentially improving the precision of clinically relevant indices derived from TTE sequences. The source code of the proposed method and example video files of the filtering results are available at: https://github.com/MahdiTabassian/Deep-Clutter-Filtering/tree/main{https://github.com/MahdiTabassian/Deep-Clutter-Filtering/tree/main}.
Out-of-Distribution Detection by Leveraging Between-Layer Transformation Smoothness
Effective out-of-distribution (OOD) detection is crucial for reliable machine learning models, yet most current methods are limited in practical use due to requirements like access to training data or intervention in training. We present a novel method for detecting OOD data in Transformers based on transformation smoothness between intermediate layers of a network (BLOOD), which is applicable to pre-trained models without access to training data. BLOOD utilizes the tendency of between-layer representation transformations of in-distribution (ID) data to be smoother than the corresponding transformations of OOD data, a property that we also demonstrate empirically. We evaluate BLOOD on several text classification tasks with Transformer networks and demonstrate that it outperforms methods with comparable resource requirements. Our analysis also suggests that when learning simpler tasks, OOD data transformations maintain their original sharpness, whereas sharpness increases with more complex tasks.
An analysis of the transfer learning of convolutional neural networks for artistic images
Transfer learning from huge natural image datasets, fine-tuning of deep neural networks and the use of the corresponding pre-trained networks have become de facto the core of art analysis applications. Nevertheless, the effects of transfer learning are still poorly understood. In this paper, we first use techniques for visualizing the network internal representations in order to provide clues to the understanding of what the network has learned on artistic images. Then, we provide a quantitative analysis of the changes introduced by the learning process thanks to metrics in both the feature and parameter spaces, as well as metrics computed on the set of maximal activation images. These analyses are performed on several variations of the transfer learning procedure. In particular, we observed that the network could specialize some pre-trained filters to the new image modality and also that higher layers tend to concentrate classes. Finally, we have shown that a double fine-tuning involving a medium-size artistic dataset can improve the classification on smaller datasets, even when the task changes.
There and Back Again: Revisiting Backpropagation Saliency Methods
Saliency methods seek to explain the predictions of a model by producing an importance map across each input sample. A popular class of such methods is based on backpropagating a signal and analyzing the resulting gradient. Despite much research on such methods, relatively little work has been done to clarify the differences between such methods as well as the desiderata of these techniques. Thus, there is a need for rigorously understanding the relationships between different methods as well as their failure modes. In this work, we conduct a thorough analysis of backpropagation-based saliency methods and propose a single framework under which several such methods can be unified. As a result of our study, we make three additional contributions. First, we use our framework to propose NormGrad, a novel saliency method based on the spatial contribution of gradients of convolutional weights. Second, we combine saliency maps at different layers to test the ability of saliency methods to extract complementary information at different network levels (e.g.~trading off spatial resolution and distinctiveness) and we explain why some methods fail at specific layers (e.g., Grad-CAM anywhere besides the last convolutional layer). Third, we introduce a class-sensitivity metric and a meta-learning inspired paradigm applicable to any saliency method for improving sensitivity to the output class being explained.
Graph Attention Networks
We present graph attention networks (GATs), novel neural network architectures that operate on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations. By stacking layers in which nodes are able to attend over their neighborhoods' features, we enable (implicitly) specifying different weights to different nodes in a neighborhood, without requiring any kind of costly matrix operation (such as inversion) or depending on knowing the graph structure upfront. In this way, we address several key challenges of spectral-based graph neural networks simultaneously, and make our model readily applicable to inductive as well as transductive problems. Our GAT models have achieved or matched state-of-the-art results across four established transductive and inductive graph benchmarks: the Cora, Citeseer and Pubmed citation network datasets, as well as a protein-protein interaction dataset (wherein test graphs remain unseen during training).
Striving for Simplicity: The All Convolutional Net
Most modern convolutional neural networks (CNNs) used for object recognition are built using the same principles: Alternating convolution and max-pooling layers followed by a small number of fully connected layers. We re-evaluate the state of the art for object recognition from small images with convolutional networks, questioning the necessity of different components in the pipeline. We find that max-pooling can simply be replaced by a convolutional layer with increased stride without loss in accuracy on several image recognition benchmarks. Following this finding -- and building on other recent work for finding simple network structures -- we propose a new architecture that consists solely of convolutional layers and yields competitive or state of the art performance on several object recognition datasets (CIFAR-10, CIFAR-100, ImageNet). To analyze the network we introduce a new variant of the "deconvolution approach" for visualizing features learned by CNNs, which can be applied to a broader range of network structures than existing approaches.
Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark
Neural networks have shown tremendous growth in recent years to solve numerous problems. Various types of neural networks have been introduced to deal with different types of problems. However, the main goal of any neural network is to transform the non-linearly separable input data into more linearly separable abstract features using a hierarchy of layers. These layers are combinations of linear and nonlinear functions. The most popular and common non-linearity layers are activation functions (AFs), such as Logistic Sigmoid, Tanh, ReLU, ELU, Swish and Mish. In this paper, a comprehensive overview and survey is presented for AFs in neural networks for deep learning. Different classes of AFs such as Logistic Sigmoid and Tanh based, ReLU based, ELU based, and Learning based are covered. Several characteristics of AFs such as output range, monotonicity, and smoothness are also pointed out. A performance comparison is also performed among 18 state-of-the-art AFs with different networks on different types of data. The insights of AFs are presented to benefit the researchers for doing further research and practitioners to select among different choices. The code used for experimental comparison is released at: https://github.com/shivram1987/ActivationFunctions.
Trellis Networks for Sequence Modeling
We present trellis networks, a new architecture for sequence modeling. On the one hand, a trellis network is a temporal convolutional network with special structure, characterized by weight tying across depth and direct injection of the input into deep layers. On the other hand, we show that truncated recurrent networks are equivalent to trellis networks with special sparsity structure in their weight matrices. Thus trellis networks with general weight matrices generalize truncated recurrent networks. We leverage these connections to design high-performing trellis networks that absorb structural and algorithmic elements from both recurrent and convolutional models. Experiments demonstrate that trellis networks outperform the current state of the art methods on a variety of challenging benchmarks, including word-level language modeling and character-level language modeling tasks, and stress tests designed to evaluate long-term memory retention. The code is available at https://github.com/locuslab/trellisnet .
TryOn-Adapter: Efficient Fine-Grained Clothing Identity Adaptation for High-Fidelity Virtual Try-On
Virtual try-on focuses on adjusting the given clothes to fit a specific person seamlessly while avoiding any distortion of the patterns and textures of the garment. However, the clothing identity uncontrollability and training inefficiency of existing diffusion-based methods, which struggle to maintain the identity even with full parameter training, are significant limitations that hinder the widespread applications. In this work, we propose an effective and efficient framework, termed TryOn-Adapter. Specifically, we first decouple clothing identity into fine-grained factors: style for color and category information, texture for high-frequency details, and structure for smooth spatial adaptive transformation. Our approach utilizes a pre-trained exemplar-based diffusion model as the fundamental network, whose parameters are frozen except for the attention layers. We then customize three lightweight modules (Style Preserving, Texture Highlighting, and Structure Adapting) incorporated with fine-tuning techniques to enable precise and efficient identity control. Meanwhile, we introduce the training-free T-RePaint strategy to further enhance clothing identity preservation while maintaining the realistic try-on effect during the inference. Our experiments demonstrate that our approach achieves state-of-the-art performance on two widely-used benchmarks. Additionally, compared with recent full-tuning diffusion-based methods, we only use about half of their tunable parameters during training. The code will be made publicly available at https://github.com/jiazheng-xing/TryOn-Adapter.
Multi-Sample Dropout for Accelerated Training and Better Generalization
Dropout is a simple but efficient regularization technique for achieving better generalization of deep neural networks (DNNs); hence it is widely used in tasks based on DNNs. During training, dropout randomly discards a portion of the neurons to avoid overfitting. This paper presents an enhanced dropout technique, which we call multi-sample dropout, for both accelerating training and improving generalization over the original dropout. The original dropout creates a randomly selected subset (called a dropout sample) from the input in each training iteration while the multi-sample dropout creates multiple dropout samples. The loss is calculated for each sample, and then the sample losses are averaged to obtain the final loss. This technique can be easily implemented by duplicating a part of the network after the dropout layer while sharing the weights among the duplicated fully connected layers. Experimental results using image classification tasks including ImageNet, CIFAR-10, and CIFAR-100 showed that multi-sample dropout accelerates training. Moreover, the networks trained using multi-sample dropout achieved lower error rates compared to networks trained with the original dropout. The additional computation cost due to the duplicated operations is not significant for deep convolutional networks because most of the computation time is consumed in the convolution layers before the dropout layer, which are not duplicated.
Semantic Image Synthesis with Spatially-Adaptive Normalization
We propose spatially-adaptive normalization, a simple but effective layer for synthesizing photorealistic images given an input semantic layout. Previous methods directly feed the semantic layout as input to the deep network, which is then processed through stacks of convolution, normalization, and nonlinearity layers. We show that this is suboptimal as the normalization layers tend to ``wash away'' semantic information. To address the issue, we propose using the input layout for modulating the activations in normalization layers through a spatially-adaptive, learned transformation. Experiments on several challenging datasets demonstrate the advantage of the proposed method over existing approaches, regarding both visual fidelity and alignment with input layouts. Finally, our model allows user control over both semantic and style. Code is available at https://github.com/NVlabs/SPADE .
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
Recognizing arbitrary multi-character text in unconstrained natural photographs is a hard problem. In this paper, we address an equally hard sub-problem in this domain viz. recognizing arbitrary multi-digit numbers from Street View imagery. Traditional approaches to solve this problem typically separate out the localization, segmentation, and recognition steps. In this paper we propose a unified approach that integrates these three steps via the use of a deep convolutional neural network that operates directly on the image pixels. We employ the DistBelief implementation of deep neural networks in order to train large, distributed neural networks on high quality images. We find that the performance of this approach increases with the depth of the convolutional network, with the best performance occurring in the deepest architecture we trained, with eleven hidden layers. We evaluate this approach on the publicly available SVHN dataset and achieve over 96% accuracy in recognizing complete street numbers. We show that on a per-digit recognition task, we improve upon the state-of-the-art, achieving 97.84% accuracy. We also evaluate this approach on an even more challenging dataset generated from Street View imagery containing several tens of millions of street number annotations and achieve over 90% accuracy. To further explore the applicability of the proposed system to broader text recognition tasks, we apply it to synthetic distorted text from reCAPTCHA. reCAPTCHA is one of the most secure reverse turing tests that uses distorted text to distinguish humans from bots. We report a 99.8% accuracy on the hardest category of reCAPTCHA. Our evaluations on both tasks indicate that at specific operating thresholds, the performance of the proposed system is comparable to, and in some cases exceeds, that of human operators.
TEXGen: a Generative Diffusion Model for Mesh Textures
While high-quality texture maps are essential for realistic 3D asset rendering, few studies have explored learning directly in the texture space, especially on large-scale datasets. In this work, we depart from the conventional approach of relying on pre-trained 2D diffusion models for test-time optimization of 3D textures. Instead, we focus on the fundamental problem of learning in the UV texture space itself. For the first time, we train a large diffusion model capable of directly generating high-resolution texture maps in a feed-forward manner. To facilitate efficient learning in high-resolution UV spaces, we propose a scalable network architecture that interleaves convolutions on UV maps with attention layers on point clouds. Leveraging this architectural design, we train a 700 million parameter diffusion model that can generate UV texture maps guided by text prompts and single-view images. Once trained, our model naturally supports various extended applications, including text-guided texture inpainting, sparse-view texture completion, and text-driven texture synthesis. Project page is at http://cvmi-lab.github.io/TEXGen/.
TCAN: Animating Human Images with Temporally Consistent Pose Guidance using Diffusion Models
Pose-driven human-image animation diffusion models have shown remarkable capabilities in realistic human video synthesis. Despite the promising results achieved by previous approaches, challenges persist in achieving temporally consistent animation and ensuring robustness with off-the-shelf pose detectors. In this paper, we present TCAN, a pose-driven human image animation method that is robust to erroneous poses and consistent over time. In contrast to previous methods, we utilize the pre-trained ControlNet without fine-tuning to leverage its extensive pre-acquired knowledge from numerous pose-image-caption pairs. To keep the ControlNet frozen, we adapt LoRA to the UNet layers, enabling the network to align the latent space between the pose and appearance features. Additionally, by introducing an additional temporal layer to the ControlNet, we enhance robustness against outliers of the pose detector. Through the analysis of attention maps over the temporal axis, we also designed a novel temperature map leveraging pose information, allowing for a more static background. Extensive experiments demonstrate that the proposed method can achieve promising results in video synthesis tasks encompassing various poses, like chibi. Project Page: https://eccv2024tcan.github.io/
CompactifAI: Extreme Compression of Large Language Models using Quantum-Inspired Tensor Networks
Large Language Models (LLMs) such as ChatGPT and LlaMA are advancing rapidly in generative Artificial Intelligence (AI), but their immense size poses significant challenges, such as huge training and inference costs, substantial energy demands, and limitations for on-site deployment. Traditional compression methods such as pruning, distillation, and low-rank approximation focus on reducing the effective number of neurons in the network, while quantization focuses on reducing the numerical precision of individual weights to reduce the model size while keeping the number of neurons fixed. While these compression methods have been relatively successful in practice, there is no compelling reason to believe that truncating the number of neurons is an optimal strategy. In this context, this paper introduces CompactifAI, an innovative LLM compression approach using quantum-inspired Tensor Networks that focuses on the model's correlation space instead, allowing for a more controlled, refined and interpretable model compression. Our method is versatile and can be implemented with - or on top of - other compression techniques. As a benchmark, we demonstrate that a combination of CompactifAI with quantization allows to reduce a 93% the memory size of LlaMA 7B, reducing also 70% the number of parameters, accelerating 50% the training and 25% the inference times of the model, and just with a small accuracy drop of 2% - 3%, going much beyond of what is achievable today by other compression techniques. Our methods also allow to perform a refined layer sensitivity profiling, showing that deeper layers tend to be more suitable for tensor network compression, which is compatible with recent observations on the ineffectiveness of those layers for LLM performance. Our results imply that standard LLMs are, in fact, heavily overparametrized, and do not need to be large at all.
ViewDiff: 3D-Consistent Image Generation with Text-to-Image Models
3D asset generation is getting massive amounts of attention, inspired by the recent success of text-guided 2D content creation. Existing text-to-3D methods use pretrained text-to-image diffusion models in an optimization problem or fine-tune them on synthetic data, which often results in non-photorealistic 3D objects without backgrounds. In this paper, we present a method that leverages pretrained text-to-image models as a prior, and learn to generate multi-view images in a single denoising process from real-world data. Concretely, we propose to integrate 3D volume-rendering and cross-frame-attention layers into each block of the existing U-Net network of the text-to-image model. Moreover, we design an autoregressive generation that renders more 3D-consistent images at any viewpoint. We train our model on real-world datasets of objects and showcase its capabilities to generate instances with a variety of high-quality shapes and textures in authentic surroundings. Compared to the existing methods, the results generated by our method are consistent, and have favorable visual quality (-30% FID, -37% KID).
Fast and Knowledge-Free Deep Learning for General Game Playing (Student Abstract)
We develop a method of adapting the AlphaZero model to General Game Playing (GGP) that focuses on faster model generation and requires less knowledge to be extracted from the game rules. The dataset generation uses MCTS playing instead of self-play; only the value network is used, and attention layers replace the convolutional ones. This allows us to abandon any assumptions about the action space and board topology. We implement the method within the Regular Boardgames GGP system and show that we can build models outperforming the UCT baseline for most games efficiently.
InnerThoughts: Disentangling Representations and Predictions in Large Language Models
Large language models (LLMs) contain substantial factual knowledge which is commonly elicited by multiple-choice question-answering prompts. Internally, such models process the prompt through multiple transformer layers, building varying representations of the problem within its hidden states. Ultimately, however, only the hidden state corresponding to the final layer and token position are used to predict the answer label. In this work, we propose instead to learn a small separate neural network predictor module on a collection of training questions, that take the hidden states from all the layers at the last temporal position as input and outputs predictions. In effect, such a framework disentangles the representational abilities of LLMs from their predictive abilities. On a collection of hard benchmarks, our method achieves considerable improvements in performance, sometimes comparable to supervised fine-tuning procedures, but at a fraction of the computational cost.
