Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMAPO: Advancing Multilingual Reasoning through Multilingual Alignment-as-Preference Optimization
Though reasoning abilities are considered language-agnostic, existing LLMs exhibit inconsistent reasoning abilities across different languages, e.g., reasoning in the dominant language like English is superior to other languages due to the imbalance of multilingual training data. To enhance reasoning abilities in non-dominant languages, we propose a Multilingual-Alignment-as-Preference Optimization framework (MAPO), aiming to align the reasoning processes in other languages with the dominant language. Specifically, we harness an off-the-shelf translation model for the consistency between answers in non-dominant and dominant languages, which we adopt as the preference for optimization, e.g., Direct Preference Optimization (DPO) or Proximal Policy Optimization (PPO). Experiments show that MAPO stably achieves significant improvements in the multilingual reasoning of various models on all three benchmarks (MSVAMP +16.2%, MGSM +6.1%, and MNumGLUESub +13.3%), with improved reasoning consistency across languages.
mCoT: Multilingual Instruction Tuning for Reasoning Consistency in Language Models
Large language models (LLMs) with Chain-of-thought (CoT) have recently emerged as a powerful technique for eliciting reasoning to improve various downstream tasks. As most research mainly focuses on English, with few explorations in a multilingual context, the question of how reliable this reasoning capability is in different languages is still open. To address it directly, we study multilingual reasoning consistency across multiple languages, using popular open-source LLMs. First, we compile the first large-scale multilingual math reasoning dataset, mCoT-MATH, covering eleven diverse languages. Then, we introduce multilingual CoT instruction tuning to boost reasoning capability across languages, thereby improving model consistency. While existing LLMs show substantial variation across the languages we consider, and especially low performance for lesser resourced languages, our 7B parameter model mCoT achieves impressive consistency across languages, and superior or comparable performance to close- and open-source models even of much larger sizes.
LayAlign: Enhancing Multilingual Reasoning in Large Language Models via Layer-Wise Adaptive Fusion and Alignment Strategy
Despite being pretrained on multilingual corpora, large language models (LLMs) exhibit suboptimal performance on low-resource languages. Recent approaches have leveraged multilingual encoders alongside LLMs by introducing trainable parameters connecting the two models. However, these methods typically focus on the encoder's output, overlooking valuable information from other layers. We propose \aname (\mname), a framework that integrates representations from all encoder layers, coupled with the \attaname mechanism to enable layer-wise interaction between the LLM and the multilingual encoder. Extensive experiments on multilingual reasoning tasks, along with analyses of learned representations, show that our approach consistently outperforms existing baselines.
Dictionary Insertion Prompting for Multilingual Reasoning on Multilingual Large Language Models
As current training data for Large Language Models (LLMs) are dominated by English corpus, they are English-centric and they present impressive performance on English reasoning tasks.This paper primarily studies English-centric models, but our method could be universal by using the centric language in the dictionary for non-English-centric LLMs. Yet, they usually suffer from lower performance in other languages. There are about 7,000 languages over the world, and many are low-resourced on English-centric LLMs. For the sake of people who primarily speak these languages, it is especially urgent to enable our LLMs in those languages. Model training is usually effective, but computationally expensive and requires experienced NLP practitioners. This paper presents a novel and simple yet effective method called Dictionary Insertion Prompting (DIP). When providing a non-English prompt, DIP looks up a word dictionary and inserts words' English counterparts into the prompt for LLMs. It then enables better translation into English and better English model thinking steps which leads to obviously better results. We experiment with about 200 languages from FLORES-200. Since there are no adequate datasets, we use the NLLB translator to create synthetic multilingual benchmarks from the existing 4 English reasoning benchmarks such as GSM8K and AQuA. Despite the simplicity and computationally lightweight, we surprisingly found the effectiveness of DIP on math and commonsense reasoning tasks on multiple open-source and close-source LLMs.Our dictionaries, code, and synthetic benchmarks will be open-sourced to facilitate future research.
PolyMath: Evaluating Mathematical Reasoning in Multilingual Contexts
In this paper, we introduce PolyMath, a multilingual mathematical reasoning benchmark covering 18 languages and 4 easy-to-hard difficulty levels. Our benchmark ensures difficulty comprehensiveness, language diversity, and high-quality translation, making it a highly discriminative multilingual mathematical benchmark in the era of reasoning LLMs. We conduct a comprehensive evaluation for advanced LLMs and find that even Deepseek-R1-671B and Qwen-QwQ-32B, achieve only 43.4 and 41.8 benchmark scores, with less than 30% accuracy under the highest level. From a language perspective, our benchmark reveals several key challenges of LLMs in multilingual reasoning: (1) Reasoning performance varies widely across languages for current LLMs; (2) Input-output language consistency is low in reasoning LLMs and may be correlated with performance; (3) The thinking length differs significantly by language for current LLMs. Additionally, we demonstrate that controlling the output language in the instructions has the potential to affect reasoning performance, especially for some low-resource languages, suggesting a promising direction for improving multilingual capabilities in LLMs.
Question Translation Training for Better Multilingual Reasoning
Large language models show compelling performance on reasoning tasks but they tend to perform much worse in languages other than English. This is unsurprising given that their training data largely consists of English text and instructions. A typical solution is to translate instruction data into all languages of interest, and then train on the resulting multilingual data, which is called translate-training. This approach not only incurs high cost, but also results in poorly translated data due to the non-standard formatting of mathematical chain-of-thought. In this paper, we explore the benefits of question alignment, where we train the model to translate reasoning questions into English by finetuning on X-English parallel question data. In this way we perform targeted, in-domain language alignment which makes best use of English instruction data to unlock the LLMs' multilingual reasoning abilities. Experimental results on LLaMA2-13B show that question alignment leads to consistent improvements over the translate-training approach: an average improvement of 11.3% and 16.1% accuracy across ten languages on the MGSM and MSVAMP multilingual reasoning benchmarks. The project will be available at: https://github.com/NJUNLP/QAlign.
Towards Better Understanding of Program-of-Thought Reasoning in Cross-Lingual and Multilingual Environments
Multi-step reasoning is essential for large language models (LLMs), yet multilingual performance remains challenging. While Chain-of-Thought (CoT) prompting improves reasoning, it struggles with non-English languages due to the entanglement of reasoning and execution. Program-of-Thought (PoT) prompting separates reasoning from execution, offering a promising alternative but shifting the challenge to generating programs from non-English questions. We propose a framework to evaluate PoT by separating multilingual reasoning from code execution to examine (i) the impact of fine-tuning on question-reasoning alignment and (ii) how reasoning quality affects answer correctness. Our findings demonstrate that PoT fine-tuning substantially enhances multilingual reasoning, outperforming CoT fine-tuned models. We further demonstrate a strong correlation between reasoning quality (measured through code quality) and answer accuracy, highlighting its potential as a test-time performance improvement heuristic.
Scaling Test-time Compute for Low-resource Languages: Multilingual Reasoning in LLMs
Recent advances in test-time compute scaling have enabled Large Language Models (LLMs) to tackle deep reasoning tasks by generating a chain-of-thought (CoT) that includes trial and error, backtracking, and intermediate reasoning steps before producing the final answer. However, these techniques have been applied predominantly to popular languages, such as English, leaving reasoning in low-resource languages underexplored and misaligned. In this work, we investigate the multilingual mechanism by which LLMs internally operate in a latent space biased toward their inherently dominant language. To leverage this phenomenon for low-resource languages, we train models to generate the CoT in English while outputting the final response in the target language, given input in the low-resource language. Our experiments demonstrate that this approach, named English-Pivoted CoT Training, outperforms other baselines, including training to generate both the CoT and the final response solely in the target language, with up to 28.33% improvement. Further analysis provides novel insights into the relationships between reasoning and multilinguality of LLMs, prompting for better approaches in developing multilingual large reasoning models
MindMerger: Efficient Boosting LLM Reasoning in non-English Languages
Reasoning capabilities are crucial for Large Language Models (LLMs), yet a notable gap exists between English and non-English languages. To bridge this disparity, some works fine-tune LLMs to relearn reasoning capabilities in non-English languages, while others replace non-English inputs with an external model's outputs such as English translation text to circumvent the challenge of LLM understanding non-English. Unfortunately, these methods often underutilize the built-in skilled reasoning and useful language understanding capabilities of LLMs. In order to better utilize the minds of reasoning and language understanding in LLMs, we propose a new method, namely MindMerger, which merges LLMs with the external language understanding capabilities from multilingual models to boost the multilingual reasoning performance. Furthermore, a two-step training scheme is introduced to first train to embeded the external capabilities into LLMs and then train the collaborative utilization of the external capabilities and the built-in capabilities in LLMs. Experiments on three multilingual reasoning datasets and a language understanding dataset demonstrate that MindMerger consistently outperforms all baselines, especially in low-resource languages. Without updating the parameters of LLMs, the average accuracy improved by 6.7% and 8.0% across all languages and low-resource languages on the MGSM dataset, respectively.
Language Versatilists vs. Specialists: An Empirical Revisiting on Multilingual Transfer Ability
Multilingual transfer ability, which reflects how well the models fine-tuned on one source language can be applied to other languages, has been well studied in multilingual pre-trained models (e.g., BLOOM). However, such ability has not been investigated for English-centric models (e.g., LLaMA). To fill this gap, we study the following research questions. First, does multilingual transfer ability exist in English-centric models and how does it compare with multilingual pretrained models? Second, does it only appears when English is the source language for the English-centric model? Third, how does it vary in different tasks? We take multilingual reasoning ability as our focus and conduct extensive experiments across four types of reasoning tasks. We find that the multilingual pretrained model does not always outperform an English-centric model. Furthermore, English appears to be a less suitable source language, and the choice of source language becomes less important when the English-centric model scales up. In addition, different types of tasks exhibit different multilingual transfer abilities. These findings demonstrate that English-centric models not only possess multilingual transfer ability but may even surpass the transferability of multilingual pretrained models if well-trained. By showing the strength and weaknesses, the experiments also provide valuable insights into enhancing multilingual reasoning abilities for the English-centric models.
xCoT: Cross-lingual Instruction Tuning for Cross-lingual Chain-of-Thought Reasoning
Chain-of-thought (CoT) has emerged as a powerful technique to elicit reasoning in large language models and improve a variety of downstream tasks. CoT mainly demonstrates excellent performance in English, but its usage in low-resource languages is constrained due to poor language generalization. To bridge the gap among different languages, we propose a cross-lingual instruction fine-tuning framework (xCOT) to transfer knowledge from high-resource languages to low-resource languages. Specifically, the multilingual instruction training data (xCOT-INSTRUCT) is created to encourage the semantic alignment of multiple languages. We introduce cross-lingual in-context few-shot learning (xICL)) to accelerate multilingual agreement in instruction tuning, where some fragments of source languages in examples are randomly substituted by their counterpart translations of target languages. During multilingual instruction tuning, we adopt the randomly online CoT strategy to enhance the multilingual reasoning ability of the large language model by first translating the query to another language and then answering in English. To further facilitate the language transfer, we leverage the high-resource CoT to supervise the training of low-resource languages with cross-lingual distillation. Experimental results on previous benchmarks demonstrate the superior performance of xCoT in reducing the gap among different languages, highlighting its potential to reduce the cross-lingual gap.
Language Models are Multilingual Chain-of-Thought Reasoners
We evaluate the reasoning abilities of large language models in multilingual settings. We introduce the Multilingual Grade School Math (MGSM) benchmark, by manually translating 250 grade-school math problems from the GSM8K dataset (Cobbe et al., 2021) into ten typologically diverse languages. We find that the ability to solve MGSM problems via chain-of-thought prompting emerges with increasing model scale, and that models have strikingly strong multilingual reasoning abilities, even in underrepresented languages such as Bengali and Swahili. Finally, we show that the multilingual reasoning abilities of language models extend to other tasks such as commonsense reasoning and word-in-context semantic judgment. The MGSM benchmark is publicly available at https://github.com/google-research/url-nlp.
Multilingual Pretraining Using a Large Corpus Machine-Translated from a Single Source Language
English, as a very high-resource language, enables the pretraining of high-quality large language models (LLMs). The same cannot be said for most other languages, as leading LLMs still underperform for non-English languages, likely due to a gap in the quality and diversity of the available multilingual pretraining corpora. In this work, we find that machine-translated text from a single high-quality source language can contribute significantly to the pretraining of multilingual LLMs. We translate FineWeb-Edu, a high-quality English web dataset, into French, German, and Spanish, resulting in a final 300B-token dataset, which we call TransWeb-Edu, and pretrain a 1.3B-parameter model, CuatroLLM, from scratch on this dataset. Across five non-English reasoning tasks, we show that CuatroLLM matches or outperforms state-of-the-art multilingual models trained using closed data, such as Llama3.2 and Gemma2, despite using an order of magnitude less data, such as about 6% of the tokens used for Llama3.2's training. We further demonstrate that with additional domain-specific pretraining, amounting to less than 1% of TransWeb-Edu, CuatroLLM surpasses the state of the art in multilingual reasoning. To promote reproducibility, we release our corpus, models, and training pipeline under open licenses at hf.co/britllm/CuatroLLM.
Could Thinking Multilingually Empower LLM Reasoning?
Previous work indicates that large language models exhibit a significant "English bias", i.e. they often perform better when tasks are presented in English. Interestingly, we have observed that using certain other languages in reasoning tasks can yield better performance than English. However, this phenomenon remains under-explored. In this paper, we explore the upper bound of harnessing multilingualism in reasoning tasks, suggesting that multilingual reasoning promises significantly (by nearly 10 Acc@k points) and robustly (tolerance for variations in translation quality and language choice) higher upper bounds than English-only reasoning. Besides analyzing the reason behind the upper bound and challenges in reaching it, we also find that common answer selection methods cannot achieve this upper bound, due to their limitations and biases. These insights could pave the way for future research aimed at fully harnessing the potential of multilingual reasoning in LLMs.
AdaCoT: Rethinking Cross-Lingual Factual Reasoning through Adaptive Chain-of-Thought
Large language models (LLMs) have shown impressive multilingual capabilities through pretraining on diverse corpora. While these models show strong reasoning abilities, their performance varies significantly across languages due to uneven training data distribution. Existing approaches using machine translation, and extensive multilingual pretraining and cross-lingual tuning face scalability challenges and often fail to capture nuanced reasoning processes across languages. In this paper, we introduce AdaCoT (Adaptive Chain-of-Thought), a framework that enhances multilingual reasoning by dynamically routing thought processes through intermediary "thinking languages" before generating target-language responses. AdaCoT leverages a language-agnostic core and incorporates an adaptive, reward-based mechanism for selecting optimal reasoning pathways without requiring additional pretraining. Our comprehensive evaluation across multiple benchmarks demonstrates substantial improvements in both factual reasoning quality and cross-lingual consistency, with particularly strong performance gains in low-resource language settings. The results suggest that adaptive reasoning paths can effectively bridge the performance gap between high and low-resource languages while maintaining cultural and linguistic nuances.
Cross-Lingual Consistency: A Novel Inference Framework for Advancing Reasoning in Large Language Models
Chain-of-thought (CoT) has emerged as a critical mechanism for enhancing reasoning capabilities in large language models (LLMs), with self-consistency demonstrating notable promise in boosting performance. However, inherent linguistic biases in multilingual training corpora frequently cause semantic drift and logical inconsistencies, especially in sub-10B parameter LLMs handling complex inference tasks. To overcome these constraints, we propose the Cross-Lingual Consistency (CLC) framework, an innovative inference paradigm that integrates multilingual reasoning paths through majority voting to elevate LLMs' reasoning capabilities. Empirical evaluations on the CMATH dataset reveal CLC's superiority over the conventional self-consistency method, delivering 9.5%, 6.5%, and 6.0% absolute accuracy gains for DeepSeek-Math-7B-Instruct, Qwen2.5-Math-7B-Instruct, and Gemma2-9B-Instruct respectively. Expanding CLC's linguistic scope to 11 diverse languages implies two synergistic benefits: 1) neutralizing linguistic biases in multilingual training corpora through multilingual ensemble voting, 2) escaping monolingual reasoning traps by exploring the broader multilingual solution space. This dual benefits empirically enables more globally optimal reasoning paths compared to monolingual self-consistency baselines, as evidenced by the 4.1%-18.5% accuracy gains using Gemma2-9B-Instruct on the MGSM dataset.
GLIDER: Grading LLM Interactions and Decisions using Explainable Ranking
The LLM-as-judge paradigm is increasingly being adopted for automated evaluation of model outputs. While LLM judges have shown promise on constrained evaluation tasks, closed source LLMs display critical shortcomings when deployed in real world applications due to challenges of fine grained metrics and explainability, while task specific evaluation models lack cross-domain generalization. We introduce GLIDER, a powerful 3B evaluator LLM that can score any text input and associated context on arbitrary user defined criteria. GLIDER shows higher Pearson's correlation than GPT-4o on FLASK and greatly outperforms prior evaluation models, achieving comparable performance to LLMs 17x its size. GLIDER supports fine-grained scoring, multilingual reasoning, span highlighting and was trained on 685 domains and 183 criteria. Extensive qualitative analysis shows that GLIDER scores are highly correlated with human judgments, with 91.3% human agreement. We have open-sourced GLIDER to facilitate future research.
LinguaLIFT: An Effective Two-stage Instruction Tuning Framework for Low-Resource Language Tasks
Large language models (LLMs) have demonstrated impressive multilingual understanding and reasoning capabilities, driven by extensive pre-training multilingual corpora and fine-tuning instruction data. However, a performance gap persists between high-resource and low-resource language tasks due to language imbalance in the pre-training corpus, even using more low-resource data during fine-tuning. To alleviate this issue, we propose LinguaLIFT, a two-stage instruction tuning framework for advancing low-resource language tasks. An additional language alignment layer is first integrated into the LLM to adapt a pre-trained multilingual encoder, thereby enhancing multilingual alignment through code-switched fine-tuning. The second stage fine-tunes LLM with English-only instruction data while freezing the language alignment layer, allowing LLM to transfer task-specific capabilities from English to low-resource language tasks. Additionally, we introduce the Multilingual Math World Problem (MMWP) benchmark, which spans 21 low-resource, 17 medium-resource, and 10 high-resource languages, enabling comprehensive evaluation of multilingual reasoning. Experimental results show that LinguaLIFT outperforms several competitive baselines across MMWP and other widely used benchmarks.
M4U: Evaluating Multilingual Understanding and Reasoning for Large Multimodal Models
Multilingual multimodal reasoning is a core component in achieving human-level intelligence. However, most existing benchmarks for multilingual multimodal reasoning struggle to differentiate between models of varying performance; even language models without visual capabilities can easily achieve high scores. This leaves a comprehensive evaluation of leading multilingual multimodal models largely unexplored. In this work, we introduce M4U, a novel and challenging benchmark for assessing the capability of multi-discipline multilingual multimodal understanding and reasoning. M4U contains 8,931 samples covering 64 disciplines across 16 subfields in Science, Engineering, and Healthcare in Chinese, English, and German. Using M4U, we conduct extensive evaluations of 21 leading Large Multimodal Models (LMMs) and Large Language Models (LLMs) with external tools. The evaluation results show that the state-of-the-art model, GPT-4o, achieves only 47.6% average accuracy on M4U. Additionally, we observe that the leading LMMs exhibit significant language preferences. Our in-depth analysis indicates that leading LMMs, including GPT-4o, suffer performance degradation when prompted with cross-lingual multimodal questions, such as images with key textual information in Chinese while the question is in German. We believe that M4U can serve as a crucial tool for systematically evaluating LMMs based on their multilingual multimodal reasoning capabilities and monitoring their development. The homepage, codes and data are public available.
mCSQA: Multilingual Commonsense Reasoning Dataset with Unified Creation Strategy by Language Models and Humans
It is very challenging to curate a dataset for language-specific knowledge and common sense in order to evaluate natural language understanding capabilities of language models. Due to the limitation in the availability of annotators, most current multilingual datasets are created through translation, which cannot evaluate such language-specific aspects. Therefore, we propose Multilingual CommonsenseQA (mCSQA) based on the construction process of CSQA but leveraging language models for a more efficient construction, e.g., by asking LM to generate questions/answers, refine answers and verify QAs followed by reduced human efforts for verification. Constructed dataset is a benchmark for cross-lingual language-transfer capabilities of multilingual LMs, and experimental results showed high language-transfer capabilities for questions that LMs could easily solve, but lower transfer capabilities for questions requiring deep knowledge or commonsense. This highlights the necessity of language-specific datasets for evaluation and training. Finally, our method demonstrated that multilingual LMs could create QA including language-specific knowledge, significantly reducing the dataset creation cost compared to manual creation. The datasets are available at https://huggingface.co/datasets/yusuke1997/mCSQA.
Eliciting Better Multilingual Structured Reasoning from LLMs through Code
The development of large language models (LLM) has shown progress on reasoning, though studies have largely considered either English or simple reasoning tasks. To address this, we introduce a multilingual structured reasoning and explanation dataset, termed xSTREET, that covers four tasks across six languages. xSTREET exposes a gap in base LLM performance between English and non-English reasoning tasks. We then propose two methods to remedy this gap, building on the insight that LLMs trained on code are better reasoners. First, at training time, we augment a code dataset with multilingual comments using machine translation while keeping program code as-is. Second, at inference time, we bridge the gap between training and inference by employing a prompt structure that incorporates step-by-step code primitives to derive new facts and find a solution. Our methods show improved multilingual performance on xSTREET, most notably on the scientific commonsense reasoning subtask. Furthermore, the models show no regression on non-reasoning tasks, thus demonstrating our techniques maintain general-purpose abilities.
Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations
Existing research predominantly focuses on developing powerful language learning models (LLMs) for mathematical reasoning within monolingual languages, with few explorations in preserving efficacy in a multilingual context. To bridge this gap, this paper pioneers exploring and training powerful Multilingual Math Reasoning (xMR) LLMs. Firstly, by utilizing translation, we construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages, thus addressing the issue of training data scarcity in xMR tasks. Based on the collected dataset, we propose different training strategies to build powerful xMR LLMs, named MathOctopus, notably outperform conventional open-source LLMs and exhibit superiority over ChatGPT in few-shot scenarios. Notably, MathOctopus-13B reaches 47.6% accuracy which exceeds ChatGPT 46.3% on MGSM testset. Beyond remarkable results, we unearth several pivotal observations and insights from extensive experiments: (1) When extending the rejection sampling strategy to the multilingual context, it proves effective for model performances, albeit limited. (2) Employing parallel corpora for math Supervised Fine-Tuning (SFT) across multiple languages not only significantly enhances model performance multilingually but also elevates their monolingual performance. This indicates that crafting multilingual corpora can be regarded as a vital strategy for enhancing model performance in a specific language, especially in mathematical reasoning tasks. For instance, MathOctopus-7B improves its counterparts that trained on English from 42.2% to 50.8% on GSM8K testset.
Are Rules Meant to be Broken? Understanding Multilingual Moral Reasoning as a Computational Pipeline with UniMoral
Moral reasoning is a complex cognitive process shaped by individual experiences and cultural contexts and presents unique challenges for computational analysis. While natural language processing (NLP) offers promising tools for studying this phenomenon, current research lacks cohesion, employing discordant datasets and tasks that examine isolated aspects of moral reasoning. We bridge this gap with UniMoral, a unified dataset integrating psychologically grounded and social-media-derived moral dilemmas annotated with labels for action choices, ethical principles, contributing factors, and consequences, alongside annotators' moral and cultural profiles. Recognizing the cultural relativity of moral reasoning, UniMoral spans six languages, Arabic, Chinese, English, Hindi, Russian, and Spanish, capturing diverse socio-cultural contexts. We demonstrate UniMoral's utility through a benchmark evaluations of three large language models (LLMs) across four tasks: action prediction, moral typology classification, factor attribution analysis, and consequence generation. Key findings reveal that while implicitly embedded moral contexts enhance the moral reasoning capability of LLMs, there remains a critical need for increasingly specialized approaches to further advance moral reasoning in these models.
CRUXEval-X: A Benchmark for Multilingual Code Reasoning, Understanding and Execution
Code benchmarks such as HumanEval are widely adopted to evaluate Large Language Models' (LLMs) coding capabilities. However, there is an unignorable programming language bias in existing code benchmarks -- over 95% code generation benchmarks are dominated by Python, leaving the LLMs' capabilities in other programming languages such as Java and C/C++ unknown. Moreover, coding task bias is also crucial. Most benchmarks focus on code generation capability, while benchmarks for code reasoning (given input, reasoning output; and given output, reasoning input), an essential coding capability, are insufficient. Yet, constructing multi-lingual benchmarks can be expensive and labor-intensive, and codes in contest websites such as Leetcode suffer from data contamination during training. To fill this gap, we propose CRUXEVAL-X, a multi-lingual code reasoning benchmark that contains 19 programming languages. It comprises at least 600 subjects for each language, along with 19K content-consistent tests in total. In particular, the construction pipeline of CRUXEVAL-X works in a fully automated and test-guided manner, which iteratively generates and repairs based on execution feedback. Also, to cross language barriers (e.g., dynamic/static type systems in Python/C++), we formulated various transition rules between language pairs to facilitate translation. Our intensive evaluation of 24 representative LLMs reveals the correlation between language pairs. For example, TypeScript and JavaScript show a significant positive correlation, while Racket has less correlation with other languages. More interestingly, even a model trained solely on Python can achieve at most 34.4% Pass@1 in other languages, revealing the cross-language generalization of LLMs.
Understand, Solve and Translate: Bridging the Multilingual Mathematical Reasoning Gap
Large language models (LLMs) demonstrate exceptional performance on complex reasoning tasks. However, despite their strong reasoning capabilities in high-resource languages (e.g., English and Chinese), a significant performance gap persists in other languages. To investigate this gap in Korean, we introduce HRM8K, a benchmark comprising 8,011 English-Korean parallel bilingual math problems. Through systematic analysis of model behaviors, we identify a key finding: these performance disparities stem primarily from difficulties in comprehending non-English inputs, rather than limitations in reasoning capabilities. Based on these findings, we propose UST (Understand, Solve, and Translate), a method that strategically uses English as an anchor for reasoning and solution generation. By fine-tuning the model on 130k synthetically generated data points, UST achieves a 10.91% improvement on the HRM8K benchmark and reduces the multilingual performance gap from 11.6% to 0.7%. Additionally, we show that improvements from UST generalize effectively to different Korean domains, demonstrating that capabilities acquired from machine-verifiable content can be generalized to other areas. We publicly release the benchmark, training dataset, and models.
Few-shot Learning with Multilingual Language Models
Large-scale generative language models such as GPT-3 are competitive few-shot learners. While these models are known to be able to jointly represent many different languages, their training data is dominated by English, potentially limiting their cross-lingual generalization. In this work, we train multilingual generative language models on a corpus covering a diverse set of languages, and study their few- and zero-shot learning capabilities in a wide range of tasks. Our largest model with 7.5 billion parameters sets new state of the art in few-shot learning in more than 20 representative languages, outperforming GPT-3 of comparable size in multilingual commonsense reasoning (with +7.4% absolute accuracy improvement in 0-shot settings and +9.4% in 4-shot settings) and natural language inference (+5.4% in each of 0-shot and 4-shot settings). On the FLORES-101 machine translation benchmark, our model outperforms GPT-3 on 171 out of 182 directions with 32 training examples, while surpassing the official supervised baseline in 45 directions. We conduct an in-depth analysis of different multilingual prompting approaches, showing in particular that strong few-shot learning performance across languages can be achieved via cross-lingual transfer through both templates and demonstration examples. Finally, we evaluate our models in social value tasks such as hate speech detection in five languages and find it has limitations similar to comparable sized GPT-3 models.
Enhancing Non-Core Language Instruction-Following in Speech LLMs via Semi-Implicit Cross-Lingual CoT Reasoning
Large language models have been extended to the speech domain, leading to the development of speech large language models (SLLMs). While existing SLLMs demonstrate strong performance in speech instruction-following for core languages (e.g., English), they often struggle with non-core languages due to the scarcity of paired speech-text data and limited multilingual semantic reasoning capabilities. To address this, we propose the semi-implicit Cross-lingual Speech Chain-of-Thought (XS-CoT) framework, which integrates speech-to-text translation into the reasoning process of SLLMs. The XS-CoT generates four types of tokens: instruction and response tokens in both core and non-core languages, enabling cross-lingual transfer of reasoning capabilities. To mitigate inference latency in generating target non-core response tokens, we incorporate a semi-implicit CoT scheme into XS-CoT, which progressively compresses the first three types of intermediate reasoning tokens while retaining global reasoning logic during training. By leveraging the robust reasoning capabilities of the core language, XS-CoT improves responses for non-core languages by up to 45\% in GPT-4 score when compared to direct supervised fine-tuning on two representative SLLMs, Qwen2-Audio and SALMONN. Moreover, the semi-implicit XS-CoT reduces token delay by more than 50\% with a slight drop in GPT-4 scores. Importantly, XS-CoT requires only a small amount of high-quality training data for non-core languages by leveraging the reasoning capabilities of core languages. To support training, we also develop a data pipeline and open-source speech instruction-following datasets in Japanese, German, and French.