Hallo3: Highly Dynamic and Realistic Portrait Image Animation with Diffusion Transformer Networks
Existing methodologies for animating portrait images face significant challenges, particularly in handling non-frontal perspectives, rendering dynamic objects around the portrait, and generating immersive, realistic backgrounds. In this paper, we introduce the first application of a pretrained transformer-based video generative model that demonstrates strong generalization capabilities and generates highly dynamic, realistic videos for portrait animation, effectively addressing these challenges. The adoption of a new video backbone model makes previous U-Net-based methods for identity maintenance, audio conditioning, and video extrapolation inapplicable. To address this limitation, we design an identity reference network consisting of a causal 3D VAE combined with a stacked series of transformer layers, ensuring consistent facial identity across video sequences. Additionally, we investigate various speech audio conditioning and motion frame mechanisms to enable the generation of continuous video driven by speech audio. Our method is validated through experiments on benchmark and newly proposed wild datasets, demonstrating substantial improvements over prior methods in generating realistic portraits characterized by diverse orientations within dynamic and immersive scenes. Further visualizations and the source code are available at: https://fudan-generative-vision.github.io/hallo3/.
WAIT: Feature Warping for Animation to Illustration video Translation using GANs
In this paper, we explore a new domain for video-to-video translation. Motivated by the availability of animation movies that are adopted from illustrated books for children, we aim to stylize these videos with the style of the original illustrations. Current state-of-the-art video-to-video translation models rely on having a video sequence or a single style image to stylize an input video. We introduce a new problem for video stylizing where an unordered set of images are used. This is a challenging task for two reasons: i) we do not have the advantage of temporal consistency as in video sequences; ii) it is more difficult to obtain consistent styles for video frames from a set of unordered images compared to using a single image. Most of the video-to-video translation methods are built on an image-to-image translation model, and integrate additional networks such as optical flow, or temporal predictors to capture temporal relations. These additional networks make the model training and inference complicated and slow down the process. To ensure temporal coherency in video-to-video style transfer, we propose a new generator network with feature warping layers which overcomes the limitations of the previous methods. We show the effectiveness of our method on three datasets both qualitatively and quantitatively. Code and pretrained models are available at https://github.com/giddyyupp/wait.
DIAMANT: Dual Image-Attention Map Encoders For Medical Image Segmentation
Although purely transformer-based architectures showed promising performance in many computer vision tasks, many hybrid models consisting of CNN and transformer blocks are introduced to fit more specialized tasks. Nevertheless, despite the performance gain of both pure and hybrid transformer-based architectures compared to CNNs in medical imaging segmentation, their high training cost and complexity make it challenging to use them in real scenarios. In this work, we propose simple architectures based on purely convolutional layers, and show that by just taking advantage of the attention map visualizations obtained from a self-supervised pretrained vision transformer network (e.g., DINO) one can outperform complex transformer-based networks with much less computation costs. The proposed architecture is composed of two encoder branches with the original image as input in one branch and the attention map visualizations of the same image from multiple self-attention heads from a pre-trained DINO model (as multiple channels) in the other branch. The results of our experiments on two publicly available medical imaging datasets show that the proposed pipeline outperforms U-Net and the state-of-the-art medical image segmentation models.
StyleDiffusion: Prompt-Embedding Inversion for Text-Based Editing
A significant research effort is focused on exploiting the amazing capacities of pretrained diffusion models for the editing of images. They either finetune the model, or invert the image in the latent space of the pretrained model. However, they suffer from two problems: (1) Unsatisfying results for selected regions, and unexpected changes in nonselected regions. (2) They require careful text prompt editing where the prompt should include all visual objects in the input image. To address this, we propose two improvements: (1) Only optimizing the input of the value linear network in the cross-attention layers, is sufficiently powerful to reconstruct a real image. (2) We propose attention regularization to preserve the object-like attention maps after editing, enabling us to obtain accurate style editing without invoking significant structural changes. We further improve the editing technique which is used for the unconditional branch of classifier-free guidance, as well as the conditional one as used by P2P. Extensive experimental prompt-editing results on a variety of images, demonstrate qualitatively and quantitatively that our method has superior editing capabilities than existing and concurrent works.
Single Motion Diffusion
Synthesizing realistic animations of humans, animals, and even imaginary creatures, has long been a goal for artists and computer graphics professionals. Compared to the imaging domain, which is rich with large available datasets, the number of data instances for the motion domain is limited, particularly for the animation of animals and exotic creatures (e.g., dragons), which have unique skeletons and motion patterns. In this work, we present a Single Motion Diffusion Model, dubbed SinMDM, a model designed to learn the internal motifs of a single motion sequence with arbitrary topology and synthesize motions of arbitrary length that are faithful to them. We harness the power of diffusion models and present a denoising network explicitly designed for the task of learning from a single input motion. SinMDM is designed to be a lightweight architecture, which avoids overfitting by using a shallow network with local attention layers that narrow the receptive field and encourage motion diversity. SinMDM can be applied in various contexts, including spatial and temporal in-betweening, motion expansion, style transfer, and crowd animation. Our results show that SinMDM outperforms existing methods both in quality and time-space efficiency. Moreover, while current approaches require additional training for different applications, our work facilitates these applications at inference time. Our code and trained models are available at https://sinmdm.github.io/SinMDM-page.
Editing Language Model-based Knowledge Graph Embeddings
Recently decades have witnessed the empirical success of framing Knowledge Graph (KG) embeddings via language models. However, language model-based KG embeddings are usually deployed as static artifacts, which are challenging to modify without re-training after deployment. To address this issue, we propose a new task of editing language model-based KG embeddings in this paper. The proposed task aims to enable data-efficient and fast updates to KG embeddings without damaging the performance of the rest. We build four new datasets: E-FB15k237, A-FB15k237, E-WN18RR, and A-WN18RR, and evaluate several knowledge editing baselines demonstrating the limited ability of previous models to handle the proposed challenging task. We further propose a simple yet strong baseline dubbed KGEditor, which utilizes additional parametric layers of the hyper network to edit/add facts. Comprehensive experimental results demonstrate that KGEditor can perform better when updating specific facts while not affecting the rest with low training resources. Code and datasets will be available in https://github.com/zjunlp/PromptKG/tree/main/deltaKG.
Unsupervised Night Image Enhancement: When Layer Decomposition Meets Light-Effects Suppression
Night images suffer not only from low light, but also from uneven distributions of light. Most existing night visibility enhancement methods focus mainly on enhancing low-light regions. This inevitably leads to over enhancement and saturation in bright regions, such as those regions affected by light effects (glare, floodlight, etc). To address this problem, we need to suppress the light effects in bright regions while, at the same time, boosting the intensity of dark regions. With this idea in mind, we introduce an unsupervised method that integrates a layer decomposition network and a light-effects suppression network. Given a single night image as input, our decomposition network learns to decompose shading, reflectance and light-effects layers, guided by unsupervised layer-specific prior losses. Our light-effects suppression network further suppresses the light effects and, at the same time, enhances the illumination in dark regions. This light-effects suppression network exploits the estimated light-effects layer as the guidance to focus on the light-effects regions. To recover the background details and reduce hallucination/artefacts, we propose structure and high-frequency consistency losses. Our quantitative and qualitative evaluations on real images show that our method outperforms state-of-the-art methods in suppressing night light effects and boosting the intensity of dark regions.
iSTFTNet: Fast and Lightweight Mel-Spectrogram Vocoder Incorporating Inverse Short-Time Fourier Transform
In recent text-to-speech synthesis and voice conversion systems, a mel-spectrogram is commonly applied as an intermediate representation, and the necessity for a mel-spectrogram vocoder is increasing. A mel-spectrogram vocoder must solve three inverse problems: recovery of the original-scale magnitude spectrogram, phase reconstruction, and frequency-to-time conversion. A typical convolutional mel-spectrogram vocoder solves these problems jointly and implicitly using a convolutional neural network, including temporal upsampling layers, when directly calculating a raw waveform. Such an approach allows skipping redundant processes during waveform synthesis (e.g., the direct reconstruction of high-dimensional original-scale spectrograms). By contrast, the approach solves all problems in a black box and cannot effectively employ the time-frequency structures existing in a mel-spectrogram. We thus propose iSTFTNet, which replaces some output-side layers of the mel-spectrogram vocoder with the inverse short-time Fourier transform (iSTFT) after sufficiently reducing the frequency dimension using upsampling layers, reducing the computational cost from black-box modeling and avoiding redundant estimations of high-dimensional spectrograms. During our experiments, we applied our ideas to three HiFi-GAN variants and made the models faster and more lightweight with a reasonable speech quality. Audio samples are available at https://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/istftnet/.
Quantum Internet Protocol Stack: a Comprehensive Survey
Classical Internet evolved exceptionally during the last five decades, from a network comprising a few static nodes in the early days to a leviathan interconnecting billions of devices. This has been possible by the separation of concern principle, for which the network functionalities are organized as a stack of layers, each providing some communication functionalities through specific network protocols. In this survey, we aim at highlighting the impossibility of adapting the classical Internet protocol stack to the Quantum Internet, due to the marvels of quantum mechanics. Indeed, the design of the Quantum Internet requires a major paradigm shift of the whole protocol stack for harnessing the peculiarities of quantum entanglement and quantum information. In this context, we first overview the relevant literature about Quantum Internet protocol stack. Then, stemming from this, we sheds the light on the open problems and required efforts toward the design of an effective and complete Quantum Internet protocol stack. To the best of authors' knowledge, a survey of this type is the first of its own. What emerges from this analysis is that the Quantum Internet, though still in its infancy, is a disruptive technology whose design requires an inter-disciplinary effort at the border between quantum physics, computer and telecommunications engineering.
When Shift Operation Meets Vision Transformer: An Extremely Simple Alternative to Attention Mechanism
Attention mechanism has been widely believed as the key to success of vision transformers (ViTs), since it provides a flexible and powerful way to model spatial relationships. However, is the attention mechanism truly an indispensable part of ViT? Can it be replaced by some other alternatives? To demystify the role of attention mechanism, we simplify it into an extremely simple case: ZERO FLOP and ZERO parameter. Concretely, we revisit the shift operation. It does not contain any parameter or arithmetic calculation. The only operation is to exchange a small portion of the channels between neighboring features. Based on this simple operation, we construct a new backbone network, namely ShiftViT, where the attention layers in ViT are substituted by shift operations. Surprisingly, ShiftViT works quite well in several mainstream tasks, e.g., classification, detection, and segmentation. The performance is on par with or even better than the strong baseline Swin Transformer. These results suggest that the attention mechanism might not be the vital factor that makes ViT successful. It can be even replaced by a zero-parameter operation. We should pay more attentions to the remaining parts of ViT in the future work. Code is available at github.com/microsoft/SPACH.
Byte-Level Recursive Convolutional Auto-Encoder for Text
This article proposes to auto-encode text at byte-level using convolutional networks with a recursive architecture. The motivation is to explore whether it is possible to have scalable and homogeneous text generation at byte-level in a non-sequential fashion through the simple task of auto-encoding. We show that non-sequential text generation from a fixed-length representation is not only possible, but also achieved much better auto-encoding results than recurrent networks. The proposed model is a multi-stage deep convolutional encoder-decoder framework using residual connections, containing up to 160 parameterized layers. Each encoder or decoder contains a shared group of modules that consists of either pooling or upsampling layers, making the network recursive in terms of abstraction levels in representation. Results for 6 large-scale paragraph datasets are reported, in 3 languages including Arabic, Chinese and English. Analyses are conducted to study several properties of the proposed model.
Learning Structured Sparsity in Deep Neural Networks
High demand for computation resources severely hinders deployment of large-scale Deep Neural Networks (DNN) in resource constrained devices. In this work, we propose a Structured Sparsity Learning (SSL) method to regularize the structures (i.e., filters, channels, filter shapes, and layer depth) of DNNs. SSL can: (1) learn a compact structure from a bigger DNN to reduce computation cost; (2) obtain a hardware-friendly structured sparsity of DNN to efficiently accelerate the DNNs evaluation. Experimental results show that SSL achieves on average 5.1x and 3.1x speedups of convolutional layer computation of AlexNet against CPU and GPU, respectively, with off-the-shelf libraries. These speedups are about twice speedups of non-structured sparsity; (3) regularize the DNN structure to improve classification accuracy. The results show that for CIFAR-10, regularization on layer depth can reduce 20 layers of a Deep Residual Network (ResNet) to 18 layers while improve the accuracy from 91.25% to 92.60%, which is still slightly higher than that of original ResNet with 32 layers. For AlexNet, structure regularization by SSL also reduces the error by around ~1%. Open source code is in https://github.com/wenwei202/caffe/tree/scnn
DeFINE: DEep Factorized INput Token Embeddings for Neural Sequence Modeling
For sequence models with large vocabularies, a majority of network parameters lie in the input and output layers. In this work, we describe a new method, DeFINE, for learning deep token representations efficiently. Our architecture uses a hierarchical structure with novel skip-connections which allows for the use of low dimensional input and output layers, reducing total parameters and training time while delivering similar or better performance versus existing methods. DeFINE can be incorporated easily in new or existing sequence models. Compared to state-of-the-art methods including adaptive input representations, this technique results in a 6% to 20% drop in perplexity. On WikiText-103, DeFINE reduces the total parameters of Transformer-XL by half with minimal impact on performance. On the Penn Treebank, DeFINE improves AWD-LSTM by 4 points with a 17% reduction in parameters, achieving comparable performance to state-of-the-art methods with fewer parameters. For machine translation, DeFINE improves the efficiency of the Transformer model by about 1.4 times while delivering similar performance.
Keys to Better Image Inpainting: Structure and Texture Go Hand in Hand
Deep image inpainting has made impressive progress with recent advances in image generation and processing algorithms. We claim that the performance of inpainting algorithms can be better judged by the generated structures and textures. Structures refer to the generated object boundary or novel geometric structures within the hole, while texture refers to high-frequency details, especially man-made repeating patterns filled inside the structural regions. We believe that better structures are usually obtained from a coarse-to-fine GAN-based generator network while repeating patterns nowadays can be better modeled using state-of-the-art high-frequency fast fourier convolutional layers. In this paper, we propose a novel inpainting network combining the advantages of the two designs. Therefore, our model achieves a remarkable visual quality to match state-of-the-art performance in both structure generation and repeating texture synthesis using a single network. Extensive experiments demonstrate the effectiveness of the method, and our conclusions further highlight the two critical factors of image inpainting quality, structures, and textures, as the future design directions of inpainting networks.
Contrastive Deep Supervision
The success of deep learning is usually accompanied by the growth in neural network depth. However, the traditional training method only supervises the neural network at its last layer and propagates the supervision layer-by-layer, which leads to hardship in optimizing the intermediate layers. Recently, deep supervision has been proposed to add auxiliary classifiers to the intermediate layers of deep neural networks. By optimizing these auxiliary classifiers with the supervised task loss, the supervision can be applied to the shallow layers directly. However, deep supervision conflicts with the well-known observation that the shallow layers learn low-level features instead of task-biased high-level semantic features. To address this issue, this paper proposes a novel training framework named Contrastive Deep Supervision, which supervises the intermediate layers with augmentation-based contrastive learning. Experimental results on nine popular datasets with eleven models demonstrate its effects on general image classification, fine-grained image classification and object detection in supervised learning, semi-supervised learning and knowledge distillation. Codes have been released in Github.
Lipreading using Temporal Convolutional Networks
Lip-reading has attracted a lot of research attention lately thanks to advances in deep learning. The current state-of-the-art model for recognition of isolated words in-the-wild consists of a residual network and Bidirectional Gated Recurrent Unit (BGRU) layers. In this work, we address the limitations of this model and we propose changes which further improve its performance. Firstly, the BGRU layers are replaced with Temporal Convolutional Networks (TCN). Secondly, we greatly simplify the training procedure, which allows us to train the model in one single stage. Thirdly, we show that the current state-of-the-art methodology produces models that do not generalize well to variations on the sequence length, and we addresses this issue by proposing a variable-length augmentation. We present results on the largest publicly-available datasets for isolated word recognition in English and Mandarin, LRW and LRW1000, respectively. Our proposed model results in an absolute improvement of 1.2% and 3.2%, respectively, in these datasets which is the new state-of-the-art performance.
HAWQ: Hessian AWare Quantization of Neural Networks with Mixed-Precision
Model size and inference speed/power have become a major challenge in the deployment of Neural Networks for many applications. A promising approach to address these problems is quantization. However, uniformly quantizing a model to ultra low precision leads to significant accuracy degradation. A novel solution for this is to use mixed-precision quantization, as some parts of the network may allow lower precision as compared to other layers. However, there is no systematic way to determine the precision of different layers. A brute force approach is not feasible for deep networks, as the search space for mixed-precision is exponential in the number of layers. Another challenge is a similar factorial complexity for determining block-wise fine-tuning order when quantizing the model to a target precision. Here, we introduce Hessian AWare Quantization (HAWQ), a novel second-order quantization method to address these problems. HAWQ allows for the automatic selection of the relative quantization precision of each layer, based on the layer's Hessian spectrum. Moreover, HAWQ provides a deterministic fine-tuning order for quantizing layers, based on second-order information. We show the results of our method on Cifar-10 using ResNet20, and on ImageNet using Inception-V3, ResNet50 and SqueezeNext models. Comparing HAWQ with state-of-the-art shows that we can achieve similar/better accuracy with 8times activation compression ratio on ResNet20, as compared to DNAS~wu2018mixed, and up to 1% higher accuracy with up to 14% smaller models on ResNet50 and Inception-V3, compared to recently proposed methods of RVQuant~park2018value and HAQ~wang2018haq. Furthermore, we show that we can quantize SqueezeNext to just 1MB model size while achieving above 68% top1 accuracy on ImageNet.
Kangaroo: Lossless Self-Speculative Decoding via Double Early Exiting
Speculative decoding has demonstrated its effectiveness in accelerating the inference of large language models while maintaining a consistent sampling distribution. However, the conventional approach of training a separate draft model to achieve a satisfactory token acceptance rate can be costly. Drawing inspiration from early exiting, we propose a novel self-speculative decoding framework Kangaroo, which uses a fixed shallow sub-network as a self-draft model, with the remaining layers serving as the larger target model. We train a lightweight and efficient adapter module on top of the sub-network to bridge the gap between the sub-network and the full model's representation ability. It is noteworthy that the inference latency of the self-draft model may no longer be negligible compared to the large model, necessitating strategies to increase the token acceptance rate while minimizing the drafting steps of the small model. To address this challenge, we introduce an additional early exiting mechanism for generating draft tokens. Specifically, we halt the small model's subsequent prediction during the drafting phase once the confidence level for the current token falls below a certain threshold. Extensive experiments on the Spec-Bench demonstrate the effectiveness of Kangaroo. Under single-sequence verification, Kangaroo achieves speedups up to 1.68times on Spec-Bench, outperforming Medusa-1 with 88.7\% fewer additional parameters (67M compared to 591M). The code for Kangaroo is available at https://github.com/Equationliu/Kangaroo.
Diffusion Hyperfeatures: Searching Through Time and Space for Semantic Correspondence
Diffusion models have been shown to be capable of generating high-quality images, suggesting that they could contain meaningful internal representations. Unfortunately, the feature maps that encode a diffusion model's internal information are spread not only over layers of the network, but also over diffusion timesteps, making it challenging to extract useful descriptors. We propose Diffusion Hyperfeatures, a framework for consolidating multi-scale and multi-timestep feature maps into per-pixel feature descriptors that can be used for downstream tasks. These descriptors can be extracted for both synthetic and real images using the generation and inversion processes. We evaluate the utility of our Diffusion Hyperfeatures on the task of semantic keypoint correspondence: our method achieves superior performance on the SPair-71k real image benchmark. We also demonstrate that our method is flexible and transferable: our feature aggregation network trained on the inversion features of real image pairs can be used on the generation features of synthetic image pairs with unseen objects and compositions. Our code is available at https://diffusion-hyperfeatures.github.io.
Less is More: Selective Layer Finetuning with SubTuning
Finetuning a pretrained model has become a standard approach for training neural networks on novel tasks, resulting in fast convergence and improved performance. In this work, we study an alternative finetuning method, where instead of finetuning all the weights of the network, we only train a carefully chosen subset of layers, keeping the rest of the weights frozen at their initial (pretrained) values. We demonstrate that subset finetuning (or SubTuning) often achieves accuracy comparable to full finetuning of the model, and even surpasses the performance of full finetuning when training data is scarce. Therefore, SubTuning allows deploying new tasks at minimal computational cost, while enjoying the benefits of finetuning the entire model. This yields a simple and effective method for multi-task learning, where different tasks do not interfere with one another, and yet share most of the resources at inference time. We demonstrate the efficiency of SubTuning across multiple tasks, using different network architectures and pretraining methods.
Pruning Deep Neural Networks from a Sparsity Perspective
In recent years, deep network pruning has attracted significant attention in order to enable the rapid deployment of AI into small devices with computation and memory constraints. Pruning is often achieved by dropping redundant weights, neurons, or layers of a deep network while attempting to retain a comparable test performance. Many deep pruning algorithms have been proposed with impressive empirical success. However, existing approaches lack a quantifiable measure to estimate the compressibility of a sub-network during each pruning iteration and thus may under-prune or over-prune the model. In this work, we propose PQ Index (PQI) to measure the potential compressibility of deep neural networks and use this to develop a Sparsity-informed Adaptive Pruning (SAP) algorithm. Our extensive experiments corroborate the hypothesis that for a generic pruning procedure, PQI decreases first when a large model is being effectively regularized and then increases when its compressibility reaches a limit that appears to correspond to the beginning of underfitting. Subsequently, PQI decreases again when the model collapse and significant deterioration in the performance of the model start to occur. Additionally, our experiments demonstrate that the proposed adaptive pruning algorithm with proper choice of hyper-parameters is superior to the iterative pruning algorithms such as the lottery ticket-based pruning methods, in terms of both compression efficiency and robustness.
RARTS: An Efficient First-Order Relaxed Architecture Search Method
Differentiable architecture search (DARTS) is an effective method for data-driven neural network design based on solving a bilevel optimization problem. Despite its success in many architecture search tasks, there are still some concerns about the accuracy of first-order DARTS and the efficiency of the second-order DARTS. In this paper, we formulate a single level alternative and a relaxed architecture search (RARTS) method that utilizes the whole dataset in architecture learning via both data and network splitting, without involving mixed second derivatives of the corresponding loss functions like DARTS. In our formulation of network splitting, two networks with different but related weights cooperate in search of a shared architecture. The advantage of RARTS over DARTS is justified by a convergence theorem and an analytically solvable model. Moreover, RARTS outperforms DARTS and its variants in accuracy and search efficiency, as shown in adequate experimental results. For the task of searching topological architecture, i.e., the edges and the operations, RARTS obtains a higher accuracy and 60\% reduction of computational cost than second-order DARTS on CIFAR-10. RARTS continues to out-perform DARTS upon transfer to ImageNet and is on par with recent variants of DARTS even though our innovation is purely on the training algorithm without modifying search space. For the task of searching width, i.e., the number of channels in convolutional layers, RARTS also outperforms the traditional network pruning benchmarks. Further experiments on the public architecture search benchmark like NATS-Bench also support the preeminence of RARTS.
ViKANformer: Embedding Kolmogorov Arnold Networks in Vision Transformers for Pattern-Based Learning
Vision Transformers (ViTs) have significantly advanced image classification by applying self-attention on patch embeddings. However, the standard MLP blocks in each Transformer layer may not capture complex nonlinear dependencies optimally. In this paper, we propose ViKANformer, a Vision Transformer where we replace the MLP sub-layers with Kolmogorov-Arnold Network (KAN) expansions, including Vanilla KAN, Efficient-KAN, Fast-KAN, SineKAN, and FourierKAN, while also examining a Flash Attention variant. By leveraging the Kolmogorov-Arnold theorem, which guarantees that multivariate continuous functions can be expressed via sums of univariate continuous functions, we aim to boost representational power. Experimental results on MNIST demonstrate that SineKAN, Fast-KAN, and a well-tuned Vanilla KAN can achieve over 97% accuracy, albeit with increased training overhead. This trade-off highlights that KAN expansions may be beneficial if computational cost is acceptable. We detail the expansions, present training/test accuracy and F1/ROC metrics, and provide pseudocode and hyperparameters for reproducibility. Finally, we compare ViKANformer to a simple MLP and a small CNN baseline on MNIST, illustrating the efficiency of Transformer-based methods even on a small-scale dataset.
Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models
Efficient real-world deployments of large language models (LLMs) rely on Key-Value (KV) caching for processing and generating long outputs, reducing the need for repetitive computation. For large contexts, Key-Value caches can take up tens of gigabytes of device memory, as they store vector representations for each token and layer. Recent work has shown that the cached vectors can be compressed through quantization, pruning or merging, but these techniques often compromise quality towards higher compression rates. In this work, we aim to improve Key & Value compression by exploiting two observations: 1) the inherent dependencies between keys and values across different layers, and 2) high-compression mechanisms for internal network states. We propose AQUA-KV, an adaptive quantization for Key-Value caches that relies on compact adapters to exploit existing dependencies between Keys and Values, and aims to "optimally" compress the information that cannot be predicted. AQUA-KV significantly improves compression rates, while maintaining high accuracy on state-of-the-art LLM families. On Llama 3.2 LLMs, we achieve near-lossless inference at 2-2.5 bits per value with under 1% relative error in perplexity and LongBench scores. AQUA-KV is one-shot, simple, and efficient: it can be calibrated on a single GPU within 1-6 hours, even for 70B models.
Multimodal-Conditioned Latent Diffusion Models for Fashion Image Editing
Fashion illustration is a crucial medium for designers to convey their creative vision and transform design concepts into tangible representations that showcase the interplay between clothing and the human body. In the context of fashion design, computer vision techniques have the potential to enhance and streamline the design process. Departing from prior research primarily focused on virtual try-on, this paper tackles the task of multimodal-conditioned fashion image editing. Our approach aims to generate human-centric fashion images guided by multimodal prompts, including text, human body poses, garment sketches, and fabric textures. To address this problem, we propose extending latent diffusion models to incorporate these multiple modalities and modifying the structure of the denoising network, taking multimodal prompts as input. To condition the proposed architecture on fabric textures, we employ textual inversion techniques and let diverse cross-attention layers of the denoising network attend to textual and texture information, thus incorporating different granularity conditioning details. Given the lack of datasets for the task, we extend two existing fashion datasets, Dress Code and VITON-HD, with multimodal annotations. Experimental evaluations demonstrate the effectiveness of our proposed approach in terms of realism and coherence concerning the provided multimodal inputs.
KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection
Achieving a reliable LiDAR-based object detector in autonomous driving is paramount, but its success hinges on obtaining large amounts of precise 3D annotations. Active learning (AL) seeks to mitigate the annotation burden through algorithms that use fewer labels and can attain performance comparable to fully supervised learning. Although AL has shown promise, current approaches prioritize the selection of unlabeled point clouds with high uncertainty and/or diversity, leading to the selection of more instances for labeling and reduced computational efficiency. In this paper, we resort to a novel kernel coding rate maximization (KECOR) strategy which aims to identify the most informative point clouds to acquire labels through the lens of information theory. Greedy search is applied to seek desired point clouds that can maximize the minimal number of bits required to encode the latent features. To determine the uniqueness and informativeness of the selected samples from the model perspective, we construct a proxy network of the 3D detector head and compute the outer product of Jacobians from all proxy layers to form the empirical neural tangent kernel (NTK) matrix. To accommodate both one-stage (i.e., SECOND) and two-stage detectors (i.e., PVRCNN), we further incorporate the classification entropy maximization and well trade-off between detection performance and the total number of bounding boxes selected for annotation. Extensive experiments conducted on two 3D benchmarks and a 2D detection dataset evidence the superiority and versatility of the proposed approach. Our results show that approximately 44% box-level annotation costs and 26% computational time are reduced compared to the state-of-the-art AL method, without compromising detection performance.
Initial Guessing Bias: How Untrained Networks Favor Some Classes
The initial state of neural networks plays a central role in conditioning the subsequent training dynamics. In the context of classification problems, we provide a theoretical analysis demonstrating that the structure of a neural network can condition the model to assign all predictions to the same class, even before the beginning of training, and in the absence of explicit biases. We show that the presence of this phenomenon, which we call "Initial Guessing Bias" (IGB), depends on architectural choices such as activation functions, max-pooling layers, and network depth. Our analysis of IGB has practical consequences, in that it guides architecture selection and initialization. We also highlight theoretical consequences, such as the breakdown of node-permutation symmetry, the violation of self-averaging, the validity of some mean-field approximations, and the non-trivial differences arising with depth.
HNeRV: A Hybrid Neural Representation for Videos
Implicit neural representations store videos as neural networks and have performed well for various vision tasks such as video compression and denoising. With frame index or positional index as input, implicit representations (NeRV, E-NeRV, \etc) reconstruct video from fixed and content-agnostic embeddings. Such embedding largely limits the regression capacity and internal generalization for video interpolation. In this paper, we propose a Hybrid Neural Representation for Videos (HNeRV), where a learnable encoder generates content-adaptive embeddings, which act as the decoder input. Besides the input embedding, we introduce HNeRV blocks, which ensure model parameters are evenly distributed across the entire network, such that higher layers (layers near the output) can have more capacity to store high-resolution content and video details. With content-adaptive embeddings and re-designed architecture, HNeRV outperforms implicit methods in video regression tasks for both reconstruction quality (+4.7 PSNR) and convergence speed (16times faster), and shows better internal generalization. As a simple and efficient video representation, HNeRV also shows decoding advantages for speed, flexibility, and deployment, compared to traditional codecs~(H.264, H.265) and learning-based compression methods. Finally, we explore the effectiveness of HNeRV on downstream tasks such as video compression and video inpainting. We provide project page at https://haochen-rye.github.io/HNeRV, and Code at https://github.com/haochen-rye/HNeRV
On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology
Message Passing Neural Networks (MPNNs) are instances of Graph Neural Networks that leverage the graph to send messages over the edges. This inductive bias leads to a phenomenon known as over-squashing, where a node feature is insensitive to information contained at distant nodes. Despite recent methods introduced to mitigate this issue, an understanding of the causes for over-squashing and of possible solutions are lacking. In this theoretical work, we prove that: (i) Neural network width can mitigate over-squashing, but at the cost of making the whole network more sensitive; (ii) Conversely, depth cannot help mitigate over-squashing: increasing the number of layers leads to over-squashing being dominated by vanishing gradients; (iii) The graph topology plays the greatest role, since over-squashing occurs between nodes at high commute (access) time. Our analysis provides a unified framework to study different recent methods introduced to cope with over-squashing and serves as a justification for a class of methods that fall under graph rewiring.
Federated Reconnaissance: Efficient, Distributed, Class-Incremental Learning
We describe federated reconnaissance, a class of learning problems in which distributed clients learn new concepts independently and communicate that knowledge efficiently. In particular, we propose an evaluation framework and methodological baseline for a system in which each client is expected to learn a growing set of classes and communicate knowledge of those classes efficiently with other clients, such that, after knowledge merging, the clients should be able to accurately discriminate between classes in the superset of classes observed by the set of clients. We compare a range of learning algorithms for this problem and find that prototypical networks are a strong approach in that they are robust to catastrophic forgetting while incorporating new information efficiently. Furthermore, we show that the online averaging of prototype vectors is effective for client model merging and requires only a small amount of communication overhead, memory, and update time per class with no gradient-based learning or hyperparameter tuning. Additionally, to put our results in context, we find that a simple, prototypical network with four convolutional layers significantly outperforms complex, state of the art continual learning algorithms, increasing the accuracy by over 22% after learning 600 Omniglot classes and over 33% after learning 20 mini-ImageNet classes incrementally. These results have important implications for federated reconnaissance and continual learning more generally by demonstrating that communicating feature vectors is an efficient, robust, and effective means for distributed, continual learning.