LLM-powered Data Augmentation for Enhanced Cross-lingual Performance
This paper explores the potential of leveraging Large Language Models (LLMs) for data augmentation in multilingual commonsense reasoning datasets where the available training data is extremely limited. To achieve this, we utilise several LLMs, namely Dolly-v2, StableVicuna, ChatGPT, and GPT-4, to augment three datasets: XCOPA, XWinograd, and XStoryCloze. Subsequently, we evaluate the effectiveness of fine-tuning smaller multilingual models, mBERT and XLMR, using the synthesised data. We compare the performance of training with data generated in English and target languages, as well as translated English-generated data, revealing the overall advantages of incorporating data generated by LLMs, e.g. a notable 13.4 accuracy score improvement for the best case. Furthermore, we conduct a human evaluation by asking native speakers to assess the naturalness and logical coherence of the generated examples across different languages. The results of the evaluation indicate that LLMs such as ChatGPT and GPT-4 excel at producing natural and coherent text in most languages, however, they struggle to generate meaningful text in certain languages like Tamil. We also observe that ChatGPT falls short in generating plausible alternatives compared to the original dataset, whereas examples from GPT-4 exhibit competitive logical consistency.
PaLM 2 Technical Report
We introduce PaLM 2, a new state-of-the-art language model that has better multilingual and reasoning capabilities and is more compute-efficient than its predecessor PaLM. PaLM 2 is a Transformer-based model trained using a mixture of objectives. Through extensive evaluations on English and multilingual language, and reasoning tasks, we demonstrate that PaLM 2 has significantly improved quality on downstream tasks across different model sizes, while simultaneously exhibiting faster and more efficient inference compared to PaLM. This improved efficiency enables broader deployment while also allowing the model to respond faster, for a more natural pace of interaction. PaLM 2 demonstrates robust reasoning capabilities exemplified by large improvements over PaLM on BIG-Bench and other reasoning tasks. PaLM 2 exhibits stable performance on a suite of responsible AI evaluations, and enables inference-time control over toxicity without additional overhead or impact on other capabilities. Overall, PaLM 2 achieves state-of-the-art performance across a diverse set of tasks and capabilities. When discussing the PaLM 2 family, it is important to distinguish between pre-trained models (of various sizes), fine-tuned variants of these models, and the user-facing products that use these models. In particular, user-facing products typically include additional pre- and post-processing steps. Additionally, the underlying models may evolve over time. Therefore, one should not expect the performance of user-facing products to exactly match the results reported in this report.
Fine-tuning Large Language Models with Sequential Instructions
Large language models (LLMs) struggle to follow a sequence of instructions in a single query as they may ignore or misinterpret part of it. This impairs their performance in complex problems whose solution requires multiple intermediate steps, such as multilingual (translate then answer) and multimodal (caption then answer) tasks. We empirically verify this with open-source LLMs as large as LLaMA-2 70B and Mixtral-8x7B. Targeting the scarcity of sequential instructions in present-day data, we propose sequential instruction tuning, a simple yet effective strategy to automatically augment instruction tuning data and equip LLMs with the ability to execute multiple sequential instructions. After exploring interleaving instructions in existing datasets, such as Alpaca, with a wide range of intermediate tasks, we find that sequential instruction-tuned models consistently outperform the conventional instruction-tuned baselines in downstream tasks involving reasoning, multilingual, and multimodal abilities. To shed further light on our technique, we analyse how adversarial intermediate texts, unseen tasks, prompt verbalization, number of tasks, and prompt length affect SIT. We hope that this method will open new research avenues on instruction tuning for complex tasks.
EXAMS: A Multi-Subject High School Examinations Dataset for Cross-Lingual and Multilingual Question Answering
We propose EXAMS -- a new benchmark dataset for cross-lingual and multilingual question answering for high school examinations. We collected more than 24,000 high-quality high school exam questions in 16 languages, covering 8 language families and 24 school subjects from Natural Sciences and Social Sciences, among others. EXAMS offers a fine-grained evaluation framework across multiple languages and subjects, which allows precise analysis and comparison of various models. We perform various experiments with existing top-performing multilingual pre-trained models and we show that EXAMS offers multiple challenges that require multilingual knowledge and reasoning in multiple domains. We hope that EXAMS will enable researchers to explore challenging reasoning and knowledge transfer methods and pre-trained models for school question answering in various languages which was not possible before. The data, code, pre-trained models, and evaluation are available at https://github.com/mhardalov/exams-qa.
Goldfish: Monolingual Language Models for 350 Languages
For many low-resource languages, the only available language models are large multilingual models trained on many languages simultaneously. However, using FLORES perplexity as a metric, we find that these models perform worse than bigrams for many languages (e.g. 24% of languages in XGLM 4.5B; 43% in BLOOM 7.1B). To facilitate research that focuses on low-resource languages, we pre-train and release Goldfish, a suite of monolingual autoregressive Transformer language models up to 125M parameters for 350 languages. The Goldfish reach lower FLORES perplexities than BLOOM, XGLM, and MaLA-500 on 98 of 204 FLORES languages, despite each Goldfish model being over 10x smaller. However, the Goldfish significantly underperform larger multilingual models on reasoning benchmarks, suggesting that for low-resource languages, multilinguality primarily improves general reasoning abilities rather than basic text generation. We release models trained on 5MB (350 languages), 10MB (288 languages), 100MB (166 languages), and 1GB (83 languages) of text data where available. The Goldfish models are available as baselines, fine-tuning sources, or augmentations to existing models in low-resource NLP research, and they are further useful for crosslinguistic studies requiring maximally comparable models across languages.
Common Sense Beyond English: Evaluating and Improving Multilingual Language Models for Commonsense Reasoning
Commonsense reasoning research has so far been limited to English. We aim to evaluate and improve popular multilingual language models (ML-LMs) to help advance commonsense reasoning (CSR) beyond English. We collect the Mickey Corpus, consisting of 561k sentences in 11 different languages, which can be used for analyzing and improving ML-LMs. We propose Mickey Probe, a language-agnostic probing task for fairly evaluating the common sense of popular ML-LMs across different languages. In addition, we also create two new datasets, X-CSQA and X-CODAH, by translating their English versions to 15 other languages, so that we can evaluate popular ML-LMs for cross-lingual commonsense reasoning. To improve the performance beyond English, we propose a simple yet effective method -- multilingual contrastive pre-training (MCP). It significantly enhances sentence representations, yielding a large performance gain on both benchmarks.
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
In order to simulate human language capacity, natural language processing systems must be able to reason about the dynamics of everyday situations, including their possible causes and effects. Moreover, they should be able to generalise the acquired world knowledge to new languages, modulo cultural differences. Advances in machine reasoning and cross-lingual transfer depend on the availability of challenging evaluation benchmarks. Motivated by both demands, we introduce Cross-lingual Choice of Plausible Alternatives (XCOPA), a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages, which includes resource-poor languages like Eastern Apur\'imac Quechua and Haitian Creole. We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods based on multilingual pretraining and zero-shot fine-tuning falls short compared to translation-based transfer. Finally, we propose strategies to adapt multilingual models to out-of-sample resource-lean languages where only a small corpus or a bilingual dictionary is available, and report substantial improvements over the random baseline. The XCOPA dataset is freely available at github.com/cambridgeltl/xcopa.
SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning
We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.
Do Moral Judgment and Reasoning Capability of LLMs Change with Language? A Study using the Multilingual Defining Issues Test
This paper explores the moral judgment and moral reasoning abilities exhibited by Large Language Models (LLMs) across languages through the Defining Issues Test. It is a well known fact that moral judgment depends on the language in which the question is asked. We extend the work of beyond English, to 5 new languages (Chinese, Hindi, Russian, Spanish and Swahili), and probe three LLMs -- ChatGPT, GPT-4 and Llama2Chat-70B -- that shows substantial multilingual text processing and generation abilities. Our study shows that the moral reasoning ability for all models, as indicated by the post-conventional score, is substantially inferior for Hindi and Swahili, compared to Spanish, Russian, Chinese and English, while there is no clear trend for the performance of the latter four languages. The moral judgments too vary considerably by the language.
Breaking the Language Barrier: Improving Cross-Lingual Reasoning with Structured Self-Attention
In this work, we study whether multilingual language models (MultiLMs) can transfer logical reasoning abilities to other languages when they are fine-tuned for reasoning in a different language. We evaluate the cross-lingual reasoning abilities of MultiLMs in two schemes: (1) where the language of the context and the question remain the same in the new languages that are tested (i.e., the reasoning is still monolingual, but the model must transfer the learned reasoning ability across languages), and (2) where the language of the context and the question is different (which we term code-switched reasoning). On two logical reasoning datasets, RuleTaker and LeapOfThought, we demonstrate that although MultiLMs can transfer reasoning ability across languages in a monolingual setting, they struggle to transfer reasoning abilities in a code-switched setting. Following this observation, we propose a novel attention mechanism that uses a dedicated set of parameters to encourage cross-lingual attention in code-switched sequences, which improves the reasoning performance by up to 14% and 4% on the RuleTaker and LeapOfThought datasets, respectively.
A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity
This paper proposes a framework for quantitatively evaluating interactive LLMs such as ChatGPT using publicly available data sets. We carry out an extensive technical evaluation of ChatGPT using 23 data sets covering 8 different common NLP application tasks. We evaluate the multitask, multilingual and multi-modal aspects of ChatGPT based on these data sets and a newly designed multimodal dataset. We find that ChatGPT outperforms LLMs with zero-shot learning on most tasks and even outperforms fine-tuned models on some tasks. We find that it is better at understanding non-Latin script languages than generating them. It is able to generate multimodal content from textual prompts, via an intermediate code generation step. Moreover, we find that ChatGPT is 63.41% accurate on average in 10 different reasoning categories under logical reasoning, non-textual reasoning, and commonsense reasoning, hence making it an unreliable reasoner. It is, for example, better at deductive than inductive reasoning. ChatGPT suffers from hallucination problems like other LLMs and it generates more extrinsic hallucinations from its parametric memory as it does not have access to an external knowledge base. Finally, the interactive feature of ChatGPT enables human collaboration with the underlying LLM to improve its performance, i.e, 8% ROUGE-1 on summarization and 2% ChrF++ on machine translation, in a multi-turn "prompt engineering" fashion. We also release codebase for evaluation set extraction.
Ethical Reasoning and Moral Value Alignment of LLMs Depend on the Language we Prompt them in
Ethical reasoning is a crucial skill for Large Language Models (LLMs). However, moral values are not universal, but rather influenced by language and culture. This paper explores how three prominent LLMs -- GPT-4, ChatGPT, and Llama2-70B-Chat -- perform ethical reasoning in different languages and if their moral judgement depend on the language in which they are prompted. We extend the study of ethical reasoning of LLMs by Rao et al. (2023) to a multilingual setup following their framework of probing LLMs with ethical dilemmas and policies from three branches of normative ethics: deontology, virtue, and consequentialism. We experiment with six languages: English, Spanish, Russian, Chinese, Hindi, and Swahili. We find that GPT-4 is the most consistent and unbiased ethical reasoner across languages, while ChatGPT and Llama2-70B-Chat show significant moral value bias when we move to languages other than English. Interestingly, the nature of this bias significantly vary across languages for all LLMs, including GPT-4.
Multilingual Language Model Pretraining using Machine-translated Data
High-resource languages such as English, enables the pretraining of high-quality large language models (LLMs). The same can not be said for most other languages as LLMs still underperform for non-English languages, likely due to a gap in the quality and diversity of the available multilingual pretraining corpora. In this work, we find that machine-translated texts from a single high-quality source language can contribute significantly to the pretraining quality of multilingual LLMs. We translate FineWeb-Edu, a high-quality English web dataset, into nine languages, resulting in a 1.7-trillion-token dataset, which we call TransWebEdu and pretrain a 1.3B-parameter model, TransWebLLM, from scratch on this dataset. Across nine non-English reasoning tasks, we show that TransWebLLM matches or outperforms state-of-the-art multilingual models trained using closed data, such as Llama3.2, Qwen2.5, and Gemma, despite using an order of magnitude less data. We demonstrate that adding less than 5% of TransWebEdu as domain-specific pretraining data sets a new state-of-the-art in Arabic, Italian, Indonesian, Swahili, and Welsh understanding and commonsense reasoning tasks. To promote reproducibility, we release our corpus, models, and training pipeline under Open Source Initiative-approved licenses.
MMLU-ProX: A Multilingual Benchmark for Advanced Large Language Model Evaluation
Traditional benchmarks struggle to evaluate increasingly sophisticated language models in multilingual and culturally diverse contexts. To address this gap, we introduce MMLU-ProX, a comprehensive multilingual benchmark covering 13 typologically diverse languages with approximately 11,829 questions per language. Building on the challenging reasoning-focused design of MMLU-Pro, our framework employs a semi-automatic translation process: translations generated by state-of-the-art large language models (LLMs) are rigorously evaluated by expert annotators to ensure conceptual accuracy, terminological consistency, and cultural relevance. We comprehensively evaluate 25 state-of-the-art LLMs using 5-shot chain-of-thought (CoT) and zero-shot prompting strategies, analyzing their performance across linguistic and cultural boundaries. Our experiments reveal consistent performance degradation from high-resource languages to lower-resource ones, with the best models achieving over 70% accuracy on English but dropping to around 40% for languages like Swahili, highlighting persistent gaps in multilingual capabilities despite recent advances. MMLU-ProX is an ongoing project; we are expanding our benchmark by incorporating additional languages and evaluating more language models to provide a more comprehensive assessment of multilingual capabilities.
Do Multilingual LLMs Think In English?
Large language models (LLMs) have multilingual capabilities and can solve tasks across various languages. However, we show that current LLMs make key decisions in a representation space closest to English, regardless of their input and output languages. Exploring the internal representations with a logit lens for sentences in French, German, Dutch, and Mandarin, we show that the LLM first emits representations close to English for semantically-loaded words before translating them into the target language. We further show that activation steering in these LLMs is more effective when the steering vectors are computed in English rather than in the language of the inputs and outputs. This suggests that multilingual LLMs perform key reasoning steps in a representation that is heavily shaped by English in a way that is not transparent to system users.
SynDARin: Synthesising Datasets for Automated Reasoning in Low-Resource Languages
Question Answering (QA) datasets have been instrumental in developing and evaluating Large Language Model (LLM) capabilities. However, such datasets are scarce for languages other than English due to the cost and difficulties of collection and manual annotation. This means that producing novel models and measuring the performance of multilingual LLMs in low-resource languages is challenging. To mitigate this, we propose SynDARin, a method for generating and validating QA datasets for low-resource languages. We utilize parallel content mining to obtain human-curated paragraphs between English and the target language. We use the English data as context to generate synthetic multiple-choice (MC) question-answer pairs, which are automatically translated and further validated for quality. Combining these with their designated non-English human-curated paragraphs form the final QA dataset. The method allows to maintain the content quality, reduces the likelihood of factual errors, and circumvents the need for costly annotation. To test the method, we created a QA dataset with 1.2K samples for the Armenian language. The human evaluation shows that 98% of the generated English data maintains quality and diversity in the question types and topics, while the translation validation pipeline can filter out sim70% of data with poor quality. We use the dataset to benchmark state-of-the-art LLMs, showing their inability to achieve human accuracy with some model performances closer to random chance. This shows that the generated dataset is non-trivial and can be used to evaluate reasoning capabilities in low-resource language.
Evaluating o1-Like LLMs: Unlocking Reasoning for Translation through Comprehensive Analysis
The o1-Like LLMs are transforming AI by simulating human cognitive processes, but their performance in multilingual machine translation (MMT) remains underexplored. This study examines: (1) how o1-Like LLMs perform in MMT tasks and (2) what factors influence their translation quality. We evaluate multiple o1-Like LLMs and compare them with traditional models like ChatGPT and GPT-4o. Results show that o1-Like LLMs establish new multilingual translation benchmarks, with DeepSeek-R1 surpassing GPT-4o in contextless tasks. They demonstrate strengths in historical and cultural translation but exhibit a tendency for rambling issues in Chinese-centric outputs. Further analysis reveals three key insights: (1) High inference costs and slower processing speeds make complex translation tasks more resource-intensive. (2) Translation quality improves with model size, enhancing commonsense reasoning and cultural translation. (3) The temperature parameter significantly impacts output quality-lower temperatures yield more stable and accurate translations, while higher temperatures reduce coherence and precision.
Multilingual Large Language Models: A Systematic Survey
This paper provides a comprehensive survey of the latest research on multilingual large language models (MLLMs). MLLMs not only are able to understand and generate language across linguistic boundaries, but also represent an important advancement in artificial intelligence. We first discuss the architecture and pre-training objectives of MLLMs, highlighting the key components and methodologies that contribute to their multilingual capabilities. We then discuss the construction of multilingual pre-training and alignment datasets, underscoring the importance of data quality and diversity in enhancing MLLM performance. An important focus of this survey is on the evaluation of MLLMs. We present a detailed taxonomy and roadmap covering the assessment of MLLMs' cross-lingual knowledge, reasoning, alignment with human values, safety, interpretability and specialized applications. Specifically, we extensively discuss multilingual evaluation benchmarks and datasets, and explore the use of LLMs themselves as multilingual evaluators. To enhance MLLMs from black to white boxes, we also address the interpretability of multilingual capabilities, cross-lingual transfer and language bias within these models. Finally, we provide a comprehensive review of real-world applications of MLLMs across diverse domains, including biology, medicine, computer science, mathematics and law. We showcase how these models have driven innovation and improvements in these specialized fields while also highlighting the challenges and opportunities in deploying MLLMs within diverse language communities and application scenarios. We listed the paper related in this survey and publicly available at https://github.com/tjunlp-lab/Awesome-Multilingual-LLMs-Papers.
FAMMA: A Benchmark for Financial Domain Multilingual Multimodal Question Answering
In this paper, we introduce FAMMA, an open-source benchmark for financial multilingual multimodal question answering (QA). Our benchmark aims to evaluate the abilities of multimodal large language models (MLLMs) in answering questions that require advanced financial knowledge and sophisticated reasoning. It includes 1,758 meticulously collected question-answer pairs from university textbooks and exams, spanning 8 major subfields in finance including corporate finance, asset management, and financial engineering. Some of the QA pairs are written in Chinese or French, while a majority of them are in English. These questions are presented in a mixed format combining text and heterogeneous image types, such as charts, tables, and diagrams. We evaluate a range of state-of-the-art MLLMs on our benchmark, and our analysis shows that FAMMA poses a significant challenge for these models. Even advanced systems like GPT-4o and Claude-35-Sonnet achieve only 42\% accuracy. Additionally, the open-source Qwen2-VL lags notably behind its proprietary counterparts. Lastly, we explore GPT o1-style reasoning chains to enhance the models' reasoning capabilities, which significantly improve error correction. Our FAMMA benchmark will facilitate future research to develop expert systems in financial QA. The leaderboard is available at https://famma-bench.github.io/famma/ .
EXAMS-V: A Multi-Discipline Multilingual Multimodal Exam Benchmark for Evaluating Vision Language Models
We introduce EXAMS-V, a new challenging multi-discipline multimodal multilingual exam benchmark for evaluating vision language models. It consists of 20,932 multiple-choice questions across 20 school disciplines covering natural science, social science, and other miscellaneous studies, e.g., religion, fine arts, business, etc. EXAMS-V includes a variety of multimodal features such as text, images, tables, figures, diagrams, maps, scientific symbols, and equations. The questions come in 11 languages from 7 language families. Unlike existing benchmarks, EXAMS-V is uniquely curated by gathering school exam questions from various countries, with a variety of education systems. This distinctive approach calls for intricate reasoning across diverse languages and relies on region-specific knowledge. Solving the problems in the dataset requires advanced perception and joint reasoning over the text and the visual content of the image. Our evaluation results demonstrate that this is a challenging dataset, which is difficult even for advanced vision-text models such as GPT-4V and Gemini; this underscores the inherent complexity of the dataset and its significance as a future benchmark.
GenTranslate: Large Language Models are Generative Multilingual Speech and Machine Translators
Recent advances in large language models (LLMs) have stepped forward the development of multilingual speech and machine translation by its reduced representation errors and incorporated external knowledge. However, both translation tasks typically utilize beam search decoding and top-1 hypothesis selection for inference. These techniques struggle to fully exploit the rich information in the diverse N-best hypotheses, making them less optimal for translation tasks that require a single, high-quality output sequence. In this paper, we propose a new generative paradigm for translation tasks, namely "GenTranslate", which builds upon LLMs to generate better results from the diverse translation versions in N-best list. Leveraging the rich linguistic knowledge and strong reasoning abilities of LLMs, our new paradigm can integrate the rich information in N-best candidates to generate a higher-quality translation result. Furthermore, to support LLM finetuning, we build and release a HypoTranslate dataset that contains over 592K hypotheses-translation pairs in 11 languages. Experiments on various speech and machine translation benchmarks (e.g., FLEURS, CoVoST-2, WMT) demonstrate that our GenTranslate significantly outperforms the state-of-the-art model.
COPAL-ID: Indonesian Language Reasoning with Local Culture and Nuances
We present publicly available COPAL-ID, a novel Indonesian language common sense reasoning dataset. Unlike the previous Indonesian COPA dataset (XCOPA-ID), COPAL-ID incorporates Indonesian local and cultural nuances, and therefore, provides a more natural portrayal of day-to-day causal reasoning within the Indonesian cultural sphere. Professionally written by natives from scratch, COPAL-ID is more fluent and free from awkward phrases, unlike the translated XCOPA-ID. In addition, we present COPAL-ID in both standard Indonesian and in Jakartan Indonesian--a dialect commonly used in daily conversation. COPAL-ID poses a greater challenge for existing open-sourced and closed state-of-the-art multilingual language models, yet is trivially easy for humans. Our findings suggest that even the current best open-source, multilingual model struggles to perform well, achieving 65.47% accuracy on COPAL-ID, significantly lower than on the culturally-devoid XCOPA-ID (79.40%). Despite GPT-4's impressive score, it suffers the same performance degradation compared to its XCOPA-ID score, and it still falls short of human performance. This shows that these language models are still way behind in comprehending the local nuances of Indonesian.
Multilingual and Explainable Text Detoxification with Parallel Corpora
Even with various regulations in place across countries and social media platforms (Government of India, 2021; European Parliament and Council of the European Union, 2022, digital abusive speech remains a significant issue. One potential approach to address this challenge is automatic text detoxification, a text style transfer (TST) approach that transforms toxic language into a more neutral or non-toxic form. To date, the availability of parallel corpora for the text detoxification task (Logachevavet al., 2022; Atwell et al., 2022; Dementievavet al., 2024a) has proven to be crucial for state-of-the-art approaches. With this work, we extend parallel text detoxification corpus to new languages -- German, Chinese, Arabic, Hindi, and Amharic -- testing in the extensive multilingual setup TST baselines. Next, we conduct the first of its kind an automated, explainable analysis of the descriptive features of both toxic and non-toxic sentences, diving deeply into the nuances, similarities, and differences of toxicity and detoxification across 9 languages. Finally, based on the obtained insights, we experiment with a novel text detoxification method inspired by the Chain-of-Thoughts reasoning approach, enhancing the prompting process through clustering on relevant descriptive attributes.
The Challenge of Achieving Attributability in Multilingual Table-to-Text Generation with Question-Answer Blueprints
Multilingual Natural Language Generation (NLG) is challenging due to the lack of training data for low-resource languages. However, some low-resource languages have up to tens of millions of speakers globally, making it important to improve NLG tools for them. Table-to-Text NLG is an excellent measure of models' reasoning abilities but is very challenging in the multilingual setting. System outputs are often not attributable, or faithful, to the data in the source table. Intermediate planning techniques like Question-Answer (QA) blueprints have been shown to improve attributability on summarisation tasks. This work explores whether QA blueprints make multilingual Table-to-Text outputs more attributable to the input tables. This paper extends the challenging multilingual Table-to-Text dataset, TaTA, which includes African languages, with QA blueprints. Sequence-to-sequence language models are then finetuned on this dataset, with and without blueprints. Results show that QA blueprints improve performance for models finetuned and evaluated only on English examples, but do not demonstrate gains in the multilingual setting. This is due to inaccuracies in machine translating the blueprints from English into target languages when generating the training data, and models failing to rely closely on the blueprints they generate. An in-depth analysis is conducted on why this is challenging.
Language and Planning in Robotic Navigation: A Multilingual Evaluation of State-of-the-Art Models
Large Language Models (LLMs) such as GPT-4, trained on huge amount of datasets spanning multiple domains, exhibit significant reasoning, understanding, and planning capabilities across various tasks. This study presents the first-ever work in Arabic language integration within the Vision-and-Language Navigation (VLN) domain in robotics, an area that has been notably underexplored in existing research. We perform a comprehensive evaluation of state-of-the-art multi-lingual Small Language Models (SLMs), including GPT-4o mini, Llama 3 8B, and Phi-3 medium 14B, alongside the Arabic-centric LLM, Jais. Our approach utilizes the NavGPT framework, a pure LLM-based instruction-following navigation agent, to assess the impact of language on navigation reasoning through zero-shot sequential action prediction using the R2R dataset. Through comprehensive experiments, we demonstrate that our framework is capable of high-level planning for navigation tasks when provided with instructions in both English and Arabic. However, certain models struggled with reasoning and planning in the Arabic language due to inherent limitations in their capabilities, sub-optimal performance, and parsing issues. These findings highlight the importance of enhancing planning and reasoning capabilities in language models for effective navigation, emphasizing this as a key area for further development while also unlocking the potential of Arabic-language models for impactful real-world applications.
Multilingual Text Representation
Modern NLP breakthrough includes large multilingual models capable of performing tasks across more than 100 languages. State-of-the-art language models came a long way, starting from the simple one-hot representation of words capable of performing tasks like natural language understanding, common-sense reasoning, or question-answering, thus capturing both the syntax and semantics of texts. At the same time, language models are expanding beyond our known language boundary, even competitively performing over very low-resource dialects of endangered languages. However, there are still problems to solve to ensure an equitable representation of texts through a unified modeling space across language and speakers. In this survey, we shed light on this iterative progression of multilingual text representation and discuss the driving factors that ultimately led to the current state-of-the-art. Subsequently, we discuss how the full potential of language democratization could be obtained, reaching beyond the known limits and what is the scope of improvement in that space.
MEGA: Multilingual Evaluation of Generative AI
Generative AI models have impressive performance on many Natural Language Processing tasks such as language understanding, reasoning and language generation. One of the most important questions that is being asked by the AI community today is about the capabilities and limits of these models, and it is clear that evaluating generative AI is very challenging. Most studies on generative Large Language Models (LLMs) are restricted to English and it is unclear how capable these models are at understanding and generating other languages. We present the first comprehensive benchmarking of generative LLMs - MEGA, which evaluates models on standard NLP benchmarks, covering 8 diverse tasks and 33 typologically diverse languages. We also compare the performance of generative LLMs to State of the Art (SOTA) non-autoregressive models on these tasks to determine how well generative models perform compared to the previous generation of LLMs. We present a thorough analysis of the performance of models across languages and discuss some of the reasons why generative LLMs are currently not optimal for all languages. We create a framework for evaluating generative LLMs in the multilingual setting and provide directions for future progress in the field.
NewsEdits: A News Article Revision Dataset and a Document-Level Reasoning Challenge
News article revision histories provide clues to narrative and factual evolution in news articles. To facilitate analysis of this evolution, we present the first publicly available dataset of news revision histories, NewsEdits. Our dataset is large-scale and multilingual; it contains 1.2 million articles with 4.6 million versions from over 22 English- and French-language newspaper sources based in three countries, spanning 15 years of coverage (2006-2021). We define article-level edit actions: Addition, Deletion, Edit and Refactor, and develop a high-accuracy extraction algorithm to identify these actions. To underscore the factual nature of many edit actions, we conduct analyses showing that added and deleted sentences are more likely to contain updating events, main content and quotes than unchanged sentences. Finally, to explore whether edit actions are predictable, we introduce three novel tasks aimed at predicting actions performed during version updates. We show that these tasks are possible for expert humans but are challenging for large NLP models. We hope this can spur research in narrative framing and help provide predictive tools for journalists chasing breaking news.
Multilingual Event Linking to Wikidata
We present a task of multilingual linking of events to a knowledge base. We automatically compile a large-scale dataset for this task, comprising of 1.8M mentions across 44 languages referring to over 10.9K events from Wikidata. We propose two variants of the event linking task: 1) multilingual, where event descriptions are from the same language as the mention, and 2) crosslingual, where all event descriptions are in English. On the two proposed tasks, we compare multiple event linking systems including BM25+ (Lv and Zhai, 2011) and multilingual adaptations of the biencoder and crossencoder architectures from BLINK (Wu et al., 2020). In our experiments on the two task variants, we find both biencoder and crossencoder models significantly outperform the BM25+ baseline. Our results also indicate that the crosslingual task is in general more challenging than the multilingual task. To test the out-of-domain generalization of the proposed linking systems, we additionally create a Wikinews-based evaluation set. We present qualitative analysis highlighting various aspects captured by the proposed dataset, including the need for temporal reasoning over context and tackling diverse event descriptions across languages.
BenchMAX: A Comprehensive Multilingual Evaluation Suite for Large Language Models
Previous multilingual benchmarks focus primarily on simple understanding tasks, but for large language models(LLMs), we emphasize proficiency in instruction following, reasoning, long context understanding, code generation, and so on. However, measuring these advanced capabilities across languages is underexplored. To address the disparity, we introduce BenchMAX, a multi-way multilingual evaluation benchmark that allows for fair comparisons of these important abilities across languages. To maintain high quality, three distinct native-speaking annotators independently annotate each sample within all tasks after the data was machine-translated from English into 16 other languages. Additionally, we present a novel translation challenge stemming from dataset construction. Extensive experiments on BenchMAX reveal varying effectiveness of core capabilities across languages, highlighting performance gaps that cannot be bridged by simply scaling up model size. BenchMAX serves as a comprehensive multilingual evaluation platform, providing a promising test bed to promote the development of multilingual language models. The dataset and code are publicly accessible.