Neural Compression and Filtering for Edge-assisted Real-time Object Detection in Challenged Networks
The edge computing paradigm places compute-capable devices - edge servers - at the network edge to assist mobile devices in executing data analysis tasks. Intuitively, offloading compute-intense tasks to edge servers can reduce their execution time. However, poor conditions of the wireless channel connecting the mobile devices to the edge servers may degrade the overall capture-to-output delay achieved by edge offloading. Herein, we focus on edge computing supporting remote object detection by means of Deep Neural Networks (DNNs), and develop a framework to reduce the amount of data transmitted over the wireless link. The core idea we propose builds on recent approaches splitting DNNs into sections - namely head and tail models - executed by the mobile device and edge server, respectively. The wireless link, then, is used to transport the output of the last layer of the head model to the edge server, instead of the DNN input. Most prior work focuses on classification tasks and leaves the DNN structure unaltered. Herein, our focus is on DNNs for three different object detection tasks, which present a much more convoluted structure, and modify the architecture of the network to: (i) achieve in-network compression by introducing a bottleneck layer in the early layers on the head model, and (ii) prefilter pictures that do not contain objects of interest using a convolutional neural network. Results show that the proposed technique represents an effective intermediate option between local and edge computing in a parameter region where these extreme point solutions fail to provide satisfactory performance. The code and trained models are available at https://github.com/yoshitomo-matsubara/hnd-ghnd-object-detectors .
Explaining Knowledge Distillation by Quantifying the Knowledge
This paper presents a method to interpret the success of knowledge distillation by quantifying and analyzing task-relevant and task-irrelevant visual concepts that are encoded in intermediate layers of a deep neural network (DNN). More specifically, three hypotheses are proposed as follows. 1. Knowledge distillation makes the DNN learn more visual concepts than learning from raw data. 2. Knowledge distillation ensures that the DNN is prone to learning various visual concepts simultaneously. Whereas, in the scenario of learning from raw data, the DNN learns visual concepts sequentially. 3. Knowledge distillation yields more stable optimization directions than learning from raw data. Accordingly, we design three types of mathematical metrics to evaluate feature representations of the DNN. In experiments, we diagnosed various DNNs, and above hypotheses were verified.
From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation
Estimating accurate depth from a single image is challenging because it is an ill-posed problem as infinitely many 3D scenes can be projected to the same 2D scene. However, recent works based on deep convolutional neural networks show great progress with plausible results. The convolutional neural networks are generally composed of two parts: an encoder for dense feature extraction and a decoder for predicting the desired depth. In the encoder-decoder schemes, repeated strided convolution and spatial pooling layers lower the spatial resolution of transitional outputs, and several techniques such as skip connections or multi-layer deconvolutional networks are adopted to recover the original resolution for effective dense prediction. In this paper, for more effective guidance of densely encoded features to the desired depth prediction, we propose a network architecture that utilizes novel local planar guidance layers located at multiple stages in the decoding phase. We show that the proposed method outperforms the state-of-the-art works with significant margin evaluating on challenging benchmarks. We also provide results from an ablation study to validate the effectiveness of the proposed method.
A critical analysis of self-supervision, or what we can learn from a single image
We look critically at popular self-supervision techniques for learning deep convolutional neural networks without manual labels. We show that three different and representative methods, BiGAN, RotNet and DeepCluster, can learn the first few layers of a convolutional network from a single image as well as using millions of images and manual labels, provided that strong data augmentation is used. However, for deeper layers the gap with manual supervision cannot be closed even if millions of unlabelled images are used for training. We conclude that: (1) the weights of the early layers of deep networks contain limited information about the statistics of natural images, that (2) such low-level statistics can be learned through self-supervision just as well as through strong supervision, and that (3) the low-level statistics can be captured via synthetic transformations instead of using a large image dataset.
Knowledge Concentration: Learning 100K Object Classifiers in a Single CNN
Fine-grained image labels are desirable for many computer vision applications, such as visual search or mobile AI assistant. These applications rely on image classification models that can produce hundreds of thousands (e.g. 100K) of diversified fine-grained image labels on input images. However, training a network at this vocabulary scale is challenging, and suffers from intolerable large model size and slow training speed, which leads to unsatisfying classification performance. A straightforward solution would be training separate expert networks (specialists), with each specialist focusing on learning one specific vertical (e.g. cars, birds...). However, deploying dozens of expert networks in a practical system would significantly increase system complexity and inference latency, and consumes large amounts of computational resources. To address these challenges, we propose a Knowledge Concentration method, which effectively transfers the knowledge from dozens of specialists (multiple teacher networks) into one single model (one student network) to classify 100K object categories. There are three salient aspects in our method: (1) a multi-teacher single-student knowledge distillation framework; (2) a self-paced learning mechanism to allow the student to learn from different teachers at various paces; (3) structurally connected layers to expand the student network capacity with limited extra parameters. We validate our method on OpenImage and a newly collected dataset, Entity-Foto-Tree (EFT), with 100K categories, and show that the proposed model performs significantly better than the baseline generalist model.
A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks
Over the last decade, Convolutional Neural Networks (CNN) saw a tremendous surge in performance. However, understanding what a network has learned still proves to be a challenging task. To remedy this unsatisfactory situation, a number of groups have recently proposed different methods to visualize the learned models. In this work we suggest a general taxonomy to classify and compare these methods, subdividing the literature into three main categories and providing researchers with a terminology to base their works on. Furthermore, we introduce the FeatureVis library for MatConvNet: an extendable, easy to use open source library for visualizing CNNs. It contains implementations from each of the three main classes of visualization methods and serves as a useful tool for an enhanced understanding of the features learned by intermediate layers, as well as for the analysis of why a network might fail for certain examples.
SpeechMoE: Scaling to Large Acoustic Models with Dynamic Routing Mixture of Experts
Recently, Mixture of Experts (MoE) based Transformer has shown promising results in many domains. This is largely due to the following advantages of this architecture: firstly, MoE based Transformer can increase model capacity without computational cost increasing both at training and inference time. Besides, MoE based Transformer is a dynamic network which can adapt to the varying complexity of input instances in realworld applications. In this work, we explore the MoE based model for speech recognition, named SpeechMoE. To further control the sparsity of router activation and improve the diversity of gate values, we propose a sparsity L1 loss and a mean importance loss respectively. In addition, a new router architecture is used in SpeechMoE which can simultaneously utilize the information from a shared embedding network and the hierarchical representation of different MoE layers. Experimental results show that SpeechMoE can achieve lower character error rate (CER) with comparable computation cost than traditional static networks, providing 7.0%-23.0% relative CER improvements on four evaluation datasets.
Hyperparameter Tuning is All You Need for LISTA
Learned Iterative Shrinkage-Thresholding Algorithm (LISTA) introduces the concept of unrolling an iterative algorithm and training it like a neural network. It has had great success on sparse recovery. In this paper, we show that adding momentum to intermediate variables in the LISTA network achieves a better convergence rate and, in particular, the network with instance-optimal parameters is superlinearly convergent. Moreover, our new theoretical results lead to a practical approach of automatically and adaptively calculating the parameters of a LISTA network layer based on its previous layers. Perhaps most surprisingly, such an adaptive-parameter procedure reduces the training of LISTA to tuning only three hyperparameters from data: a new record set in the context of the recent advances on trimming down LISTA complexity. We call this new ultra-light weight network HyperLISTA. Compared to state-of-the-art LISTA models, HyperLISTA achieves almost the same performance on seen data distributions and performs better when tested on unseen distributions (specifically, those with different sparsity levels and nonzero magnitudes). Code is available: https://github.com/VITA-Group/HyperLISTA.
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
Scaling up deep neural network capacity has been known as an effective approach to improving model quality for several different machine learning tasks. In many cases, increasing model capacity beyond the memory limit of a single accelerator has required developing special algorithms or infrastructure. These solutions are often architecture-specific and do not transfer to other tasks. To address the need for efficient and task-independent model parallelism, we introduce GPipe, a pipeline parallelism library that allows scaling any network that can be expressed as a sequence of layers. By pipelining different sub-sequences of layers on separate accelerators, GPipe provides the flexibility of scaling a variety of different networks to gigantic sizes efficiently. Moreover, GPipe utilizes a novel batch-splitting pipelining algorithm, resulting in almost linear speedup when a model is partitioned across multiple accelerators. We demonstrate the advantages of GPipe by training large-scale neural networks on two different tasks with distinct network architectures: (i) Image Classification: We train a 557-million-parameter AmoebaNet model and attain a top-1 accuracy of 84.4% on ImageNet-2012, (ii) Multilingual Neural Machine Translation: We train a single 6-billion-parameter, 128-layer Transformer model on a corpus spanning over 100 languages and achieve better quality than all bilingual models.
Security and Privacy Issues in Wireless Mesh Networks: A Survey
This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.
Texture CNN for Thermoelectric Metal Pipe Image Classification
In this paper, the concept of representation learning based on deep neural networks is applied as an alternative to the use of handcrafted features in a method for automatic visual inspection of corroded thermoelectric metallic pipes. A texture convolutional neural network (TCNN) replaces handcrafted features based on Local Phase Quantization (LPQ) and Haralick descriptors (HD) with the advantage of learning an appropriate textural representation and the decision boundaries into a single optimization process. Experimental results have shown that it is possible to reach the accuracy of 99.20% in the task of identifying different levels of corrosion in the internal surface of thermoelectric pipe walls, while using a compact network that requires much less effort in tuning parameters when compared to the handcrafted approach since the TCNN architecture is compact regarding the number of layers and connections. The observed results open up the possibility of using deep neural networks in real-time applications such as the automatic inspection of thermoelectric metal pipes.
VMix: Improving Text-to-Image Diffusion Model with Cross-Attention Mixing Control
While diffusion models show extraordinary talents in text-to-image generation, they may still fail to generate highly aesthetic images. More specifically, there is still a gap between the generated images and the real-world aesthetic images in finer-grained dimensions including color, lighting, composition, etc. In this paper, we propose Cross-Attention Value Mixing Control (VMix) Adapter, a plug-and-play aesthetics adapter, to upgrade the quality of generated images while maintaining generality across visual concepts by (1) disentangling the input text prompt into the content description and aesthetic description by the initialization of aesthetic embedding, and (2) integrating aesthetic conditions into the denoising process through value-mixed cross-attention, with the network connected by zero-initialized linear layers. Our key insight is to enhance the aesthetic presentation of existing diffusion models by designing a superior condition control method, all while preserving the image-text alignment. Through our meticulous design, VMix is flexible enough to be applied to community models for better visual performance without retraining. To validate the effectiveness of our method, we conducted extensive experiments, showing that VMix outperforms other state-of-the-art methods and is compatible with other community modules (e.g., LoRA, ControlNet, and IPAdapter) for image generation. The project page is https://vmix-diffusion.github.io/VMix/.
Opening the Black Box of Deep Neural Networks via Information
Despite their great success, there is still no comprehensive theoretical understanding of learning with Deep Neural Networks (DNNs) or their inner organization. Previous work proposed to analyze DNNs in the Information Plane; i.e., the plane of the Mutual Information values that each layer preserves on the input and output variables. They suggested that the goal of the network is to optimize the Information Bottleneck (IB) tradeoff between compression and prediction, successively, for each layer. In this work we follow up on this idea and demonstrate the effectiveness of the Information-Plane visualization of DNNs. Our main results are: (i) most of the training epochs in standard DL are spent on {\emph compression} of the input to efficient representation and not on fitting the training labels. (ii) The representation compression phase begins when the training errors becomes small and the Stochastic Gradient Decent (SGD) epochs change from a fast drift to smaller training error into a stochastic relaxation, or random diffusion, constrained by the training error value. (iii) The converged layers lie on or very close to the Information Bottleneck (IB) theoretical bound, and the maps from the input to any hidden layer and from this hidden layer to the output satisfy the IB self-consistent equations. This generalization through noise mechanism is unique to Deep Neural Networks and absent in one layer networks. (iv) The training time is dramatically reduced when adding more hidden layers. Thus the main advantage of the hidden layers is computational. This can be explained by the reduced relaxation time, as this it scales super-linearly (exponentially for simple diffusion) with the information compression from the previous layer.
netFound: Foundation Model for Network Security
Developing generalizable ML-based solutions for disparate learning problems in network security is highly desired. However, despite a rich history of applying ML to network security, most existing solutions lack generalizability. This lack of progress can be attributed to an overreliance on supervised learning techniques and the associated challenges of curating well-specified labeled training data. This paper addresses a fundamental gap by introducing a novel transformer-based network foundation model, netFound. We employ self-supervised learning techniques on abundant, unlabeled network telemetry data for pre-training. This pretrained model can subsequently be fine-tuned to create generalizable learning artifacts for disparate learning tasks, even when using commonly available but challenging labeled datasets that are sparse, noisy, and skewed. To realize this goal, netFound leverages various domain-specific attributes and constraints unique to network data (packet traces) by developing multi-modal embeddings, protocol-aware tokenization, data-driven token composition, and hierarchical transformers. Our results demonstrate that netFound's domain-specific design choices ensure that it (1) effectively captures the hidden networking context in production settings, (2) outperforms four different SOTA methods on five different learning tasks, and (3) is robust to both noisy labels and learning shortcuts -- critical for developing generalizable ML models in practical settings.
Non-deep Networks
Depth is the hallmark of deep neural networks. But more depth means more sequential computation and higher latency. This begs the question -- is it possible to build high-performing "non-deep" neural networks? We show that it is. To do so, we use parallel subnetworks instead of stacking one layer after another. This helps effectively reduce depth while maintaining high performance. By utilizing parallel substructures, we show, for the first time, that a network with a depth of just 12 can achieve top-1 accuracy over 80% on ImageNet, 96% on CIFAR10, and 81% on CIFAR100. We also show that a network with a low-depth (12) backbone can achieve an AP of 48% on MS-COCO. We analyze the scaling rules for our design and show how to increase performance without changing the network's depth. Finally, we provide a proof of concept for how non-deep networks could be used to build low-latency recognition systems. Code is available at https://github.com/imankgoyal/NonDeepNetworks.
A Brief Review of Hypernetworks in Deep Learning
Hypernetworks, or hypernets in short, are neural networks that generate weights for another neural network, known as the target network. They have emerged as a powerful deep learning technique that allows for greater flexibility, adaptability, dynamism, faster training, information sharing, and model compression etc. Hypernets have shown promising results in a variety of deep learning problems, including continual learning, causal inference, transfer learning, weight pruning, uncertainty quantification, zero-shot learning, natural language processing, and reinforcement learning etc. Despite their success across different problem settings, currently, there is no review available to inform the researchers about the developments and to help in utilizing hypernets. To fill this gap, we review the progress in hypernets. We present an illustrative example to train deep neural networks using hypernets and propose categorizing hypernets based on five design criteria as inputs, outputs, variability of inputs and outputs, and architecture of hypernets. We also review applications of hypernets across different deep learning problem settings, followed by a discussion of general scenarios where hypernets can be effectively employed. Finally, we discuss the challenges and future directions that remain under-explored in the field of hypernets. We believe that hypernetworks have the potential to revolutionize the field of deep learning. They offer a new way to design and train neural networks, and they have the potential to improve the performance of deep learning models on a variety of tasks. Through this review, we aim to inspire further advancements in deep learning through hypernetworks.