INCLUDE: Evaluating Multilingual Language Understanding with Regional Knowledge
The performance differential of large language models (LLM) between languages hinders their effective deployment in many regions, inhibiting the potential economic and societal value of generative AI tools in many communities. However, the development of functional LLMs in many languages (\ie, multilingual LLMs) is bottlenecked by the lack of high-quality evaluation resources in languages other than English. Moreover, current practices in multilingual benchmark construction often translate English resources, ignoring the regional and cultural knowledge of the environments in which multilingual systems would be used. In this work, we construct an evaluation suite of 197,243 QA pairs from local exam sources to measure the capabilities of multilingual LLMs in a variety of regional contexts. Our novel resource, INCLUDE, is a comprehensive knowledge- and reasoning-centric benchmark across 44 written languages that evaluates multilingual LLMs for performance in the actual language environments where they would be deployed.
Not All Languages Are Created Equal in LLMs: Improving Multilingual Capability by Cross-Lingual-Thought Prompting
Large language models (LLMs) demonstrate impressive multilingual capability, but their performance varies substantially across different languages. In this work, we introduce a simple yet effective method, called cross-lingual-thought prompting (XLT), to systematically improve the multilingual capability of LLMs. Specifically, XLT is a generic template prompt that stimulates cross-lingual and logical reasoning skills to enhance task performance across languages. We conduct comprehensive evaluations on 7 typical benchmarks related to reasoning, understanding, and generation tasks, covering both high-resource and low-resource languages. Experimental results show that XLT not only remarkably enhances the performance of various multilingual tasks but also significantly reduces the gap between the average performance and the best performance of each task in different languages. Notably, XLT brings over 10 points of average improvement in arithmetic reasoning and open-domain question-answering tasks.
MedExpQA: Multilingual Benchmarking of Large Language Models for Medical Question Answering
Large Language Models (LLMs) have the potential of facilitating the development of Artificial Intelligence technology to assist medical experts for interactive decision support, which has been demonstrated by their competitive performances in Medical QA. However, while impressive, the required quality bar for medical applications remains far from being achieved. Currently, LLMs remain challenged by outdated knowledge and by their tendency to generate hallucinated content. Furthermore, most benchmarks to assess medical knowledge lack reference gold explanations which means that it is not possible to evaluate the reasoning of LLMs predictions. Finally, the situation is particularly grim if we consider benchmarking LLMs for languages other than English which remains, as far as we know, a totally neglected topic. In order to address these shortcomings, in this paper we present MedExpQA, the first multilingual benchmark based on medical exams to evaluate LLMs in Medical Question Answering. To the best of our knowledge, MedExpQA includes for the first time reference gold explanations written by medical doctors which can be leveraged to establish various gold-based upper-bounds for comparison with LLMs performance. Comprehensive multilingual experimentation using both the gold reference explanations and Retrieval Augmented Generation (RAG) approaches show that performance of LLMs still has large room for improvement, especially for languages other than English. Furthermore, and despite using state-of-the-art RAG methods, our results also demonstrate the difficulty of obtaining and integrating readily available medical knowledge that may positively impact results on downstream evaluations for Medical Question Answering. So far the benchmark is available in four languages, but we hope that this work may encourage further development to other languages.
XCOMPS: A Multilingual Benchmark of Conceptual Minimal Pairs
We introduce XCOMPS in this work, a multilingual conceptual minimal pair dataset covering 17 languages. Using this dataset, we evaluate LLMs' multilingual conceptual understanding through metalinguistic prompting, direct probability measurement, and neurolinguistic probing. By comparing base, instruction-tuned, and knowledge-distilled models, we find that: 1) LLMs exhibit weaker conceptual understanding for low-resource languages, and accuracy varies across languages despite being tested on the same concept sets. 2) LLMs excel at distinguishing concept-property pairs that are visibly different but exhibit a marked performance drop when negative pairs share subtle semantic similarities. 3) Instruction tuning improves performance in concept understanding but does not enhance internal competence; knowledge distillation can enhance internal competence in conceptual understanding for low-resource languages with limited gains in explicit task performance. 4) More morphologically complex languages yield lower concept understanding scores and require deeper layers for conceptual reasoning.
SeaLLMs 3: Open Foundation and Chat Multilingual Large Language Models for Southeast Asian Languages
Large Language Models (LLMs) have shown remarkable abilities across various tasks, yet their development has predominantly centered on high-resource languages like English and Chinese, leaving low-resource languages underserved. To address this disparity, we present SeaLLMs 3, the latest iteration of the SeaLLMs model family, tailored for Southeast Asian languages. This region, characterized by its rich linguistic diversity, has lacked adequate language technology support. SeaLLMs 3 aims to bridge this gap by covering a comprehensive range of languages spoken in this region, including English, Chinese, Indonesian, Vietnamese, Thai, Tagalog, Malay, Burmese, Khmer, Lao, Tamil, and Javanese. Leveraging efficient language enhancement techniques and a specially constructed instruction tuning dataset, SeaLLMs 3 significantly reduces training costs while maintaining high performance and versatility. Our model excels in tasks such as world knowledge, mathematical reasoning, translation, and instruction following, achieving state-of-the-art performance among similarly sized models. Additionally, we prioritized safety and reliability by addressing both general and culture-specific considerations and incorporated mechanisms to reduce hallucinations. This work underscores the importance of inclusive AI, showing that advanced LLM capabilities can benefit underserved linguistic and cultural communities.
SUTRA: Scalable Multilingual Language Model Architecture
In this paper, we introduce SUTRA, multilingual Large Language Model architecture capable of understanding, reasoning, and generating text in over 50 languages. SUTRA's design uniquely decouples core conceptual understanding from language-specific processing, which facilitates scalable and efficient multilingual alignment and learning. Employing a Mixture of Experts framework both in language and concept processing, SUTRA demonstrates both computational efficiency and responsiveness. Through extensive evaluations, SUTRA is demonstrated to surpass existing models like GPT-3.5, Llama2 by 20-30% on leading Massive Multitask Language Understanding (MMLU) benchmarks for multilingual tasks. SUTRA models are also online LLMs that can use knowledge from the internet to provide hallucination-free, factual and up-to-date responses while retaining their multilingual capabilities. Furthermore, we explore the broader implications of its architecture for the future of multilingual AI, highlighting its potential to democratize access to AI technology globally and to improve the equity and utility of AI in regions with predominantly non-English languages. Our findings suggest that SUTRA not only fills pivotal gaps in multilingual model capabilities but also establishes a new benchmark for operational efficiency and scalability in AI applications.
Linguistic Generalizability of Test-Time Scaling in Mathematical Reasoning
Scaling pre-training compute has proven effective for achieving mulitlinguality, but does the same hold for test-time scaling? In this work, we introduce MCLM, a multilingual math benchmark featuring competition-level problems in 55 languages. We test three test-time scaling methods-Outcome Reward Modeling (ORM), Process Reward Modeling (ORM), and Budget Forcing (BF)-on both Qwen2.5-1.5B Math and MR1-1.5B, a multilingual LLM we trained for extended reasoning. Our experiments show that using Qwen2.5-1.5B Math with ORM achieves a score of 35.8 on MCLM, while BF on MR1-1.5B attains 35.2. Although "thinking LLMs" have recently garnered significant attention, we find that their performance is comparable to traditional scaling methods like best-of-N once constrained to similar levels of inference FLOPs. Moreover, while BF yields a 20-point improvement on English AIME, it provides only a 1.94-point average gain across other languages-a pattern consistent across the other test-time scaling methods we studied-higlighting that test-time scaling may not generalize as effectively to multilingual tasks. To foster further research, we release MCLM, MR1-1.5B, and evaluation results.
New Trends for Modern Machine Translation with Large Reasoning Models
Recent advances in Large Reasoning Models (LRMs), particularly those leveraging Chain-of-Thought reasoning (CoT), have opened brand new possibility for Machine Translation (MT). This position paper argues that LRMs substantially transformed traditional neural MT as well as LLMs-based MT paradigms by reframing translation as a dynamic reasoning task that requires contextual, cultural, and linguistic understanding and reasoning. We identify three foundational shifts: 1) contextual coherence, where LRMs resolve ambiguities and preserve discourse structure through explicit reasoning over cross-sentence and complex context or even lack of context; 2) cultural intentionality, enabling models to adapt outputs by inferring speaker intent, audience expectations, and socio-linguistic norms; 3) self-reflection, LRMs can perform self-reflection during the inference time to correct the potential errors in translation especially extremely noisy cases, showing better robustness compared to simply mapping X->Y translation. We explore various scenarios in translation including stylized translation, document-level translation and multimodal translation by showcasing empirical examples that demonstrate the superiority of LRMs in translation. We also identify several interesting phenomenons for LRMs for MT including auto-pivot translation as well as the critical challenges such as over-localisation in translation and inference efficiency. In conclusion, we think that LRMs redefine translation systems not merely as text converters but as multilingual cognitive agents capable of reasoning about meaning beyond the text. This paradigm shift reminds us to think of problems in translation beyond traditional translation scenarios in a much broader context with LRMs - what we can achieve on top of it.
RoMath: A Mathematical Reasoning Benchmark in Romanian
Mathematics has long been conveyed through natural language, primarily for human understanding. With the rise of mechanized mathematics and proof assistants, there is a growing need to understand informal mathematical text, yet most existing benchmarks focus solely on English, overlooking other languages. This paper introduces RoMath, a Romanian mathematical reasoning benchmark suite comprising three datasets: RoMath-Baccalaureate, RoMath-Competitions and RoMath-Synthetic, which cover a range of mathematical domains and difficulty levels, aiming to improve non-English language models and promote multilingual AI development. By focusing on Romanian, a low-resource language with unique linguistic features, RoMath addresses the limitations of Anglo-centric models and emphasizes the need for dedicated resources beyond simple automatic translation. We benchmark several open-weight language models, highlighting the importance of creating resources for underrepresented languages. We make the code and dataset available.
GreenMind: A Next-Generation Vietnamese Large Language Model for Structured and Logical Reasoning
Chain-of-Thought (CoT) is a robust approach for tackling LLM tasks that require intermediate reasoning steps prior to generating a final answer. In this paper, we present GreenMind-Medium-14B-R1, the Vietnamese reasoning model inspired by the finetuning strategy based on Group Relative Policy Optimization. We also leverage a high-quality Vietnamese synthesized reasoning dataset and design two reward functions to tackle the main limitations of this technique: (i) language mixing, where we explicitly detect the presence of biased language characters during the process of sampling tokens, and (ii) we leverage Sentence Transformer-based models to ensure that the generated reasoning content maintains factual correctness and does not distort the final output. Experimental results on the Vietnamese dataset from the VLSP 2023 Challenge demonstrate that our model outperforms prior works and enhances linguistic consistency in its responses. Furthermore, we extend our evaluation to SeaExam-a multilingual multiple-choice dataset, showing the effectiveness of our reasoning method compared to few-shot prompting techniques.
Extracting and Emulsifying Cultural Explanation to Improve Multilingual Capability of LLMs
Large Language Models (LLMs) have achieved remarkable success, but their English-centric training data limits performance in non-English languages, highlighting the need for enhancements in their multilingual capabilities. While some work on multilingual prompting methods handles non-English queries by utilizing English translations or restructuring them to more closely align with LLM reasoning patterns, these works often overlook the importance of cultural context, limiting their effectiveness. To address this limitation, we propose EMCEI, a simple yet effective approach that improves LLMs' multilingual capabilities by incorporating cultural context for more accurate and appropriate responses. Specifically, EMCEI follows a two-step process that first extracts relevant cultural context from the LLM's parametric knowledge via prompting. Then, EMCEI employs an LLM-as-Judge mechanism to select the most appropriate response by balancing cultural relevance and reasoning ability. Experiments on diverse multilingual benchmarks show that EMCEI outperforms existing baselines, demonstrating its effectiveness in handling multilingual queries with LLMs.
Multi-ToM: Evaluating Multilingual Theory of Mind Capabilities in Large Language Models
Theory of Mind (ToM) refers to the cognitive ability to infer and attribute mental states to oneself and others. As large language models (LLMs) are increasingly evaluated for social and cognitive capabilities, it remains unclear to what extent these models demonstrate ToM across diverse languages and cultural contexts. In this paper, we introduce a comprehensive study of multilingual ToM capabilities aimed at addressing this gap. Our approach includes two key components: (1) We translate existing ToM datasets into multiple languages, effectively creating a multilingual ToM dataset and (2) We enrich these translations with culturally specific elements to reflect the social and cognitive scenarios relevant to diverse populations. We conduct extensive evaluations of six state-of-the-art LLMs to measure their ToM performance across both the translated and culturally adapted datasets. The results highlight the influence of linguistic and cultural diversity on the models' ability to exhibit ToM, and questions their social reasoning capabilities. This work lays the groundwork for future research into enhancing LLMs' cross-cultural social cognition and contributes to the development of more culturally aware and socially intelligent AI systems. All our data and code are publicly available.
sPhinX: Sample Efficient Multilingual Instruction Fine-Tuning Through N-shot Guided Prompting
Despite the remarkable success of LLMs in English, there is a significant gap in performance in non-English languages. In order to address this, we introduce a novel recipe for creating a multilingual synthetic instruction tuning dataset, sPhinX, which is created by selectively translating instruction response pairs from English into 50 languages. We test the effectiveness of sPhinX by using it to fine-tune two state-of-the-art models, Phi-3-small and Mistral-7B and then evaluating them across a comprehensive suite of multilingual benchmarks that test reasoning, question answering, and reading comprehension. Our results show that Phi-3-small and Mistral-7B fine-tuned with sPhinX perform better on an average by 4.2%pt and 5%pt respectively as compared to the baselines. We also devise a strategy to incorporate N-shot examples in each fine-tuning sample which further boosts the performance of these models by 3%pt and 10%pt respectively. Additionally, sPhinX also outperforms other multilingual instruction tuning datasets on the same benchmarks along with being sample efficient and diverse, thereby reducing dataset creation costs. Additionally, instruction tuning with sPhinX does not lead to regression on most standard LLM benchmarks.