DRew: Dynamically Rewired Message Passing with Delay
Message passing neural networks (MPNNs) have been shown to suffer from the phenomenon of over-squashing that causes poor performance for tasks relying on long-range interactions. This can be largely attributed to message passing only occurring locally, over a node's immediate neighbours. Rewiring approaches attempting to make graphs 'more connected', and supposedly better suited to long-range tasks, often lose the inductive bias provided by distance on the graph since they make distant nodes communicate instantly at every layer. In this paper we propose a framework, applicable to any MPNN architecture, that performs a layer-dependent rewiring to ensure gradual densification of the graph. We also propose a delay mechanism that permits skip connections between nodes depending on the layer and their mutual distance. We validate our approach on several long-range tasks and show that it outperforms graph Transformers and multi-hop MPNNs.
Cross-Layer Protocols for Multimedia Communications over Wireless Networks
In the last few years, the Internet throughput, usage and reliability have increased almost exponentially. The introduction of broadband wireless mobile ad hoc networks (MANETs) and cellular networks together with increased computational power have opened the door for a new breed of applications to be created, namely real-time multimedia applications. Delivering real-time multimedia traffic over a complex network like the Internet is a particularly challenging task since these applications have strict quality-of-service (QoS) requirements on bandwidth, delay, and delay jitter. Traditional Internet protocol (IP)-based best effort service is not able to meet these stringent requirements. The time-varying nature of wireless channels and resource constrained wireless devices make the problem even more difficult. To improve perceived media quality by end users over wireless Internet, QoS supports can be addressed in different layers, including application layer, transport layer and link layer. Cross layer design is a well-known approach to achieve this adaptation. In cross-layer design, the challenges from the physical wireless medium and the QoS-demands from the applications are taken into account so that the rate, power, and coding at the physical (PHY) layer can adapted to meet the requirements of the applications given the current channel and network conditions. A number of propositions for cross-layer designs exist in the literature. In this chapter, an extensive review has been made on these cross-layer architectures that combine the application-layer, transport layer and the link layer controls. Particularly, the issues like channel estimation techniques, adaptive controls at the application and link layers for energy efficiency, priority based scheduling, transmission rate control at the transport layer, and adaptive automatic repeat request (ARQ) are discussed in detail.
Path-Level Network Transformation for Efficient Architecture Search
We introduce a new function-preserving transformation for efficient neural architecture search. This network transformation allows reusing previously trained networks and existing successful architectures that improves sample efficiency. We aim to address the limitation of current network transformation operations that can only perform layer-level architecture modifications, such as adding (pruning) filters or inserting (removing) a layer, which fails to change the topology of connection paths. Our proposed path-level transformation operations enable the meta-controller to modify the path topology of the given network while keeping the merits of reusing weights, and thus allow efficiently designing effective structures with complex path topologies like Inception models. We further propose a bidirectional tree-structured reinforcement learning meta-controller to explore a simple yet highly expressive tree-structured architecture space that can be viewed as a generalization of multi-branch architectures. We experimented on the image classification datasets with limited computational resources (about 200 GPU-hours), where we observed improved parameter efficiency and better test results (97.70% test accuracy on CIFAR-10 with 14.3M parameters and 74.6% top-1 accuracy on ImageNet in the mobile setting), demonstrating the effectiveness and transferability of our designed architectures.
A Tutorial on Deep Neural Networks for Intelligent Systems
Developing Intelligent Systems involves artificial intelligence approaches including artificial neural networks. Here, we present a tutorial of Deep Neural Networks (DNNs), and some insights about the origin of the term "deep"; references to deep learning are also given. Restricted Boltzmann Machines, which are the core of DNNs, are discussed in detail. An example of a simple two-layer network, performing unsupervised learning for unlabeled data, is shown. Deep Belief Networks (DBNs), which are used to build networks with more than two layers, are also described. Moreover, examples for supervised learning with DNNs performing simple prediction and classification tasks, are presented and explained. This tutorial includes two intelligent pattern recognition applications: hand- written digits (benchmark known as MNIST) and speech recognition.
Fine-grained TLS services classification with reject option
The recent success and proliferation of machine learning and deep learning have provided powerful tools, which are also utilized for encrypted traffic analysis, classification, and threat detection in computer networks. These methods, neural networks in particular, are often complex and require a huge corpus of training data. Therefore, this paper focuses on collecting a large up-to-date dataset with almost 200 fine-grained service labels and 140 million network flows extended with packet-level metadata. The number of flows is three orders of magnitude higher than in other existing public labeled datasets of encrypted traffic. The number of service labels, which is important to make the problem hard and realistic, is four times higher than in the public dataset with the most class labels. The published dataset is intended as a benchmark for identifying services in encrypted traffic. Service identification can be further extended with the task of "rejecting" unknown services, i.e., the traffic not seen during the training phase. Neural networks offer superior performance for tackling this more challenging problem. To showcase the dataset's usefulness, we implemented a neural network with a multi-modal architecture, which is the state-of-the-art approach, and achieved 97.04% classification accuracy and detected 91.94% of unknown services with 5% false positive rate.
Adversarial Attacks and Defenses on Graphs: A Review, A Tool and Empirical Studies
Deep neural networks (DNNs) have achieved significant performance in various tasks. However, recent studies have shown that DNNs can be easily fooled by small perturbation on the input, called adversarial attacks. As the extensions of DNNs to graphs, Graph Neural Networks (GNNs) have been demonstrated to inherit this vulnerability. Adversary can mislead GNNs to give wrong predictions by modifying the graph structure such as manipulating a few edges. This vulnerability has arisen tremendous concerns for adapting GNNs in safety-critical applications and has attracted increasing research attention in recent years. Thus, it is necessary and timely to provide a comprehensive overview of existing graph adversarial attacks and the countermeasures. In this survey, we categorize existing attacks and defenses, and review the corresponding state-of-the-art methods. Furthermore, we have developed a repository with representative algorithms (https://github.com/DSE-MSU/DeepRobust/tree/master/deeprobust/graph). The repository enables us to conduct empirical studies to deepen our understandings on attacks and defenses on graphs.
Graph Metanetworks for Processing Diverse Neural Architectures
Neural networks efficiently encode learned information within their parameters. Consequently, many tasks can be unified by treating neural networks themselves as input data. When doing so, recent studies demonstrated the importance of accounting for the symmetries and geometry of parameter spaces. However, those works developed architectures tailored to specific networks such as MLPs and CNNs without normalization layers, and generalizing such architectures to other types of networks can be challenging. In this work, we overcome these challenges by building new metanetworks - neural networks that take weights from other neural networks as input. Put simply, we carefully build graphs representing the input neural networks and process the graphs using graph neural networks. Our approach, Graph Metanetworks (GMNs), generalizes to neural architectures where competing methods struggle, such as multi-head attention layers, normalization layers, convolutional layers, ResNet blocks, and group-equivariant linear layers. We prove that GMNs are expressive and equivariant to parameter permutation symmetries that leave the input neural network functions unchanged. We validate the effectiveness of our method on several metanetwork tasks over diverse neural network architectures.
Layer-wise Linear Mode Connectivity
Averaging neural network parameters is an intuitive method for fusing the knowledge of two independent models. It is most prominently used in federated learning. If models are averaged at the end of training, this can only lead to a good performing model if the loss surface of interest is very particular, i.e., the loss in the midpoint between the two models needs to be sufficiently low. This is impossible to guarantee for the non-convex losses of state-of-the-art networks. For averaging models trained on vastly different datasets, it was proposed to average only the parameters of particular layers or combinations of layers, resulting in better performing models. To get a better understanding of the effect of layer-wise averaging, we analyse the performance of the models that result from averaging single layers, or groups of layers. Based on our empirical and theoretical investigation, we introduce a novel notion of the layer-wise linear connectivity, and show that deep networks do not have layer-wise barriers between them.
How Do Training Methods Influence the Utilization of Vision Models?
Not all learnable parameters (e.g., weights) contribute equally to a neural network's decision function. In fact, entire layers' parameters can sometimes be reset to random values with little to no impact on the model's decisions. We revisit earlier studies that examined how architecture and task complexity influence this phenomenon and ask: is this phenomenon also affected by how we train the model? We conducted experimental evaluations on a diverse set of ImageNet-1k classification models to explore this, keeping the architecture and training data constant but varying the training pipeline. Our findings reveal that the training method strongly influences which layers become critical to the decision function for a given task. For example, improved training regimes and self-supervised training increase the importance of early layers while significantly under-utilizing deeper layers. In contrast, methods such as adversarial training display an opposite trend. Our preliminary results extend previous findings, offering a more nuanced understanding of the inner mechanics of neural networks. Code: https://github.com/paulgavrikov/layer_criticality
Graph HyperNetworks for Neural Architecture Search
Neural architecture search (NAS) automatically finds the best task-specific neural network topology, outperforming many manual architecture designs. However, it can be prohibitively expensive as the search requires training thousands of different networks, while each can last for hours. In this work, we propose the Graph HyperNetwork (GHN) to amortize the search cost: given an architecture, it directly generates the weights by running inference on a graph neural network. GHNs model the topology of an architecture and therefore can predict network performance more accurately than regular hypernetworks and premature early stopping. To perform NAS, we randomly sample architectures and use the validation accuracy of networks with GHN generated weights as the surrogate search signal. GHNs are fast -- they can search nearly 10 times faster than other random search methods on CIFAR-10 and ImageNet. GHNs can be further extended to the anytime prediction setting, where they have found networks with better speed-accuracy tradeoff than the state-of-the-art manual designs.
LiGNN: Graph Neural Networks at LinkedIn
In this paper, we present LiGNN, a deployed large-scale Graph Neural Networks (GNNs) Framework. We share our insight on developing and deployment of GNNs at large scale at LinkedIn. We present a set of algorithmic improvements to the quality of GNN representation learning including temporal graph architectures with long term losses, effective cold start solutions via graph densification, ID embeddings and multi-hop neighbor sampling. We explain how we built and sped up by 7x our large-scale training on LinkedIn graphs with adaptive sampling of neighbors, grouping and slicing of training data batches, specialized shared-memory queue and local gradient optimization. We summarize our deployment lessons and learnings gathered from A/B test experiments. The techniques presented in this work have contributed to an approximate relative improvements of 1% of Job application hearing back rate, 2% Ads CTR lift, 0.5% of Feed engaged daily active users, 0.2% session lift and 0.1% weekly active user lift from people recommendation. We believe that this work can provide practical solutions and insights for engineers who are interested in applying Graph neural networks at large scale.
Large Language Model Adaptation for Networking
Many networking tasks now employ deep learning (DL) to solve complex prediction and system optimization problems. However, current design philosophy of DL-based algorithms entails intensive engineering overhead due to the manual design of deep neural networks (DNNs) for different networking tasks. Besides, DNNs tend to achieve poor generalization performance on unseen data distributions/environments. Motivated by the recent success of large language models (LLMs), for the first time, this work studies the LLM adaptation for networking to explore a more sustainable design philosophy. With the massive pre-trained knowledge and powerful inference ability, LLM can serve as the foundation model, and is expected to achieve "one model for all" with even better performance and stronger generalization for various tasks. In this paper, we present NetLLM, the first LLM adaptation framework that efficiently adapts LLMs to solve networking problems. NetLLM addresses many practical challenges in LLM adaptation, from how to process task-specific information with LLMs, to how to improve the efficiency of answer generation and acquiring domain knowledge for networking. Across three networking-related use cases - viewport prediction (VP), adaptive bitrate streaming (ABR) and cluster job scheduling (CJS), we showcase the effectiveness of NetLLM in LLM adaptation for networking. Results show that the adapted LLM surpasses state-of-the-art algorithms by 10.1-36.6% for VP, 14.5-36.6% for ABR, 6.8-41.3% for CJS, and also achieves superior generalization performance.
A Hybrid Quantum-Classical Approach based on the Hadamard Transform for the Convolutional Layer
In this paper, we propose a novel Hadamard Transform (HT)-based neural network layer for hybrid quantum-classical computing. It implements the regular convolutional layers in the Hadamard transform domain. The idea is based on the HT convolution theorem which states that the dyadic convolution between two vectors is equivalent to the element-wise multiplication of their HT representation. Computing the HT is simply the application of a Hadamard gate to each qubit individually, so the HT computations of our proposed layer can be implemented on a quantum computer. Compared to the regular Conv2D layer, the proposed HT-perceptron layer is computationally more efficient. Compared to a CNN with the same number of trainable parameters and 99.26\% test accuracy, our HT network reaches 99.31\% test accuracy with 57.1\% MACs reduced in the MNIST dataset; and in our ImageNet-1K experiments, our HT-based ResNet-50 exceeds the accuracy of the baseline ResNet-50 by 0.59\% center-crop top-1 accuracy using 11.5\% fewer parameters with 12.6\% fewer MACs.
SMASH: One-Shot Model Architecture Search through HyperNetworks
Designing architectures for deep neural networks requires expert knowledge and substantial computation time. We propose a technique to accelerate architecture selection by learning an auxiliary HyperNet that generates the weights of a main model conditioned on that model's architecture. By comparing the relative validation performance of networks with HyperNet-generated weights, we can effectively search over a wide range of architectures at the cost of a single training run. To facilitate this search, we develop a flexible mechanism based on memory read-writes that allows us to define a wide range of network connectivity patterns, with ResNet, DenseNet, and FractalNet blocks as special cases. We validate our method (SMASH) on CIFAR-10 and CIFAR-100, STL-10, ModelNet10, and Imagenet32x32, achieving competitive performance with similarly-sized hand-designed networks. Our code is available at https://github.com/ajbrock/SMASH
Dynamic Neural Network is All You Need: Understanding the Robustness of Dynamic Mechanisms in Neural Networks
Deep Neural Networks (DNNs) have been used to solve different day-to-day problems. Recently, DNNs have been deployed in real-time systems, and lowering the energy consumption and response time has become the need of the hour. To address this scenario, researchers have proposed incorporating dynamic mechanism to static DNNs (SDNN) to create Dynamic Neural Networks (DyNNs) performing dynamic amounts of computation based on the input complexity. Although incorporating dynamic mechanism into SDNNs would be preferable in real-time systems, it also becomes important to evaluate how the introduction of dynamic mechanism impacts the robustness of the models. However, there has not been a significant number of works focusing on the robustness trade-off between SDNNs and DyNNs. To address this issue, we propose to investigate the robustness of dynamic mechanism in DyNNs and how dynamic mechanism design impacts the robustness of DyNNs. For that purpose, we evaluate three research questions. These evaluations are performed on three models and two datasets. Through the studies, we find that attack transferability from DyNNs to SDNNs is higher than attack transferability from SDNNs to DyNNs. Also, we find that DyNNs can be used to generate adversarial samples more efficiently than SDNNs. Then, through research studies, we provide insight into the design choices that can increase robustness of DyNNs against the attack generated using static model. Finally, we propose a novel attack to understand the additional attack surface introduced by the dynamic mechanism and provide design choices to improve robustness against the attack.
Parameter Prediction for Unseen Deep Architectures
Deep learning has been successful in automating the design of features in machine learning pipelines. However, the algorithms optimizing neural network parameters remain largely hand-designed and computationally inefficient. We study if we can use deep learning to directly predict these parameters by exploiting the past knowledge of training other networks. We introduce a large-scale dataset of diverse computational graphs of neural architectures - DeepNets-1M - and use it to explore parameter prediction on CIFAR-10 and ImageNet. By leveraging advances in graph neural networks, we propose a hypernetwork that can predict performant parameters in a single forward pass taking a fraction of a second, even on a CPU. The proposed model achieves surprisingly good performance on unseen and diverse networks. For example, it is able to predict all 24 million parameters of a ResNet-50 achieving a 60% accuracy on CIFAR-10. On ImageNet, top-5 accuracy of some of our networks approaches 50%. Our task along with the model and results can potentially lead to a new, more computationally efficient paradigm of training networks. Our model also learns a strong representation of neural architectures enabling their analysis.
Rethinking Channel Dimensions for Efficient Model Design
Designing an efficient model within the limited computational cost is challenging. We argue the accuracy of a lightweight model has been further limited by the design convention: a stage-wise configuration of the channel dimensions, which looks like a piecewise linear function of the network stage. In this paper, we study an effective channel dimension configuration towards better performance than the convention. To this end, we empirically study how to design a single layer properly by analyzing the rank of the output feature. We then investigate the channel configuration of a model by searching network architectures concerning the channel configuration under the computational cost restriction. Based on the investigation, we propose a simple yet effective channel configuration that can be parameterized by the layer index. As a result, our proposed model following the channel parameterization achieves remarkable performance on ImageNet classification and transfer learning tasks including COCO object detection, COCO instance segmentation, and fine-grained classifications. Code and ImageNet pretrained models are available at https://github.com/clovaai/rexnet.
A Tour of Convolutional Networks Guided by Linear Interpreters
Convolutional networks are large linear systems divided into layers and connected by non-linear units. These units are the "articulations" that allow the network to adapt to the input. To understand how a network manages to solve a problem we must look at the articulated decisions in entirety. If we could capture the actions of non-linear units for a particular input, we would be able to replay the whole system back and forth as if it was always linear. It would also reveal the actions of non-linearities because the resulting linear system, a Linear Interpreter, depends on the input image. We introduce a hooking layer, called a LinearScope, which allows us to run the network and the linear interpreter in parallel. Its implementation is simple, flexible and efficient. From here we can make many curious inquiries: how do these linear systems look like? When the rows and columns of the transformation matrix are images, how do they look like? What type of basis do these linear transformations rely on? The answers depend on the problems presented, through which we take a tour to some popular architectures used for classification, super-resolution (SR) and image-to-image translation (I2I). For classification we observe that popular networks use a pixel-wise vote per class strategy and heavily rely on bias parameters. For SR and I2I we find that CNNs use wavelet-type basis similar to the human visual system. For I2I we reveal copy-move and template-creation strategies to generate outputs.
A Neural ODE Interpretation of Transformer Layers
Transformer layers, which use an alternating pattern of multi-head attention and multi-layer perceptron (MLP) layers, provide an effective tool for a variety of machine learning problems. As the transformer layers use residual connections to avoid the problem of vanishing gradients, they can be viewed as the numerical integration of a differential equation. In this extended abstract, we build upon this connection and propose a modification of the internal architecture of a transformer layer. The proposed model places the multi-head attention sublayer and the MLP sublayer parallel to each other. Our experiments show that this simple modification improves the performance of transformer networks in multiple tasks. Moreover, for the image classification task, we show that using neural ODE solvers with a sophisticated integration scheme further improves performance.
Predicting Bandwidth Utilization on Network Links Using Machine Learning
Predicting the bandwidth utilization on network links can be extremely useful for detecting congestion in order to correct them before they occur. In this paper, we present a solution to predict the bandwidth utilization between different network links with a very high accuracy. A simulated network is created to collect data related to the performance of the network links on every interface. These data are processed and expanded with feature engineering in order to create a training set. We evaluate and compare three types of machine learning algorithms, namely ARIMA (AutoRegressive Integrated Moving Average), MLP (Multi Layer Perceptron) and LSTM (Long Short-Term Memory), in order to predict the future bandwidth consumption. The LSTM outperforms ARIMA and MLP with very accurate predictions, rarely exceeding a 3\% error (40\% for ARIMA and 20\% for the MLP). We then show that the proposed solution can be used in real time with a reaction managed by a Software-Defined Networking (SDN) platform.
Deeply-Supervised Nets
Our proposed deeply-supervised nets (DSN) method simultaneously minimizes classification error while making the learning process of hidden layers direct and transparent. We make an attempt to boost the classification performance by studying a new formulation in deep networks. Three aspects in convolutional neural networks (CNN) style architectures are being looked at: (1) transparency of the intermediate layers to the overall classification; (2) discriminativeness and robustness of learned features, especially in the early layers; (3) effectiveness in training due to the presence of the exploding and vanishing gradients. We introduce "companion objective" to the individual hidden layers, in addition to the overall objective at the output layer (a different strategy to layer-wise pre-training). We extend techniques from stochastic gradient methods to analyze our algorithm. The advantage of our method is evident and our experimental result on benchmark datasets shows significant performance gain over existing methods (e.g. all state-of-the-art results on MNIST, CIFAR-10, CIFAR-100, and SVHN).
Low-rank lottery tickets: finding efficient low-rank neural networks via matrix differential equations
Neural networks have achieved tremendous success in a large variety of applications. However, their memory footprint and computational demand can render them impractical in application settings with limited hardware or energy resources. In this work, we propose a novel algorithm to find efficient low-rank subnetworks. Remarkably, these subnetworks are determined and adapted already during the training phase and the overall time and memory resources required by both training and evaluating them are significantly reduced. The main idea is to restrict the weight matrices to a low-rank manifold and to update the low-rank factors rather than the full matrix during training. To derive training updates that are restricted to the prescribed manifold, we employ techniques from dynamic model order reduction for matrix differential equations. This allows us to provide approximation, stability, and descent guarantees. Moreover, our method automatically and dynamically adapts the ranks during training to achieve the desired approximation accuracy. The efficiency of the proposed method is demonstrated through a variety of numerical experiments on fully-connected and convolutional networks.
Multilinear Operator Networks
Despite the remarkable capabilities of deep neural networks in image recognition, the dependence on activation functions remains a largely unexplored area and has yet to be eliminated. On the other hand, Polynomial Networks is a class of models that does not require activation functions, but have yet to perform on par with modern architectures. In this work, we aim close this gap and propose MONet, which relies solely on multilinear operators. The core layer of MONet, called Mu-Layer, captures multiplicative interactions of the elements of the input token. MONet captures high-degree interactions of the input elements and we demonstrate the efficacy of our approach on a series of image recognition and scientific computing benchmarks. The proposed model outperforms prior polynomial networks and performs on par with modern architectures. We believe that MONet can inspire further research on models that use entirely multilinear operations.
NoProp: Training Neural Networks without Back-propagation or Forward-propagation
The canonical deep learning approach for learning requires computing a gradient term at each layer by back-propagating the error signal from the output towards each learnable parameter. Given the stacked structure of neural networks, where each layer builds on the representation of the layer below, this approach leads to hierarchical representations. More abstract features live on the top layers of the model, while features on lower layers are expected to be less abstract. In contrast to this, we introduce a new learning method named NoProp, which does not rely on either forward or backwards propagation. Instead, NoProp takes inspiration from diffusion and flow matching methods, where each layer independently learns to denoise a noisy target. We believe this work takes a first step towards introducing a new family of gradient-free learning methods, that does not learn hierarchical representations -- at least not in the usual sense. NoProp needs to fix the representation at each layer beforehand to a noised version of the target, learning a local denoising process that can then be exploited at inference. We demonstrate the effectiveness of our method on MNIST, CIFAR-10, and CIFAR-100 image classification benchmarks. Our results show that NoProp is a viable learning algorithm which achieves superior accuracy, is easier to use and computationally more efficient compared to other existing back-propagation-free methods. By departing from the traditional gradient based learning paradigm, NoProp alters how credit assignment is done within the network, enabling more efficient distributed learning as well as potentially impacting other characteristics of the learning process.
Foundation Models Secretly Understand Neural Network Weights: Enhancing Hypernetwork Architectures with Foundation Models
Large pre-trained models, or foundation models, have shown impressive performance when adapted to a variety of downstream tasks, often out-performing specialized models. Hypernetworks, neural networks that generate some or all of the parameters of another neural network, have become an increasingly important technique for conditioning and generalizing implicit neural representations (INRs), which represent signals or objects such as audio or 3D shapes using a neural network. However, despite the potential benefits of incorporating foundation models in hypernetwork methods, this research direction has not been investigated, likely due to the dissimilarity of the weight generation task with other visual tasks. To address this gap, we (1) show how foundation models can improve hypernetworks with Transformer-based architectures, (2) provide an empirical analysis of the benefits of foundation models for hypernetworks through the lens of the generalizable INR task, showing that leveraging foundation models improves performance, generalizability, and data efficiency across a variety of algorithms and modalities. We also provide further analysis in examining the design space of foundation model-based hypernetworks, including examining the choice of foundation models, algorithms, and the effect of scaling foundation models.
FitNets: Hints for Thin Deep Nets
While depth tends to improve network performances, it also makes gradient-based training more difficult since deeper networks tend to be more non-linear. The recently proposed knowledge distillation approach is aimed at obtaining small and fast-to-execute models, and it has shown that a student network could imitate the soft output of a larger teacher network or ensemble of networks. In this paper, we extend this idea to allow the training of a student that is deeper and thinner than the teacher, using not only the outputs but also the intermediate representations learned by the teacher as hints to improve the training process and final performance of the student. Because the student intermediate hidden layer will generally be smaller than the teacher's intermediate hidden layer, additional parameters are introduced to map the student hidden layer to the prediction of the teacher hidden layer. This allows one to train deeper students that can generalize better or run faster, a trade-off that is controlled by the chosen student capacity. For example, on CIFAR-10, a deep student network with almost 10.4 times less parameters outperforms a larger, state-of-the-art teacher network.
Anatomical Foundation Models for Brain MRIs
Deep Learning (DL) in neuroimaging has become increasingly relevant for detecting neurological conditions and neurodegenerative disorders. One of the most predominant biomarkers in neuroimaging is represented by brain age, which has been shown to be a good indicator for different conditions, such as Alzheimer's Disease. Using brain age for weakly supervised pre-training of DL models in transfer learning settings has also recently shown promising results, especially when dealing with data scarcity of different conditions. On the other hand, anatomical information of brain MRIs (e.g. cortical thickness) can provide important information for learning good representations that can be transferred to many downstream tasks. In this work, we propose AnatCL, an anatomical foundation model for brain MRIs that i.) leverages anatomical information in a weakly contrastive learning approach, and ii.) achieves state-of-the-art performances across many different downstream tasks. To validate our approach we consider 12 different downstream tasks for the diagnosis of different conditions such as Alzheimer's Disease, autism spectrum disorder, and schizophrenia. Furthermore, we also target the prediction of 10 different clinical assessment scores using structural MRI data. Our findings show that incorporating anatomical information during pre-training leads to more robust and generalizable representations. Pre-trained models can be found at: https://github.com/EIDOSLAB/AnatCL.
GRAND: Graph Neural Diffusion
We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE. In our model, the layer structure and topology correspond to the discretisation choices of temporal and spatial operators. Our approach allows a principled development of a broad new class of GNNs that are able to address the common plights of graph learning models such as depth, oversmoothing, and bottlenecks. Key to the success of our models are stability with respect to perturbations in the data and this is addressed for both implicit and explicit discretisation schemes. We develop linear and nonlinear versions of GRAND, which achieve competitive results on many standard graph benchmarks.
Self-supervised Learning on Graphs: Deep Insights and New Direction
The success of deep learning notoriously requires larger amounts of costly annotated data. This has led to the development of self-supervised learning (SSL) that aims to alleviate this limitation by creating domain specific pretext tasks on unlabeled data. Simultaneously, there are increasing interests in generalizing deep learning to the graph domain in the form of graph neural networks (GNNs). GNNs can naturally utilize unlabeled nodes through the simple neighborhood aggregation that is unable to thoroughly make use of unlabeled nodes. Thus, we seek to harness SSL for GNNs to fully exploit the unlabeled data. Different from data instances in the image and text domains, nodes in graphs present unique structure information and they are inherently linked indicating not independent and identically distributed (or i.i.d.). Such complexity is a double-edged sword for SSL on graphs. On the one hand, it determines that it is challenging to adopt solutions from the image and text domains to graphs and dedicated efforts are desired. On the other hand, it provides rich information that enables us to build SSL from a variety of perspectives. Thus, in this paper, we first deepen our understandings on when, why, and which strategies of SSL work with GNNs by empirically studying numerous basic SSL pretext tasks on graphs. Inspired by deep insights from the empirical studies, we propose a new direction SelfTask to build advanced pretext tasks that are able to achieve state-of-the-art performance on various real-world datasets. The specific experimental settings to reproduce our results can be found in https://github.com/ChandlerBang/SelfTask-GNN.
A technical note on bilinear layers for interpretability
The ability of neural networks to represent more features than neurons makes interpreting them challenging. This phenomenon, known as superposition, has spurred efforts to find architectures that are more interpretable than standard multilayer perceptrons (MLPs) with elementwise activation functions. In this note, I examine bilinear layers, which are a type of MLP layer that are mathematically much easier to analyze while simultaneously performing better than standard MLPs. Although they are nonlinear functions of their input, I demonstrate that bilinear layers can be expressed using only linear operations and third order tensors. We can integrate this expression for bilinear layers into a mathematical framework for transformer circuits, which was previously limited to attention-only transformers. These results suggest that bilinear layers are easier to analyze mathematically than current architectures and thus may lend themselves to deeper safety insights by allowing us to talk more formally about circuits in neural networks. Additionally, bilinear layers may offer an alternative path for mechanistic interpretability through understanding the mechanisms of feature construction instead of enumerating a (potentially exponentially) large number of features in large models.
Normalization Is All You Need: Understanding Layer-Normalized Federated Learning under Extreme Label Shift
Layer normalization (LN) is a widely adopted deep learning technique especially in the era of foundation models. Recently, LN has been shown to be surprisingly effective in federated learning (FL) with non-i.i.d. data. However, exactly why and how it works remains mysterious. In this work, we reveal the profound connection between layer normalization and the label shift problem in federated learning. To understand layer normalization better in FL, we identify the key contributing mechanism of normalization methods in FL, called feature normalization (FN), which applies normalization to the latent feature representation before the classifier head. Although LN and FN do not improve expressive power, they control feature collapse and local overfitting to heavily skewed datasets, and thus accelerates global training. Empirically, we show that normalization leads to drastic improvements on standard benchmarks under extreme label shift. Moreover, we conduct extensive ablation studies to understand the critical factors of layer normalization in FL. Our results verify that FN is an essential ingredient inside LN to significantly improve the convergence of FL while remaining robust to learning rate choices, especially under extreme label shift where each client has access to few classes.
Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions
Deep neural networks are widely used for classification. These deep models often suffer from a lack of interpretability -- they are particularly difficult to understand because of their non-linear nature. As a result, neural networks are often treated as "black box" models, and in the past, have been trained purely to optimize the accuracy of predictions. In this work, we create a novel network architecture for deep learning that naturally explains its own reasoning for each prediction. This architecture contains an autoencoder and a special prototype layer, where each unit of that layer stores a weight vector that resembles an encoded training input. The encoder of the autoencoder allows us to do comparisons within the latent space, while the decoder allows us to visualize the learned prototypes. The training objective has four terms: an accuracy term, a term that encourages every prototype to be similar to at least one encoded input, a term that encourages every encoded input to be close to at least one prototype, and a term that encourages faithful reconstruction by the autoencoder. The distances computed in the prototype layer are used as part of the classification process. Since the prototypes are learned during training, the learned network naturally comes with explanations for each prediction, and the explanations are loyal to what the network actually computes.
HyperNetworks
This work explores hypernetworks: an approach of using a one network, also known as a hypernetwork, to generate the weights for another network. Hypernetworks provide an abstraction that is similar to what is found in nature: the relationship between a genotype - the hypernetwork - and a phenotype - the main network. Though they are also reminiscent of HyperNEAT in evolution, our hypernetworks are trained end-to-end with backpropagation and thus are usually faster. The focus of this work is to make hypernetworks useful for deep convolutional networks and long recurrent networks, where hypernetworks can be viewed as relaxed form of weight-sharing across layers. Our main result is that hypernetworks can generate non-shared weights for LSTM and achieve near state-of-the-art results on a variety of sequence modelling tasks including character-level language modelling, handwriting generation and neural machine translation, challenging the weight-sharing paradigm for recurrent networks. Our results also show that hypernetworks applied to convolutional networks still achieve respectable results for image recognition tasks compared to state-of-the-art baseline models while requiring fewer learnable parameters.