OMGEval: An Open Multilingual Generative Evaluation Benchmark for Large Language Models
Modern large language models (LLMs) should generally benefit individuals from various cultural backgrounds around the world. However, most recent advanced generative evaluation benchmarks tailed for LLMs mainly focus on English. To this end, we introduce OMGEval, the first Open-source Multilingual Generative test set that can assess the capability of LLMs in different languages. For each language, OMGEval provides 804 open-ended questions, covering a wide range of important capabilities of LLMs, such as general knowledge, logical reasoning, and so on. Each question is rigorously verified by human annotators. Notably, to sufficiently reflect the compatibility of LLMs in different cultural backgrounds, we perform localization for each non-English language. Specifically, the current version of OMGEval includes 5 languages (i.e., Zh, Ru, Fr, Es, Ar). Following AlpacaEval, we employ GPT-4 as the adjudicator to automatically score different model outputs, which is shown closely related to human evaluation. We evaluate several representative multilingual LLMs on the proposed OMGEval, which we believe will provide a valuable reference for the community to further understand and improve the multilingual capability of LLMs. OMGEval is available at https://github.com/blcuicall/OMGEval.
Evaluation of Multilingual Image Captioning: How far can we get with CLIP models?
The evaluation of image captions, looking at both linguistic fluency and semantic correspondence to visual contents, has witnessed a significant effort. Still, despite advancements such as the CLIPScore metric, multilingual captioning evaluation has remained relatively unexplored. This work presents several strategies, and extensive experiments, related to evaluating CLIPScore variants in multilingual settings. To address the lack of multilingual test data, we consider two different strategies: (1) using quality aware machine-translated datasets with human judgements, and (2) re-purposing multilingual datasets that target semantic inference and reasoning. Our results highlight the potential of finetuned multilingual models to generalize across languages and to handle complex linguistic challenges. Tests with machine-translated data show that multilingual CLIPScore models can maintain a high correlation with human judgements across different languages, and additional tests with natively multilingual and multicultural data further attest to the high-quality assessments.
P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs
Recent advancements in large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning. Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks. To alleviate this drawback, we aim to present a comprehensive multilingual multitask benchmark. First, we present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks, i.e., their ability to differentiate between models being evaluated. Leveraging this pipeline, we introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets. Furthermore, P-MMEval delivers consistent language coverage across various datasets and provides parallel samples. Finally, we conduct extensive experiments on representative multilingual model series to compare performances across models, analyze dataset effectiveness, examine prompt impacts on model performances, and explore the relationship between multilingual performances and factors such as tasks, model sizes, and languages. These insights offer valuable guidance for future research. The dataset is available at https://huggingface.co/datasets/Qwen/P-MMEval.
M-RewardBench: Evaluating Reward Models in Multilingual Settings
Reward models (RMs) have driven the state-of-the-art performance of LLMs today by enabling the integration of human feedback into the language modeling process. However, RMs are primarily trained and evaluated in English, and their capabilities in multilingual settings remain largely understudied. In this work, we conduct a systematic evaluation of several reward models in multilingual settings. We first construct the first-of-its-kind multilingual RM evaluation benchmark, M-RewardBench, consisting of 2.87k preference instances for 23 typologically diverse languages, that tests the chat, safety, reasoning, and translation capabilities of RMs. We then rigorously evaluate a wide range of reward models on M-RewardBench, offering fresh insights into their performance across diverse languages. We identify a significant gap in RMs' performances between English and non-English languages and show that RM preferences can change substantially from one language to another. We also present several findings on how different multilingual aspects impact RM performance. Specifically, we show that the performance of RMs is improved with improved translation quality. Similarly, we demonstrate that the models exhibit better performance for high-resource languages. We release M-RewardBench dataset and the codebase in this study to facilitate a better understanding of RM evaluation in multilingual settings.
Pensez: Less Data, Better Reasoning -- Rethinking French LLM
Large language models (LLMs) have demonstrated remarkable capabilities in various natural language processing tasks. However, achieving strong performance in specialized domains like mathematical reasoning and non-English languages often requires extensive training on massive datasets. This paper investigates a contrasting approach: strategic fine-tuning on a small, high-quality, bilingual (English-French) dataset to enhance both the reasoning capabilities and French language proficiency of a large language model. Rather than relying on scale, we explore the hypothesis that targeted data curation and optimized training can achieve competitive, or even superior, performance. We demonstrate, through targeted supervised fine-tuning (SFT) on only 2,000 carefully selected samples, significant improvements in mathematical reasoning. Specifically, Pensez 7B exhibits an increase in accuracy of the base model up to 20% on the AIME25 and a 12% increase on a French MATH level 5 benchmark. These results challenge the prevailing assumption that massive datasets are aprerequisite for strong reasoning performance in LLMs, highlighting the potential of strategic data curation and optimized fine-tuning for enhancing both specialized skills and multilingual capabilities. Our findings have implications for the efficient development of high-performing, multilingual LLMs, especially in resource-constrained scenarios.
A Post-trainer's Guide to Multilingual Training Data: Uncovering Cross-lingual Transfer Dynamics
In order for large language models to be useful across the globe, they are fine-tuned to follow instructions on multilingual data. Despite the ubiquity of such post-training, a clear understanding of the dynamics that enable cross-lingual transfer remains elusive. This study examines cross-lingual transfer (CLT) dynamics in realistic post-training settings. We study two model families of up to 35B parameters in size trained on carefully controlled mixtures of multilingual data on three generative tasks with varying levels of complexity (summarization, instruction following, and mathematical reasoning) in both single-task and multi-task instruction tuning settings. Overall, we find that the dynamics of cross-lingual transfer and multilingual performance cannot be explained by isolated variables, varying depending on the combination of post-training settings. Finally, we identify the conditions that lead to effective cross-lingual transfer in practice.
How Does Quantization Affect Multilingual LLMs?
Quantization techniques are widely used to improve inference speed and deployment of large language models. While a wide body of work examines the impact of quantized LLMs on English tasks, none have examined the effect of quantization across languages. We conduct a thorough analysis of quantized multilingual LLMs, focusing on their performance across languages and at varying scales. We use automatic benchmarks, LLM-as-a-Judge methods, and human evaluation, finding that (1) harmful effects of quantization are apparent in human evaluation, and automatic metrics severely underestimate the detriment: a 1.7% average drop in Japanese across automatic tasks corresponds to a 16.0% drop reported by human evaluators on realistic prompts; (2) languages are disparately affected by quantization, with non-Latin script languages impacted worst; and (3) challenging tasks such as mathematical reasoning degrade fastest. As the ability to serve low-compute models is critical for wide global adoption of NLP technologies, our results urge consideration of multilingual performance as a key evaluation criterion for efficient models.
When 'YES' Meets 'BUT': Can Large Models Comprehend Contradictory Humor Through Comparative Reasoning?
Understanding humor-particularly when it involves complex, contradictory narratives that require comparative reasoning-remains a significant challenge for large vision-language models (VLMs). This limitation hinders AI's ability to engage in human-like reasoning and cultural expression. In this paper, we investigate this challenge through an in-depth analysis of comics that juxtapose panels to create humor through contradictions. We introduce the YesBut (V2), a novel benchmark with 1,262 comic images from diverse multilingual and multicultural contexts, featuring comprehensive annotations that capture various aspects of narrative understanding. Using this benchmark, we systematically evaluate a wide range of VLMs through four complementary tasks spanning from surface content comprehension to deep narrative reasoning, with particular emphasis on comparative reasoning between contradictory elements. Our extensive experiments reveal that even the most advanced models significantly underperform compared to humans, with common failures in visual perception, key element identification, comparative analysis and hallucinations. We further investigate text-based training strategies and social knowledge augmentation methods to enhance model performance. Our findings not only highlight critical weaknesses in VLMs' understanding of cultural and creative expressions but also provide pathways toward developing context-aware models capable of deeper narrative understanding though comparative reasoning.
Language Imbalance Driven Rewarding for Multilingual Self-improving
Large Language Models (LLMs) have achieved state-of-the-art performance across numerous tasks. However, these advancements have predominantly benefited "first-class" languages such as English and Chinese, leaving many other languages underrepresented. This imbalance, while limiting broader applications, generates a natural preference ranking between languages, offering an opportunity to bootstrap the multilingual capabilities of LLM in a self-improving manner. Thus, we propose Language Imbalance Driven Rewarding, where the inherent imbalance between dominant and non-dominant languages within LLMs is leveraged as a reward signal. Iterative DPO training demonstrates that this approach not only enhances LLM performance in non-dominant languages but also improves the dominant language's capacity, thereby yielding an iterative reward signal. Fine-tuning Meta-Llama-3-8B-Instruct over two iterations of this approach results in continuous improvements in multilingual performance across instruction-following and arithmetic reasoning tasks, evidenced by an average improvement of 7.46% win rate on the X-AlpacaEval leaderboard and 13.9% accuracy on the MGSM benchmark. This work serves as an initial exploration, paving the way for multilingual self-improvement of LLMs.
BiPaR: A Bilingual Parallel Dataset for Multilingual and Cross-lingual Reading Comprehension on Novels
This paper presents BiPaR, a bilingual parallel novel-style machine reading comprehension (MRC) dataset, developed to support multilingual and cross-lingual reading comprehension. The biggest difference between BiPaR and existing reading comprehension datasets is that each triple (Passage, Question, Answer) in BiPaR is written parallelly in two languages. We collect 3,667 bilingual parallel paragraphs from Chinese and English novels, from which we construct 14,668 parallel question-answer pairs via crowdsourced workers following a strict quality control procedure. We analyze BiPaR in depth and find that BiPaR offers good diversification in prefixes of questions, answer types and relationships between questions and passages. We also observe that answering questions of novels requires reading comprehension skills of coreference resolution, multi-sentence reasoning, and understanding of implicit causality, etc. With BiPaR, we build monolingual, multilingual, and cross-lingual MRC baseline models. Even for the relatively simple monolingual MRC on this dataset, experiments show that a strong BERT baseline is over 30 points behind human in terms of both EM and F1 score, indicating that BiPaR provides a challenging testbed for monolingual, multilingual and cross-lingual MRC on novels. The dataset is available at https://multinlp.github.io/BiPaR/.
R1-T1: Fully Incentivizing Translation Capability in LLMs via Reasoning Learning
Despite recent breakthroughs in reasoning-enhanced large language models (LLMs) like DeepSeek-R1, incorporating inference-time reasoning into machine translation (MT), where human translators naturally employ structured, multi-layered reasoning chain-of-thoughts (CoTs), is yet underexplored. Existing methods either design a fixed CoT tailored for a specific MT sub-task (e.g., literature translation), or rely on synthesizing CoTs unaligned with humans and supervised fine-tuning (SFT) prone to catastrophic forgetting, limiting their adaptability to diverse translation scenarios. This paper introduces R1-Translator (R1-T1), a novel framework to achieve inference-time reasoning for general MT via reinforcement learning (RL) with human-aligned CoTs comprising six common patterns. Our approach pioneers three innovations: (1) extending reasoning-based translation beyond MT sub-tasks to six languages and diverse tasks (e.g., legal/medical domain adaptation, idiom resolution); (2) formalizing six expert-curated CoT templates that mirror hybrid human strategies like context-aware paraphrasing and back translation; and (3) enabling self-evolving CoT discovery and anti-forgetting adaptation through RL with KL-constrained rewards. Experimental results indicate a steady translation performance improvement in 21 languages and 80 translation directions on Flores-101 test set, especially on the 15 languages unseen from training, with its general multilingual abilities preserved compared with plain SFT.
Browsing Lost Unformed Recollections: A Benchmark for Tip-of-the-Tongue Search and Reasoning
We introduce Browsing Lost Unformed Recollections, a tip-of-the-tongue known-item search and reasoning benchmark for general AI assistants. BLUR introduces a set of 573 real-world validated questions that demand searching and reasoning across multi-modal and multilingual inputs, as well as proficient tool use, in order to excel on. Humans easily ace these questions (scoring on average 98%), while the best-performing system scores around 56%. To facilitate progress toward addressing this challenging and aspirational use case for general AI assistants, we release 350 questions through a public leaderboard, retain the answers to 250 of them, and have the rest as a private test set.
It's All in the Heads: Using Attention Heads as a Baseline for Cross-Lingual Transfer in Commonsense Reasoning
Commonsense reasoning is one of the key problems in natural language processing, but the relative scarcity of labeled data holds back the progress for languages other than English. Pretrained cross-lingual models are a source of powerful language-agnostic representations, yet their inherent reasoning capabilities are still actively studied. In this work, we design a simple approach to commonsense reasoning which trains a linear classifier with weights of multi-head attention as features. To evaluate this approach, we create a multilingual Winograd Schema corpus by processing several datasets from prior work within a standardized pipeline and measure cross-lingual generalization ability in terms of out-of-sample performance. The method performs competitively with recent supervised and unsupervised approaches for commonsense reasoning, even when applied to other languages in a zero-shot manner. Also, we demonstrate that most of the performance is given by the same small subset of attention heads for all studied languages, which provides evidence of universal reasoning capabilities in multilingual encoders.
Why We Build Local Large Language Models: An Observational Analysis from 35 Japanese and Multilingual LLMs
Why do we build local large language models (LLMs)? What should a local LLM learn from the target language? Which abilities can be transferred from other languages? Do language-specific scaling laws exist? To explore these research questions, we evaluated 35 Japanese, English, and multilingual LLMs on 19 evaluation benchmarks for Japanese and English, taking Japanese as a local language. Adopting an observational approach, we analyzed correlations of benchmark scores, and conducted principal component analysis (PCA) on the scores to derive ability factors of local LLMs. We found that training on English text can improve the scores of academic subjects in Japanese (JMMLU). In addition, it is unnecessary to specifically train on Japanese text to enhance abilities for solving Japanese code generation, arithmetic reasoning, commonsense, and reading comprehension tasks. In contrast, training on Japanese text could improve question-answering tasks about Japanese knowledge and English-Japanese translation, which indicates that abilities for solving these two tasks can be regarded as Japanese abilities for LLMs. Furthermore, we confirmed that the Japanese abilities scale with the computational budget for Japanese text.
Why Should This Article Be Deleted? Transparent Stance Detection in Multilingual Wikipedia Editor Discussions
The moderation of content on online platforms is usually non-transparent. On Wikipedia, however, this discussion is carried out publicly and the editors are encouraged to use the content moderation policies as explanations for making moderation decisions. Currently, only a few comments explicitly mention those policies -- 20% of the English ones, but as few as 2% of the German and Turkish comments. To aid in this process of understanding how content is moderated, we construct a novel multilingual dataset of Wikipedia editor discussions along with their reasoning in three languages. The dataset contains the stances of the editors (keep, delete, merge, comment), along with the stated reason, and a content moderation policy, for each edit decision. We demonstrate that stance and corresponding reason (policy) can be predicted jointly with a high degree of accuracy, adding transparency to the decision-making process. We release both our joint prediction models and the multilingual content moderation dataset for further research on automated transparent content moderation.