Sheaf Neural Networks with Connection Laplacians
A Sheaf Neural Network (SNN) is a type of Graph Neural Network (GNN) that operates on a sheaf, an object that equips a graph with vector spaces over its nodes and edges and linear maps between these spaces. SNNs have been shown to have useful theoretical properties that help tackle issues arising from heterophily and over-smoothing. One complication intrinsic to these models is finding a good sheaf for the task to be solved. Previous works proposed two diametrically opposed approaches: manually constructing the sheaf based on domain knowledge and learning the sheaf end-to-end using gradient-based methods. However, domain knowledge is often insufficient, while learning a sheaf could lead to overfitting and significant computational overhead. In this work, we propose a novel way of computing sheaves drawing inspiration from Riemannian geometry: we leverage the manifold assumption to compute manifold-and-graph-aware orthogonal maps, which optimally align the tangent spaces of neighbouring data points. We show that this approach achieves promising results with less computational overhead when compared to previous SNN models. Overall, this work provides an interesting connection between algebraic topology and differential geometry, and we hope that it will spark future research in this direction.
CondConv: Conditionally Parameterized Convolutions for Efficient Inference
Convolutional layers are one of the basic building blocks of modern deep neural networks. One fundamental assumption is that convolutional kernels should be shared for all examples in a dataset. We propose conditionally parameterized convolutions (CondConv), which learn specialized convolutional kernels for each example. Replacing normal convolutions with CondConv enables us to increase the size and capacity of a network, while maintaining efficient inference. We demonstrate that scaling networks with CondConv improves the performance and inference cost trade-off of several existing convolutional neural network architectures on both classification and detection tasks. On ImageNet classification, our CondConv approach applied to EfficientNet-B0 achieves state-of-the-art performance of 78.3% accuracy with only 413M multiply-adds. Code and checkpoints for the CondConv Tensorflow layer and CondConv-EfficientNet models are available at: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/condconv.
Deep metric learning using Triplet network
Deep learning has proven itself as a successful set of models for learning useful semantic representations of data. These, however, are mostly implicitly learned as part of a classification task. In this paper we propose the triplet network model, which aims to learn useful representations by distance comparisons. A similar model was defined by Wang et al. (2014), tailor made for learning a ranking for image information retrieval. Here we demonstrate using various datasets that our model learns a better representation than that of its immediate competitor, the Siamese network. We also discuss future possible usage as a framework for unsupervised learning.
CoulGAT: An Experiment on Interpretability of Graph Attention Networks
We present an attention mechanism inspired from definition of screened Coulomb potential. This attention mechanism was used to interpret the Graph Attention (GAT) model layers and training dataset by using a flexible and scalable framework (CoulGAT) developed for this purpose. Using CoulGAT, a forest of plain and resnet models were trained and characterized using this attention mechanism against CHAMPS dataset. The learnable variables of the attention mechanism are used to extract node-node and node-feature interactions to define an empirical standard model for the graph structure and hidden layer. This representation of graph and hidden layers can be used as a tool to compare different models, optimize hidden layers and extract a compact definition of graph structure of the dataset.
A Provable Defense for Deep Residual Networks
We present a training system, which can provably defend significantly larger neural networks than previously possible, including ResNet-34 and DenseNet-100. Our approach is based on differentiable abstract interpretation and introduces two novel concepts: (i) abstract layers for fine-tuning the precision and scalability of the abstraction, (ii) a flexible domain specific language (DSL) for describing training objectives that combine abstract and concrete losses with arbitrary specifications. Our training method is implemented in the DiffAI system.
GraphSAINT: Graph Sampling Based Inductive Learning Method
Graph Convolutional Networks (GCNs) are powerful models for learning representations of attributed graphs. To scale GCNs to large graphs, state-of-the-art methods use various layer sampling techniques to alleviate the "neighbor explosion" problem during minibatch training. We propose GraphSAINT, a graph sampling based inductive learning method that improves training efficiency and accuracy in a fundamentally different way. By changing perspective, GraphSAINT constructs minibatches by sampling the training graph, rather than the nodes or edges across GCN layers. Each iteration, a complete GCN is built from the properly sampled subgraph. Thus, we ensure fixed number of well-connected nodes in all layers. We further propose normalization technique to eliminate bias, and sampling algorithms for variance reduction. Importantly, we can decouple the sampling from the forward and backward propagation, and extend GraphSAINT with many architecture variants (e.g., graph attention, jumping connection). GraphSAINT demonstrates superior performance in both accuracy and training time on five large graphs, and achieves new state-of-the-art F1 scores for PPI (0.995) and Reddit (0.970).
Towards Understanding Mixture of Experts in Deep Learning
The Mixture-of-Experts (MoE) layer, a sparsely-activated model controlled by a router, has achieved great success in deep learning. However, the understanding of such architecture remains elusive. In this paper, we formally study how the MoE layer improves the performance of neural network learning and why the mixture model will not collapse into a single model. Our empirical results suggest that the cluster structure of the underlying problem and the non-linearity of the expert are pivotal to the success of MoE. To further understand this, we consider a challenging classification problem with intrinsic cluster structures, which is hard to learn using a single expert. Yet with the MoE layer, by choosing the experts as two-layer nonlinear convolutional neural networks (CNNs), we show that the problem can be learned successfully. Furthermore, our theory shows that the router can learn the cluster-center features, which helps divide the input complex problem into simpler linear classification sub-problems that individual experts can conquer. To our knowledge, this is the first result towards formally understanding the mechanism of the MoE layer for deep learning.
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.
Equivariant Architectures for Learning in Deep Weight Spaces
Designing machine learning architectures for processing neural networks in their raw weight matrix form is a newly introduced research direction. Unfortunately, the unique symmetry structure of deep weight spaces makes this design very challenging. If successful, such architectures would be capable of performing a wide range of intriguing tasks, from adapting a pre-trained network to a new domain to editing objects represented as functions (INRs or NeRFs). As a first step towards this goal, we present here a novel network architecture for learning in deep weight spaces. It takes as input a concatenation of weights and biases of a pre-trained MLP and processes it using a composition of layers that are equivariant to the natural permutation symmetry of the MLP's weights: Changing the order of neurons in intermediate layers of the MLP does not affect the function it represents. We provide a full characterization of all affine equivariant and invariant layers for these symmetries and show how these layers can be implemented using three basic operations: pooling, broadcasting, and fully connected layers applied to the input in an appropriate manner. We demonstrate the effectiveness of our architecture and its advantages over natural baselines in a variety of learning tasks.
Learning from A Single Graph is All You Need for Near-Shortest Path Routing in Wireless Networks
We propose a learning algorithm for local routing policies that needs only a few data samples obtained from a single graph while generalizing to all random graphs in a standard model of wireless networks. We thus solve the all-pairs near-shortest path problem by training deep neural networks (DNNs) that efficiently and scalably learn routing policies that are local, i.e., they only consider node states and the states of neighboring nodes. Remarkably, one of these DNNs we train learns a policy that exactly matches the performance of greedy forwarding; another generally outperforms greedy forwarding. Our algorithm design exploits network domain knowledge in several ways: First, in the selection of input features and, second, in the selection of a ``seed graph'' and subsamples from its shortest paths. The leverage of domain knowledge provides theoretical explainability of why the seed graph and node subsampling suffice for learning that is efficient, scalable, and generalizable. Simulation-based results on uniform random graphs with diverse sizes and densities empirically corroborate that using samples generated from a few routing paths in a modest-sized seed graph quickly learns a model that is generalizable across (almost) all random graphs in the wireless network model.
CSPNet: A New Backbone that can Enhance Learning Capability of CNN
Neural networks have enabled state-of-the-art approaches to achieve incredible results on computer vision tasks such as object detection. However, such success greatly relies on costly computation resources, which hinders people with cheap devices from appreciating the advanced technology. In this paper, we propose Cross Stage Partial Network (CSPNet) to mitigate the problem that previous works require heavy inference computations from the network architecture perspective. We attribute the problem to the duplicate gradient information within network optimization. The proposed networks respect the variability of the gradients by integrating feature maps from the beginning and the end of a network stage, which, in our experiments, reduces computations by 20% with equivalent or even superior accuracy on the ImageNet dataset, and significantly outperforms state-of-the-art approaches in terms of AP50 on the MS COCO object detection dataset. The CSPNet is easy to implement and general enough to cope with architectures based on ResNet, ResNeXt, and DenseNet. Source code is at https://github.com/WongKinYiu/CrossStagePartialNetworks.
A New Dataset and Methodology for Malicious URL Classification
Malicious URL (Uniform Resource Locator) classification is a pivotal aspect of Cybersecurity, offering defense against web-based threats. Despite deep learning's promise in this area, its advancement is hindered by two main challenges: the scarcity of comprehensive, open-source datasets and the limitations of existing models, which either lack real-time capabilities or exhibit suboptimal performance. In order to address these gaps, we introduce a novel, multi-class dataset for malicious URL classification, distinguishing between benign, phishing and malicious URLs, named DeepURLBench. The data has been rigorously cleansed and structured, providing a superior alternative to existing datasets. Notably, the multi-class approach enhances the performance of deep learning models, as compared to a standard binary classification approach. Additionally, we propose improvements to string-based URL classifiers, applying these enhancements to URLNet. Key among these is the integration of DNS-derived features, which enrich the model's capabilities and lead to notable performance gains while preserving real-time runtime efficiency-achieving an effective balance for cybersecurity applications.
Adding Conditional Control to Text-to-Image Diffusion Models
We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.
A Review of Deep Learning with Special Emphasis on Architectures, Applications and Recent Trends
Deep learning has solved a problem that as little as five years ago was thought by many to be intractable - the automatic recognition of patterns in data; and it can do so with accuracy that often surpasses human beings. It has solved problems beyond the realm of traditional, hand-crafted machine learning algorithms and captured the imagination of practitioners trying to make sense out of the flood of data that now inundates our society. As public awareness of the efficacy of DL increases so does the desire to make use of it. But even for highly trained professionals it can be daunting to approach the rapidly increasing body of knowledge produced by experts in the field. Where does one start? How does one determine if a particular model is applicable to their problem? How does one train and deploy such a network? A primer on the subject can be a good place to start. With that in mind, we present an overview of some of the key multilayer ANNs that comprise DL. We also discuss some new automatic architecture optimization protocols that use multi-agent approaches. Further, since guaranteeing system uptime is becoming critical to many computer applications, we include a section on using neural networks for fault detection and subsequent mitigation. This is followed by an exploratory survey of several application areas where DL has emerged as a game-changing technology: anomalous behavior detection in financial applications or in financial time-series forecasting, predictive and prescriptive analytics, medical image processing and analysis and power systems research. The thrust of this review is to outline emerging areas of application-oriented research within the DL community as well as to provide a reference to researchers seeking to use it in their work for what it does best: statistical pattern recognition with unparalleled learning capacity with the ability to scale with information.
Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks
Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation wireless networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to service providers. As WMNs become an increasingly popular replacement technology for last-mile connectivity to the home networking, community and neighborhood networking, it is imperative to design efficient and secure communication protocols for these networks. However, several vulnerabilities exist in currently existing protocols for WMNs. These security loopholes can be exploited by potential attackers to launch attack on WMNs. The absence of a central point of administration makes securing WMNs even more challenging. The broadcast nature of transmission and the dependency on the intermediate nodes for multi-hop communications lead to several security vulnerabilities in WMNs. The attacks can be external as well as internal in nature. External attacks are launched by intruders who are not authorized users of the network. For example, an intruding node may eavesdrop on the packets and replay those packets at a later point of time to gain access to the network resources. On the other hand, the internal attacks are launched by the nodes that are part of the WMN. On example of such attack is an intermediate node dropping packets which it was supposed to forward. This chapter presents a comprehensive discussion on the current authentication and privacy protection schemes for WMN. In addition, it proposes a novel security protocol for node authentication and message confidentiality and an anonymization scheme for privacy protection of users in WMNs.
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Cellular sheaves equip graphs with a "geometrical" structure by assigning vector spaces and linear maps to nodes and edges. Graph Neural Networks (GNNs) implicitly assume a graph with a trivial underlying sheaf. This choice is reflected in the structure of the graph Laplacian operator, the properties of the associated diffusion equation, and the characteristics of the convolutional models that discretise this equation. In this paper, we use cellular sheaf theory to show that the underlying geometry of the graph is deeply linked with the performance of GNNs in heterophilic settings and their oversmoothing behaviour. By considering a hierarchy of increasingly general sheaves, we study how the ability of the sheaf diffusion process to achieve linear separation of the classes in the infinite time limit expands. At the same time, we prove that when the sheaf is non-trivial, discretised parametric diffusion processes have greater control than GNNs over their asymptotic behaviour. On the practical side, we study how sheaves can be learned from data. The resulting sheaf diffusion models have many desirable properties that address the limitations of classical graph diffusion equations (and corresponding GNN models) and obtain competitive results in heterophilic settings. Overall, our work provides new connections between GNNs and algebraic topology and would be of interest to both fields.
GNNPipe: Scaling Deep GNN Training with Pipelined Model Parallelism
Communication is a key bottleneck for distributed graph neural network (GNN) training. This paper proposes GNNPipe, a new approach that scales the distributed full-graph deep GNN training. Being the first to use layer-level model parallelism for GNN training, GNNPipe partitions GNN layers among GPUs, each device performs the computation for a disjoint subset of consecutive GNN layers on the whole graph. Compared to graph parallelism with each GPU handling a graph partition, GNNPipe reduces the communication volume by a factor of the number of GNN layers. GNNPipe overcomes the unique challenges for pipelined layer-level model parallelism on the whole graph by partitioning it into dependent chunks, allowing the use of historical vertex embeddings, and applying specific training techniques to ensure convergence. We also propose a hybrid approach by combining GNNPipe with graph parallelism to handle large graphs, achieve better computer resource utilization and ensure model convergence. We build a general GNN training system supporting all three parallelism setting. Extensive experiments show that our method reduces the per-epoch training time by up to 2.45x (on average 1.58x) and reduces the communication volume and overhead by up to 22.89x and 27.21x (on average 8.69x and 11.60x), respectively, while achieving a comparable level of model accuracy and convergence speed compared to graph parallelism.
Analytical Solution of a Three-layer Network with a Matrix Exponential Activation Function
In practice, deeper networks tend to be more powerful than shallow ones, but this has not been understood theoretically. In this paper, we find the analytical solution of a three-layer network with a matrix exponential activation function, i.e., $ f(X)=W_3exp(W_2exp(W_1X)), Xin C^{dtimes d} have analytical solutions for the equations Y_1=f(X_1),Y_2=f(X_2) for X_1,X_2,Y_1,Y_2 with only invertible assumptions. Our proof shows the power of depth and the use of a non-linear activation function, since one layer network can only solve one equation,i.e.,Y=WX$.
Forget-free Continual Learning with Soft-Winning SubNetworks
Inspired by Regularized Lottery Ticket Hypothesis (RLTH), which states that competitive smooth (non-binary) subnetworks exist within a dense network in continual learning tasks, we investigate two proposed architecture-based continual learning methods which sequentially learn and select adaptive binary- (WSN) and non-binary Soft-Subnetworks (SoftNet) for each task. WSN and SoftNet jointly learn the regularized model weights and task-adaptive non-binary masks of subnetworks associated with each task whilst attempting to select a small set of weights to be activated (winning ticket) by reusing weights of the prior subnetworks. Our proposed WSN and SoftNet are inherently immune to catastrophic forgetting as each selected subnetwork model does not infringe upon other subnetworks in Task Incremental Learning (TIL). In TIL, binary masks spawned per winning ticket are encoded into one N-bit binary digit mask, then compressed using Huffman coding for a sub-linear increase in network capacity to the number of tasks. Surprisingly, in the inference step, SoftNet generated by injecting small noises to the backgrounds of acquired WSN (holding the foregrounds of WSN) provides excellent forward transfer power for future tasks in TIL. SoftNet shows its effectiveness over WSN in regularizing parameters to tackle the overfitting, to a few examples in Few-shot Class Incremental Learning (FSCIL).
Layer-stacked Attention for Heterogeneous Network Embedding
The heterogeneous network is a robust data abstraction that can model entities of different types interacting in various ways. Such heterogeneity brings rich semantic information but presents nontrivial challenges in aggregating the heterogeneous relationships between objects - especially those of higher-order indirect relations. Recent graph neural network approaches for representation learning on heterogeneous networks typically employ the attention mechanism, which is often only optimized for predictions based on direct links. Furthermore, even though most deep learning methods can aggregate higher-order information by building deeper models, such a scheme can diminish the degree of interpretability. To overcome these challenges, we explore an architecture - Layer-stacked ATTention Embedding (LATTE) - that automatically decomposes higher-order meta relations at each layer to extract the relevant heterogeneous neighborhood structures for each node. Additionally, by successively stacking layer representations, the learned node embedding offers a more interpretable aggregation scheme for nodes of different types at different neighborhood ranges. We conducted experiments on several benchmark heterogeneous network datasets. In both transductive and inductive node classification tasks, LATTE can achieve state-of-the-art performance compared to existing approaches, all while offering a lightweight model. With extensive experimental analyses and visualizations, the framework can demonstrate the ability to extract informative insights on heterogeneous networks.
Router-Tuning: A Simple and Effective Approach for Enabling Dynamic-Depth in Transformers
Traditional transformer models often allocate a fixed amount of computational resources to every input token, leading to inefficient and unnecessary computation. To address this, the Mixture of Depths (MoD) was introduced to dynamically adjust the computational depth by skipping less important layers. Despite its promise, current MoD approaches remain under-explored and face two main challenges: (1) high training costs due to the need to train the entire model along with the routers that determine which layers to skip, and (2) the risk of performance degradation when important layers are bypassed. In response to the first issue, we propose Router-Tuning, a method that fine-tunes only the router on a small dataset, drastically reducing the computational overhead associated with full model training. For the second challenge, we propose MindSkip, which deploys Attention with Dynamic Depths. This method preserves the model's performance while significantly enhancing computational and memory efficiency. Extensive experiments demonstrate that our approach delivers competitive results while dramatically improving the computation efficiency, e.g., 21\% speedup and only a 0.2\% performance drop. The code is released at https://github.com/CASE-Lab-UMD/Router-Tuning.
Landscape Connectivity and Dropout Stability of SGD Solutions for Over-parameterized Neural Networks
The optimization of multilayer neural networks typically leads to a solution with zero training error, yet the landscape can exhibit spurious local minima and the minima can be disconnected. In this paper, we shed light on this phenomenon: we show that the combination of stochastic gradient descent (SGD) and over-parameterization makes the landscape of multilayer neural networks approximately connected and thus more favorable to optimization. More specifically, we prove that SGD solutions are connected via a piecewise linear path, and the increase in loss along this path vanishes as the number of neurons grows large. This result is a consequence of the fact that the parameters found by SGD are increasingly dropout stable as the network becomes wider. We show that, if we remove part of the neurons (and suitably rescale the remaining ones), the change in loss is independent of the total number of neurons, and it depends only on how many neurons are left. Our results exhibit a mild dependence on the input dimension: they are dimension-free for two-layer networks and depend linearly on the dimension for multilayer networks. We validate our theoretical findings with numerical experiments for different architectures and classification tasks.
Exploring Selective Layer Fine-Tuning in Federated Learning
Federated learning (FL) has emerged as a promising paradigm for fine-tuning foundation models using distributed data in a privacy-preserving manner. Under limited computational resources, clients often find it more practical to fine-tune a selected subset of layers, rather than the entire model, based on their task-specific data. In this study, we provide a thorough theoretical exploration of selective layer fine-tuning in FL, emphasizing a flexible approach that allows the clients to adjust their selected layers according to their local data and resources. We theoretically demonstrate that the layer selection strategy has a significant impact on model convergence in two critical aspects: the importance of selected layers and the heterogeneous choices across clients. Drawing from these insights, we further propose a strategic layer selection method that utilizes local gradients and regulates layer selections across clients. The extensive experiments on both image and text datasets demonstrate the effectiveness of the proposed strategy compared with several baselines, highlighting its advances in identifying critical layers that adapt to the client heterogeneity and training dynamics in FL.
Graph Neural Networks can Recover the Hidden Features Solely from the Graph Structure
Graph Neural Networks (GNNs) are popular models for graph learning problems. GNNs show strong empirical performance in many practical tasks. However, the theoretical properties have not been completely elucidated. In this paper, we investigate whether GNNs can exploit the graph structure from the perspective of the expressive power of GNNs. In our analysis, we consider graph generation processes that are controlled by hidden (or latent) node features, which contain all information about the graph structure. A typical example of this framework is kNN graphs constructed from the hidden features. In our main results, we show that GNNs can recover the hidden node features from the input graph alone, even when all node features, including the hidden features themselves and any indirect hints, are unavailable. GNNs can further use the recovered node features for downstream tasks. These results show that GNNs can fully exploit the graph structure by themselves, and in effect, GNNs can use both the hidden and explicit node features for downstream tasks. In the experiments, we confirm the validity of our results by showing that GNNs can accurately recover the hidden features using a GNN architecture built based on our theoretical analysis.
NetInfoF Framework: Measuring and Exploiting Network Usable Information
Given a node-attributed graph, and a graph task (link prediction or node classification), can we tell if a graph neural network (GNN) will perform well? More specifically, do the graph structure and the node features carry enough usable information for the task? Our goals are (1) to develop a fast tool to measure how much information is in the graph structure and in the node features, and (2) to exploit the information to solve the task, if there is enough. We propose NetInfoF, a framework including NetInfoF_Probe and NetInfoF_Act, for the measurement and the exploitation of network usable information (NUI), respectively. Given a graph data, NetInfoF_Probe measures NUI without any model training, and NetInfoF_Act solves link prediction and node classification, while two modules share the same backbone. In summary, NetInfoF has following notable advantages: (a) General, handling both link prediction and node classification; (b) Principled, with theoretical guarantee and closed-form solution; (c) Effective, thanks to the proposed adjustment to node similarity; (d) Scalable, scaling linearly with the input size. In our carefully designed synthetic datasets, NetInfoF correctly identifies the ground truth of NUI and is the only method being robust to all graph scenarios. Applied on real-world datasets, NetInfoF wins in 11 out of 12 times on link prediction compared to general GNN baselines.
Hidden symmetries of ReLU networks
The parameter space for any fixed architecture of feedforward ReLU neural networks serves as a proxy during training for the associated class of functions - but how faithful is this representation? It is known that many different parameter settings can determine the same function. Moreover, the degree of this redundancy is inhomogeneous: for some networks, the only symmetries are permutation of neurons in a layer and positive scaling of parameters at a neuron, while other networks admit additional hidden symmetries. In this work, we prove that, for any network architecture where no layer is narrower than the input, there exist parameter settings with no hidden symmetries. We also describe a number of mechanisms through which hidden symmetries can arise, and empirically approximate the functional dimension of different network architectures at initialization. These experiments indicate that the probability that a network has no hidden symmetries decreases towards 0 as depth increases, while increasing towards 1 as width and input dimension increase.
YOLOv4: Optimal Speed and Accuracy of Object Detection
There are a huge number of features which are said to improve Convolutional Neural Network (CNN) accuracy. Practical testing of combinations of such features on large datasets, and theoretical justification of the result, is required. Some features operate on certain models exclusively and for certain problems exclusively, or only for small-scale datasets; while some features, such as batch-normalization and residual-connections, are applicable to the majority of models, tasks, and datasets. We assume that such universal features include Weighted-Residual-Connections (WRC), Cross-Stage-Partial-connections (CSP), Cross mini-Batch Normalization (CmBN), Self-adversarial-training (SAT) and Mish-activation. We use new features: WRC, CSP, CmBN, SAT, Mish activation, Mosaic data augmentation, CmBN, DropBlock regularization, and CIoU loss, and combine some of them to achieve state-of-the-art results: 43.5% AP (65.7% AP50) for the MS COCO dataset at a realtime speed of ~65 FPS on Tesla V100. Source code is at https://github.com/AlexeyAB/darknet
FractalNet: Ultra-Deep Neural Networks without Residuals
We introduce a design strategy for neural network macro-architecture based on self-similarity. Repeated application of a simple expansion rule generates deep networks whose structural layouts are precisely truncated fractals. These networks contain interacting subpaths of different lengths, but do not include any pass-through or residual connections; every internal signal is transformed by a filter and nonlinearity before being seen by subsequent layers. In experiments, fractal networks match the excellent performance of standard residual networks on both CIFAR and ImageNet classification tasks, thereby demonstrating that residual representations may not be fundamental to the success of extremely deep convolutional neural networks. Rather, the key may be the ability to transition, during training, from effectively shallow to deep. We note similarities with student-teacher behavior and develop drop-path, a natural extension of dropout, to regularize co-adaptation of subpaths in fractal architectures. Such regularization allows extraction of high-performance fixed-depth subnetworks. Additionally, fractal networks exhibit an anytime property: shallow subnetworks provide a quick answer, while deeper subnetworks, with higher latency, provide a more accurate answer.
DyCL: Dynamic Neural Network Compilation Via Program Rewriting and Graph Optimization
DL compiler's primary function is to translate DNN programs written in high-level DL frameworks such as PyTorch and TensorFlow into portable executables. These executables can then be flexibly executed by the deployed host programs. However, existing DL compilers rely on a tracing mechanism, which involves feeding a runtime input to a neural network program and tracing the program execution paths to generate the computational graph necessary for compilation. Unfortunately, this mechanism falls short when dealing with modern dynamic neural networks (DyNNs) that possess varying computational graphs depending on the inputs. Consequently, conventional DL compilers struggle to accurately compile DyNNs into executable code. To address this limitation, we propose \tool, a general approach that enables any existing DL compiler to successfully compile DyNNs. \tool tackles the dynamic nature of DyNNs by introducing a compilation mechanism that redistributes the control and data flow of the original DNN programs during the compilation process. Specifically, \tool develops program analysis and program transformation techniques to convert a dynamic neural network into multiple sub-neural networks. Each sub-neural network is devoid of conditional statements and is compiled independently. Furthermore, \tool synthesizes a host module that models the control flow of the DyNNs and facilitates the invocation of the sub-neural networks. Our evaluation demonstrates the effectiveness of \tool, achieving a 100\% success rate in compiling all dynamic neural networks. Moreover, the compiled executables generated by \tool exhibit significantly improved performance, running between 1.12times and 20.21times faster than the original DyNNs executed on general-purpose DL frameworks.
Adversarial Defense Framework for Graph Neural Network
Graph neural network (GNN), as a powerful representation learning model on graph data, attracts much attention across various disciplines. However, recent studies show that GNN is vulnerable to adversarial attacks. How to make GNN more robust? What are the key vulnerabilities in GNN? How to address the vulnerabilities and defense GNN against the adversarial attacks? In this paper, we propose DefNet, an effective adversarial defense framework for GNNs. In particular, we first investigate the latent vulnerabilities in every layer of GNNs and propose corresponding strategies including dual-stage aggregation and bottleneck perceptron. Then, to cope with the scarcity of training data, we propose an adversarial contrastive learning method to train the GNN in a conditional GAN manner by leveraging the high-level graph representation. Extensive experiments on three public datasets demonstrate the effectiveness of DefNet in improving the robustness of popular GNN variants, such as Graph Convolutional Network and GraphSAGE, under various types of adversarial attacks.
Visualizing and Understanding Convolutional Networks
Large Convolutional Network models have recently demonstrated impressive classification performance on the ImageNet benchmark. However there is no clear understanding of why they perform so well, or how they might be improved. In this paper we address both issues. We introduce a novel visualization technique that gives insight into the function of intermediate feature layers and the operation of the classifier. We also perform an ablation study to discover the performance contribution from different model layers. This enables us to find model architectures that outperform Krizhevsky \etal on the ImageNet classification benchmark. We show our ImageNet model generalizes well to other datasets: when the softmax classifier is retrained, it convincingly beats the current state-of-the-art results on Caltech-101 and Caltech-256 datasets.
Personalized Resource Allocation in Wireless Networks: An AI-Enabled and Big Data-Driven Multi-Objective Optimization
The design and optimization of wireless networks have mostly been based on strong mathematical and theoretical modeling. Nonetheless, as novel applications emerge in the era of 5G and beyond, unprecedented levels of complexity will be encountered in the design and optimization of the network. As a result, the use of Artificial Intelligence (AI) is envisioned for wireless network design and optimization due to the flexibility and adaptability it offers in solving extremely complex problems in real-time. One of the main future applications of AI is enabling user-level personalization for numerous use cases. AI will revolutionize the way we interact with computers in which computers will be able to sense commands and emotions from humans in a non-intrusive manner, making the entire process transparent to users. By leveraging this capability, and accelerated by the advances in computing technologies, wireless networks can be redesigned to enable the personalization of network services to the user level in real-time. While current wireless networks are being optimized to achieve a predefined set of quality requirements, the personalization technology advocated in this article is supported by an intelligent big data-driven layer designed to micro-manage the scarce network resources. This layer provides the intelligence required to decide the necessary service quality that achieves the target satisfaction level for each user. Due to its dynamic and flexible design, personalized networks are expected to achieve unprecedented improvements in optimizing two contradicting objectives in wireless networks: saving resources and improving user satisfaction levels.
Information Flow Routes: Automatically Interpreting Language Models at Scale
Information flows by routes inside the network via mechanisms implemented in the model. These routes can be represented as graphs where nodes correspond to token representations and edges to operations inside the network. We automatically build these graphs in a top-down manner, for each prediction leaving only the most important nodes and edges. In contrast to the existing workflows relying on activation patching, we do this through attribution: this allows us to efficiently uncover existing circuits with just a single forward pass. Additionally, the applicability of our method is far beyond patching: we do not need a human to carefully design prediction templates, and we can extract information flow routes for any prediction (not just the ones among the allowed templates). As a result, we can talk about model behavior in general, for specific types of predictions, or different domains. We experiment with Llama 2 and show that the role of some attention heads is overall important, e.g. previous token heads and subword merging heads. Next, we find similarities in Llama 2 behavior when handling tokens of the same part of speech. Finally, we show that some model components can be specialized on domains such as coding or multilingual texts.
Training the Untrainable: Introducing Inductive Bias via Representational Alignment
We demonstrate that architectures which traditionally are considered to be ill-suited for a task can be trained using inductive biases from another architecture. Networks are considered untrainable when they overfit, underfit, or converge to poor results even when tuning their hyperparameters. For example, plain fully connected networks overfit on object recognition while deep convolutional networks without residual connections underfit. The traditional answer is to change the architecture to impose some inductive bias, although what that bias is remains unknown. We introduce guidance, where a guide network guides a target network using a neural distance function. The target is optimized to perform well and to match its internal representations, layer-by-layer, to those of the guide; the guide is unchanged. If the guide is trained, this transfers over part of the architectural prior and knowledge of the guide to the target. If the guide is untrained, this transfers over only part of the architectural prior of the guide. In this manner, we can investigate what kinds of priors different architectures place on untrainable networks such as fully connected networks. We demonstrate that this method overcomes the immediate overfitting of fully connected networks on vision tasks, makes plain CNNs competitive to ResNets, closes much of the gap between plain vanilla RNNs and Transformers, and can even help Transformers learn tasks which RNNs can perform more easily. We also discover evidence that better initializations of fully connected networks likely exist to avoid overfitting. Our method provides a mathematical tool to investigate priors and architectures, and in the long term, may demystify the dark art of architecture creation, even perhaps turning architectures into a continuous optimizable parameter of the network.
Distill n' Explain: explaining graph neural networks using simple surrogates
Explaining node predictions in graph neural networks (GNNs) often boils down to finding graph substructures that preserve predictions. Finding these structures usually implies back-propagating through the GNN, bonding the complexity (e.g., number of layers) of the GNN to the cost of explaining it. This naturally begs the question: Can we break this bond by explaining a simpler surrogate GNN? To answer the question, we propose Distill n' Explain (DnX). First, DnX learns a surrogate GNN via knowledge distillation. Then, DnX extracts node or edge-level explanations by solving a simple convex program. We also propose FastDnX, a faster version of DnX that leverages the linear decomposition of our surrogate model. Experiments show that DnX and FastDnX often outperform state-of-the-art GNN explainers while being orders of magnitude faster. Additionally, we support our empirical findings with theoretical results linking the quality of the surrogate model (i.e., distillation error) to the faithfulness of explanations.