Enhancing Function-Calling Capabilities in LLMs: Strategies for Prompt Formats, Data Integration, and Multilingual Translation
Large language models (LLMs) have significantly advanced autonomous agents, particularly in zero-shot tool usage, also known as function calling. This research delves into enhancing the function-calling capabilities of LLMs by exploring different approaches, including prompt formats for integrating function descriptions, blending function-calling and instruction-following data, introducing a novel Decision Token for conditional prompts, leveraging chain-of-thought reasoning, and overcoming multilingual challenges with a translation pipeline. Our key findings and contributions are as follows: (1) Instruction-following data improves both function-calling accuracy and relevance detection. (2) The use of the newly proposed Decision Token, combined with synthetic non-function-call data, enhances relevance detection. (3) A tailored translation pipeline effectively overcomes multilingual limitations, demonstrating significant improvements in Traditional Chinese. These insights highlight the potential for improved function-calling capabilities and multilingual applications in LLMs.
Empowering Multi-step Reasoning across Languages via Tree-of-Thoughts
Chain-of-Thought (CoT) prompting empowers the reasoning abilities of Large Language Models (LLMs), eliciting them to solve complex reasoning tasks step-by-step. However, with the success of CoT methods, the ability to deliver multi-step reasoning remains limited to English due to the imbalance in the distribution of the pre-training data, making the other languages a barrier. In this work, we propose a Cross-lingual multi-step reasoning approach, aiming to align reasoning processes across different languages. In particular, our method, through a Self-consistent Cross-lingual prompting mechanism inspired by the Tree-of-Thoughts approach, delivers multi-step reasoning paths in different languages that, during the steps, lead to the final solution. Our experimental evaluations show that our method significantly outperforms existing prompting methods, reducing the number of interactions and achieving state-of-the-art performance.
Scaling Synthetic Logical Reasoning Datasets with Context-Sensitive Declarative Grammars
Logical reasoning remains a challenge for natural language processing, but it can be improved by training language models to mimic theorem provers on procedurally generated problems. Previous work used domain-specific proof generation algorithms, which biases reasoning toward specific proof traces and limits auditability and extensibility. We present a simpler and more general declarative framework with flexible context-sensitive rules binding multiple languages (specifically, simplified English and the TPTP theorem-proving language). We construct first-order logic problems by selecting up to 32 premises and one hypothesis. We demonstrate that using semantic constraints during generation and careful English verbalization of predicates enhances logical reasoning without hurting natural English tasks. We use relatively small DeBERTa-v3 models to achieve state-of-the-art accuracy on the FOLIO human-authored logic dataset, surpassing GPT-4 in accuracy with or without an external solver by 12%.
HEAD-QA: A Healthcare Dataset for Complex Reasoning
We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.
PALO: A Polyglot Large Multimodal Model for 5B People
In pursuit of more inclusive Vision-Language Models (VLMs), this study introduces a Large Multilingual Multimodal Model called Palo. Palo offers visual reasoning capabilities in 10 major languages, including English, Chinese, Hindi, Spanish, French, Arabic, Bengali, Russian, Urdu, and Japanese, that span a total of sim5B people (65\% of the world population). Our approach involves a semi-automated translation approach to adapt the multimodal instruction dataset from English to the target languages using a fine-tuned Large Language Model, thereby ensuring high linguistic fidelity while allowing scalability due to minimal manual effort. The incorporation of diverse instruction sets helps us boost overall performance across multiple languages especially those that are underrepresented like Hindi, Arabic, Bengali, and Urdu. The resulting models are trained across three scales (1.7B, 7B and 13B parameters) to show the generalization and scalability where we observe substantial improvements compared to strong baselines. We also propose the first multilingual multimodal benchmark for the forthcoming approaches to evaluate their vision-language reasoning capabilities across languages. Code: https://github.com/mbzuai-oryx/PALO.
MERaLiON-AudioLLM: Technical Report
We introduce MERaLiON-AudioLLM (Multimodal Empathetic Reasoning and Learning in One Network), the first speech-text model tailored for Singapore's multilingual and multicultural landscape. Developed under the National Large Language Models Funding Initiative, Singapore, MERaLiON-AudioLLM integrates advanced speech and text processing to address the diverse linguistic nuances of local accents and dialects, enhancing accessibility and usability in complex, multilingual environments. Our results demonstrate improvements in both speech recognition and task-specific understanding, positioning MERaLiON-AudioLLM as a pioneering solution for region specific AI applications. We envision this release to set a precedent for future models designed to address localised linguistic and cultural contexts in a global framework.
JAILJUDGE: A Comprehensive Jailbreak Judge Benchmark with Multi-Agent Enhanced Explanation Evaluation Framework
Despite advancements in enhancing LLM safety against jailbreak attacks, evaluating LLM defenses remains a challenge, with current methods often lacking explainability and generalization to complex scenarios, leading to incomplete assessments (e.g., direct judgment without reasoning, low F1 score of GPT-4 in complex cases, bias in multilingual scenarios). To address this, we present JAILJUDGE, a comprehensive benchmark featuring diverse risk scenarios, including synthetic, adversarial, in-the-wild, and multilingual prompts, along with high-quality human-annotated datasets. The JAILJUDGE dataset includes over 35k+ instruction-tune data with reasoning explainability and JAILJUDGETEST, a 4.5k+ labeled set for risk scenarios, and a 6k+ multilingual set across ten languages. To enhance evaluation with explicit reasoning, we propose the JailJudge MultiAgent framework, which enables explainable, fine-grained scoring (1 to 10). This framework supports the construction of instruction-tuning ground truth and facilitates the development of JAILJUDGE Guard, an end-to-end judge model that provides reasoning and eliminates API costs. Additionally, we introduce JailBoost, an attacker-agnostic attack enhancer, and GuardShield, a moderation defense, both leveraging JAILJUDGE Guard. Our experiments demonstrate the state-of-the-art performance of JailJudge methods (JailJudge MultiAgent, JAILJUDGE Guard) across diverse models (e.g., GPT-4, Llama-Guard) and zero-shot scenarios. JailBoost and GuardShield significantly improve jailbreak attack and defense tasks under zero-shot settings, with JailBoost enhancing performance by 29.24% and GuardShield reducing defense ASR from 40.46% to 0.15%.
Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling
We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality. In this work, we delve into the relationship between model scaling and performance, systematically exploring the performance trends in vision encoders, language models, dataset sizes, and test-time configurations. Through extensive evaluations on a wide range of benchmarks, including multi-discipline reasoning, document understanding, multi-image / video understanding, real-world comprehension, multimodal hallucination detection, visual grounding, multilingual capabilities, and pure language processing, InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet. Notably, our model is the first open-source MLLMs to surpass 70% on the MMMU benchmark, achieving a 3.7-point improvement through Chain-of-Thought (CoT) reasoning and showcasing strong potential for test-time scaling. We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems. HuggingFace demo see https://huggingface.co/spaces/OpenGVLab/InternVL
Beyond Surface: Probing LLaMA Across Scales and Layers
This paper presents an in-depth analysis of Large Language Models (LLMs), focusing on LLaMA, a prominent open-source foundational model in natural language processing. Instead of assessing LLaMA through its generative output, we design multiple-choice tasks to probe its intrinsic understanding in high-order tasks such as reasoning and computation. We examine the model horizontally, comparing different sizes, and vertically, assessing different layers. We unveil several key and uncommon findings based on the designed probing tasks: (1) Horizontally, enlarging model sizes almost could not automatically impart additional knowledge or computational prowess. Instead, it can enhance reasoning abilities, especially in math problem solving, and helps reduce hallucinations, but only beyond certain size thresholds; (2) In vertical analysis, the lower layers of LLaMA lack substantial arithmetic and factual knowledge, showcasing logical thinking, multilingual and recognitive abilities, with top layers housing most computational power and real-world knowledge.
TRACE: A Comprehensive Benchmark for Continual Learning in Large Language Models
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety. However, the continual learning aspect of these aligned LLMs has been largely overlooked. Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs, owing to both their simplicity and the models' potential exposure during instruction tuning. In this paper, we introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs. TRACE consists of 8 distinct datasets spanning challenging tasks including domain-specific tasks, multilingual capabilities, code generation, and mathematical reasoning. All datasets are standardized into a unified format, allowing for effortless automatic evaluation of LLMs. Our experiments show that after training on TRACE, aligned LLMs exhibit significant declines in both general ability and instruction-following capabilities. For example, the accuracy of llama2-chat 13B on gsm8k dataset declined precipitously from 28.8\% to 2\% after training on our datasets. This highlights the challenge of finding a suitable tradeoff between achieving performance on specific tasks while preserving the original prowess of LLMs. Empirical findings suggest that tasks inherently equipped with reasoning paths contribute significantly to preserving certain capabilities of LLMs against potential declines. Motivated by this, we introduce the Reasoning-augmented Continual Learning (RCL) approach. RCL integrates task-specific cues with meta-rationales, effectively reducing catastrophic forgetting in LLMs while expediting convergence on novel tasks.
Jais and Jais-chat: Arabic-Centric Foundation and Instruction-Tuned Open Generative Large Language Models
We introduce Jais and Jais-chat, new state-of-the-art Arabic-centric foundation and instruction-tuned open generative large language models (LLMs). The models are based on the GPT-3 decoder-only architecture and are pretrained on a mixture of Arabic and English texts, including source code in various programming languages. With 13 billion parameters, they demonstrate better knowledge and reasoning capabilities in Arabic than any existing open Arabic and multilingual models by a sizable margin, based on extensive evaluation. Moreover, the models are competitive in English compared to English-centric open models of similar size, despite being trained on much less English data. We provide a detailed description of the training, the tuning, the safety alignment, and the evaluation of the models. We release two open versions of the model -- the foundation Jais model, and an instruction-tuned Jais-chat variant -- with the aim of promoting research on Arabic LLMs. Available at https://huggingface.co/inception-mbzuai/jais-13b-chat
Llama-3.1-Sherkala-8B-Chat: An Open Large Language Model for Kazakh
Llama-3.1-Sherkala-8B-Chat, or Sherkala-Chat (8B) for short, is a state-of-the-art instruction-tuned open generative large language model (LLM) designed for Kazakh. Sherkala-Chat (8B) aims to enhance the inclusivity of LLM advancements for Kazakh speakers. Adapted from the LLaMA-3.1-8B model, Sherkala-Chat (8B) is trained on 45.3B tokens across Kazakh, English, Russian, and Turkish. With 8 billion parameters, it demonstrates strong knowledge and reasoning abilities in Kazakh, significantly outperforming existing open Kazakh and multilingual models of similar scale while achieving competitive performance in English. We release Sherkala-Chat (8B) as an open-weight instruction-tuned model and provide a detailed overview of its training, fine-tuning, safety alignment, and evaluation, aiming to advance research and support diverse real-world applications.
End-to-End Bangla AI for Solving Math Olympiad Problem Benchmark: Leveraging Large Language Model Using Integrated Approach
This work introduces systematic approach for enhancing large language models (LLMs) to address Bangla AI mathematical challenges. Through the assessment of diverse LLM configurations, fine-tuning with specific datasets, and the implementation of Retrieval-Augmented Generation (RAG), we enhanced the model's reasoning precision in a multilingual setting. Crucial discoveries indicate that customized prompting, dataset augmentation, and iterative reasoning improve the model's efficiency regarding Olympiad-level mathematical challenges.
Transcending Scaling Laws with 0.1% Extra Compute
Scaling language models improves performance but comes with significant computational costs. This paper proposes UL2R, a method that substantially improves existing language models and their scaling curves with a relatively tiny amount of extra compute. The key idea is to continue training a state-of-the-art large language model (e.g., PaLM) on a few more steps with UL2's mixture-of-denoiser objective. We show that, with almost negligible extra computational costs and no new sources of data, we are able to substantially improve the scaling properties of large language models on downstream metrics. In this paper, we continue training PaLM with UL2R, introducing a new set of models at 8B, 62B, and 540B scale which we call U-PaLM. Impressively, at 540B scale, we show an approximately 2x computational savings rate where U-PaLM achieves the same performance as the final PaLM 540B model at around half its computational budget (i.e., saving sim4.4 million TPUv4 hours). We further show that this improved scaling curve leads to 'emergent abilities' on challenging BIG-Bench tasks -- for instance, U-PaLM does much better than PaLM on some tasks or demonstrates better quality at much smaller scale (62B as opposed to 540B). Overall, we show that U-PaLM outperforms PaLM on many few-shot setups, i.e., English NLP tasks (e.g., commonsense reasoning, question answering), reasoning tasks with chain-of-thought (e.g., GSM8K), multilingual tasks (MGSM, TydiQA), MMLU and challenging BIG-Bench tasks. Finally, we provide qualitative examples showing the new capabilities of U-PaLM for single and multi-span infilling.
Qwen2 Technical Report
This report introduces the Qwen2 series, the latest addition to our large language models and large multimodal models. We release a comprehensive suite of foundational and instruction-tuned language models, encompassing a parameter range from 0.5 to 72 billion, featuring dense models and a Mixture-of-Experts model. Qwen2 surpasses most prior open-weight models, including its predecessor Qwen1.5, and exhibits competitive performance relative to proprietary models across diverse benchmarks on language understanding, generation, multilingual proficiency, coding, mathematics, and reasoning. The flagship model, Qwen2-72B, showcases remarkable performance: 84.2 on MMLU, 37.9 on GPQA, 64.6 on HumanEval, 89.5 on GSM8K, and 82.4 on BBH as a base language model. The instruction-tuned variant, Qwen2-72B-Instruct, attains 9.1 on MT-Bench, 48.1 on Arena-Hard, and 35.7 on LiveCodeBench. Moreover, Qwen2 demonstrates robust multilingual capabilities, proficient in approximately 30 languages, spanning English, Chinese, Spanish, French, German, Arabic, Russian, Korean, Japanese, Thai, Vietnamese, and more, underscoring its versatility and global reach. To foster community innovation and accessibility, we have made the Qwen2 model weights openly available on Hugging Face1 and ModelScope2, and the supplementary materials including example code on GitHub3. These platforms also include resources for quantization, fine-tuning, and deployment, facilitating a wide range of applications and research endeavors.
Logic Contrastive Reasoning with Lightweight Large Language Model for Math Word Problems
This study focuses on improving the performance of lightweight Large Language Models (LLMs) in mathematical reasoning tasks. We introduce a novel method for measuring mathematical logic similarity and design an automatic screening mechanism to construct a set of reference problems that integrate both semantic and logical similarity. By employing carefully crafted positive and negative example prompts, we guide the model towards adopting sound reasoning logic. To the best of our knowledge, this is the first attempt to utilize retrieval-enhanced generation for mathematical problem-solving. Experimental results demonstrate that our method achieves a 15.8% improvement over the Chain of Thought approach on the SVAMP dataset and a 21.5 % improvement on the GSM8K dataset. Further application of this method to a large-scale model with 175 billion parameters yields performance comparable to the best results on both aforementioned datasets. Finally, we conduct an analysis of errors during the reasoning process, providing valuable insights and directions for future research on reasoning tasks using large language models.
MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time
Although Large Language Models (LLMs) achieve remarkable performance across various tasks, they often struggle with complex reasoning tasks, such as answering mathematical questions. Recent efforts to address this issue have primarily focused on leveraging mathematical datasets through supervised fine-tuning or self-improvement techniques. However, these methods often depend on high-quality datasets that are difficult to prepare, or they require substantial computational resources for fine-tuning. Inspired by findings that LLMs know how to produce the right answer but struggle to select the correct reasoning path, we propose a purely inference-based searching method -- MindStar (M*). This method formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths. We evaluate the M* framework on both the GSM8K and MATH datasets, comparing its performance with existing open and closed-source LLMs. Our results demonstrate that M* significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1, but with substantially reduced model size and computational costs.
Minds versus Machines: Rethinking Entailment Verification with Language Models
Humans make numerous inferences in text comprehension to understand discourse. This paper aims to understand the commonalities and disparities in the inference judgments between humans and state-of-the-art Large Language Models (LLMs). Leveraging a comprehensively curated entailment verification benchmark, we evaluate both human and LLM performance across various reasoning categories. Our benchmark includes datasets from three categories (NLI, contextual QA, and rationales) that include multi-sentence premises and different knowledge types, thereby evaluating the inference capabilities in complex reasoning instances. Notably, our findings reveal LLMs' superiority in multi-hop reasoning across extended contexts, while humans excel in tasks necessitating simple deductive reasoning. Leveraging these insights, we introduce a fine-tuned Flan-T5 model that outperforms GPT-3.5 and rivals with GPT-4, offering a robust open-source solution for entailment verification. As a practical application, we showcase the efficacy of our finetuned model in enhancing self-consistency in model-generated explanations, resulting in a 6% performance boost on average across three multiple-choice question-answering datasets.
Faithful Reasoning Using Large Language Models
Although contemporary large language models (LMs) demonstrate impressive question-answering capabilities, their answers are typically the product of a single call to the model. This entails an unwelcome degree of opacity and compromises performance, especially on problems that are inherently multi-step. To address these limitations, we show how LMs can be made to perform faithful multi-step reasoning via a process whose causal structure mirrors the underlying logical structure of the problem. Our approach works by chaining together reasoning steps, where each step results from calls to two fine-tuned LMs, one for selection and one for inference, to produce a valid reasoning trace. Our method carries out a beam search through the space of reasoning traces to improve reasoning quality. We demonstrate the effectiveness of our model on multi-step logical deduction and scientific question-answering, showing that it outperforms baselines on final answer accuracy, and generates humanly interpretable reasoning traces whose validity can be checked by the user.
Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1)
Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks. Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains. However, effectively extending these capabilities into multimodal contexts-where models must integrate both visual and textual inputs-continues to be a significant challenge. Multimodal reasoning introduces complexities, such as handling conflicting information across modalities, which require models to adopt advanced interpretative strategies. Addressing these challenges involves not only sophisticated algorithms but also robust methodologies for evaluating reasoning accuracy and coherence. This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs. Through a thorough and up-to-date comparison, we clearly formulate core reasoning challenges and opportunities, highlighting practical methods for post-training optimization and test-time inference. Our work provides valuable insights and guidance, bridging theoretical frameworks and practical implementations, and sets clear directions for future research.
Concise and Organized Perception Facilitates Large Language Models for Deductive Reasoning
Exploiting large language models (LLMs) to tackle deductive reasoning has garnered growing attention. It still remains highly challenging to achieve satisfactory results in complex deductive problems, characterized by plenty of premises (i.e., facts or rules) entailing intricate relationships among entities and requiring multi-hop reasoning. One intuitive solution is to decompose the original task into smaller sub-tasks, and then chain the multiple casual reasoning steps together in a forward (e.g., Selection-Inference) or backward (e.g., LAMBADA) direction. However, these techniques inevitably necessitate a large number of overall stages, leading to computationally expensive operations and a higher possibility of making misleading steps. In addition to stage-by-stage decomposition, we draw inspiration from another aspect of human problem-solving. Humans tend to distill the most relevant information and organize their thoughts systematically (e.g., creating mind maps), which assists them in answering questions or drawing conclusions precisely and quickly. In light of this, we propose a novel reasoning approach named Concise and Organized Perception (COP). COP carefully analyzes the given statements to efficiently identify the most pertinent information while eliminating redundancy. It then prompts the LLMs in a more organized form that adapts to the model's inference process. By perceiving concise and organized proofs, the deductive reasoning abilities of LLMs can be better elicited, and the risk of acquiring errors caused by excessive reasoning stages is mitigated. Furthermore, our approach can be combined with the aforementioned ones to further boost their performance. Extensive experimental results on three popular deductive benchmarks (i.e., ProofWriter, PrOntoQA and PrOntoQA-OOD) show that COP significantly outperforms previous state-of-the-art methods.
Thinking Machines: A Survey of LLM based Reasoning Strategies
Large Language Models (LLMs) are highly proficient in language-based tasks. Their language capabilities have positioned them at the forefront of the future AGI (Artificial General Intelligence) race. However, on closer inspection, Valmeekam et al. (2024); Zecevic et al. (2023); Wu et al. (2024) highlight a significant gap between their language proficiency and reasoning abilities. Reasoning in LLMs and Vision Language Models (VLMs) aims to bridge this gap by enabling these models to think and re-evaluate their actions and responses. Reasoning is an essential capability for complex problem-solving and a necessary step toward establishing trust in Artificial Intelligence (AI). This will make AI suitable for deployment in sensitive domains, such as healthcare, banking, law, defense, security etc. In recent times, with the advent of powerful reasoning models like OpenAI O1 and DeepSeek R1, reasoning endowment has become a critical research topic in LLMs. In this paper, we provide a detailed overview and comparison of existing reasoning techniques and present a systematic survey of reasoning-imbued language models. We also study current challenges and present our findings.
Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models
Logical reasoning is fundamental for humans yet presents a substantial challenge in the domain of Artificial Intelligence. Initially, researchers used Knowledge Representation and Reasoning (KR) systems that did not scale and required non trivial manual effort. Recently, the emergence of large language models (LLMs) has demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems. Consequently, there is a growing interest in using LLMs for logical reasoning via natural language. This work strives to understand the proficiency of LLMs in logical reasoning by offering a brief review of the latest progress in this area; with a focus on the logical reasoning datasets, tasks, and the methods adopted to utilize LLMs for reasoning. To offer a thorough analysis, we have compiled a benchmark titled LogiGLUE. This includes 24 varied datasets encompassing deductive, abductive, and inductive reasoning. We have standardized these datasets into Seq2Seq tasks to facilitate straightforward training and evaluation for future research. Utilizing LogiGLUE as a foundation, we have trained an instruction fine tuned language model, resulting in LogiT5. We study single task training, multi task training, and a chain of thought knowledge distillation fine tuning technique to assess the performance of model across the different logical reasoning categories. By this comprehensive process, we aim to shed light on the capabilities and potential pathways for enhancing logical reasoning proficiency in LLMs, paving the way for more advanced and nuanced developments in this critical field.
Advancing Reasoning in Large Language Models: Promising Methods and Approaches
Large Language Models (LLMs) have succeeded remarkably in various natural language processing (NLP) tasks, yet their reasoning capabilities remain a fundamental challenge. While LLMs exhibit impressive fluency and factual recall, their ability to perform complex reasoning-spanning logical deduction, mathematical problem-solving, commonsense inference, and multi-step reasoning-often falls short of human expectations. This survey provides a comprehensive review of emerging techniques enhancing reasoning in LLMs. We categorize existing methods into key approaches, including prompting strategies (e.g., Chain-of-Thought reasoning, Self-Consistency, and Tree-of-Thought reasoning), architectural innovations (e.g., retrieval-augmented models, modular reasoning networks, and neuro-symbolic integration), and learning paradigms (e.g., fine-tuning with reasoning-specific datasets, reinforcement learning, and self-supervised reasoning objectives). Additionally, we explore evaluation frameworks used to assess reasoning in LLMs and highlight open challenges, such as hallucinations, robustness, and reasoning generalization across diverse tasks. By synthesizing recent advancements, this survey aims to provide insights into promising directions for future research and practical applications of reasoning-augmented LLMs.
Towards Reasoning in Large Language Models: A Survey
Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.
Multilingual LAMA: Investigating Knowledge in Multilingual Pretrained Language Models
Recently, it has been found that monolingual English language models can be used as knowledge bases. Instead of structural knowledge base queries, masked sentences such as "Paris is the capital of [MASK]" are used as probes. We translate the established benchmarks TREx and GoogleRE into 53 languages. Working with mBERT, we investigate three questions. (i) Can mBERT be used as a multilingual knowledge base? Most prior work only considers English. Extending research to multiple languages is important for diversity and accessibility. (ii) Is mBERT's performance as knowledge base language-independent or does it vary from language to language? (iii) A multilingual model is trained on more text, e.g., mBERT is trained on 104 Wikipedias. Can mBERT leverage this for better performance? We find that using mBERT as a knowledge base yields varying performance across languages and pooling predictions across languages improves performance. Conversely, mBERT exhibits a language bias; e.g., when queried in Italian, it tends to predict Italy as the country of origin.
QASC: A Dataset for Question Answering via Sentence Composition
Composing knowledge from multiple pieces of texts is a key challenge in multi-hop question answering. We present a multi-hop reasoning dataset, Question Answering via Sentence Composition(QASC), that requires retrieving facts from a large corpus and composing them to answer a multiple-choice question. QASC is the first dataset to offer two desirable properties: (a) the facts to be composed are annotated in a large corpus, and (b) the decomposition into these facts is not evident from the question itself. The latter makes retrieval challenging as the system must introduce new concepts or relations in order to discover potential decompositions. Further, the reasoning model must then learn to identify valid compositions of these retrieved facts using common-sense reasoning. To help address these challenges, we provide annotation for supporting facts as well as their composition. Guided by these annotations, we present a two-step approach to mitigate the retrieval challenges. We use other multiple-choice datasets as additional training data to strengthen the reasoning model. Our proposed approach improves over current state-of-the-art language models by 11% (absolute). The reasoning and retrieval problems, however, remain unsolved as this model still lags by 20% behind human performance.
ProcBench: Benchmark for Multi-Step Reasoning and Following Procedure
Reasoning is central to a wide range of intellectual activities, and while the capabilities of large language models (LLMs) continue to advance, their performance in reasoning tasks remains limited. The processes and mechanisms underlying reasoning are not yet fully understood, but key elements include path exploration, selection of relevant knowledge, and multi-step inference. Problems are solved through the synthesis of these components. In this paper, we propose a benchmark that focuses on a specific aspect of reasoning ability: the direct evaluation of multi-step inference. To this end, we design a special reasoning task where multi-step inference is specifically focused by largely eliminating path exploration and implicit knowledge utilization. Our dataset comprises pairs of explicit instructions and corresponding questions, where the procedures necessary for solving the questions are entirely detailed within the instructions. This setup allows models to solve problems solely by following the provided directives. By constructing problems that require varying numbers of steps to solve and evaluating responses at each step, we enable a thorough assessment of state-of-the-art LLMs' ability to follow instructions. To ensure the robustness of our evaluation, we include multiple distinct tasks. Furthermore, by comparing accuracy across tasks, utilizing step-aware metrics, and applying separately defined measures of complexity, we conduct experiments that offer insights into the capabilities and limitations of LLMs in reasoning tasks. Our findings have significant implications for the development of LLMs and highlight areas for future research in advancing their reasoning abilities. Our dataset is available at https://huggingface.co/datasets/ifujisawa/procbench and code at https://github.com/ifujisawa/proc-bench.
Efficient Tool Use with Chain-of-Abstraction Reasoning
To achieve faithful reasoning that aligns with human expectations, large language models (LLMs) need to ground their reasoning to real-world knowledge (e.g., web facts, math and physical rules). Tools help LLMs access this external knowledge, but there remains challenges for fine-tuning LLM agents (e.g., Toolformer) to invoke tools in multi-step reasoning problems, where inter-connected tool calls require holistic and efficient tool usage planning. In this work, we propose a new method for LLMs to better leverage tools in multi-step reasoning. Our method, Chain-of-Abstraction (CoA), trains LLMs to first decode reasoning chains with abstract placeholders, and then call domain tools to reify each reasoning chain by filling in specific knowledge. This planning with abstract chains enables LLMs to learn more general reasoning strategies, which are robust to shifts of domain knowledge (e.g., math results) relevant to different reasoning questions. It also allows LLMs to perform decoding and calling of external tools in parallel, which avoids the inference delay caused by waiting for tool responses. In mathematical reasoning and Wiki QA domains, we show that our method consistently outperforms previous chain-of-thought and tool-augmented baselines on both in-distribution and out-of-distribution test sets, with an average ~6% absolute QA accuracy improvement. LLM agents trained with our method also show more efficient tool use, with inference speed being on average ~1.4x faster than baseline tool-augmented LLMs.
ALR^2: A Retrieve-then-Reason Framework for Long-context Question Answering
The context window of large language models (LLMs) has been extended significantly in recent years. However, while the context length that the LLM can process has grown, the capability of the model to accurately reason over that context degrades noticeably. This occurs because modern LLMs often become overwhelmed by the vast amount of information in the context; when answering questions, the model must identify and reason over relevant evidence sparsely distributed throughout the text. To alleviate the challenge of long-context reasoning, we develop a retrieve-then-reason framework, enabling LLMs to reason over relevant evidence collected during an intermediate retrieval step. We find that modern LLMs struggle to accurately retrieve relevant facts and instead, often hallucinate "retrieved facts", resulting in flawed reasoning and the production of incorrect answers. To address these issues, we introduce ALR^2, a method that augments the long-context reasoning capability of LLMs via an explicit two-stage procedure, i.e., aligning LLMs with the objectives of both retrieval and reasoning. We demonstrate the efficacy of ALR^2 for mitigating performance degradation in long-context reasoning tasks. Through extensive experiments on long-context QA benchmarks, we find our method to outperform competitive baselines by large margins, achieving at least 8.4 and 7.9 EM gains on the long-context versions of HotpotQA and SQuAD datasets, respectively.
Seemingly Plausible Distractors in Multi-Hop Reasoning: Are Large Language Models Attentive Readers?
State-of-the-art Large Language Models (LLMs) are accredited with an increasing number of different capabilities, ranging from reading comprehension, over advanced mathematical and reasoning skills to possessing scientific knowledge. In this paper we focus on their multi-hop reasoning capability: the ability to identify and integrate information from multiple textual sources. Given the concerns with the presence of simplifying cues in existing multi-hop reasoning benchmarks, which allow models to circumvent the reasoning requirement, we set out to investigate, whether LLMs are prone to exploiting such simplifying cues. We find evidence that they indeed circumvent the requirement to perform multi-hop reasoning, but they do so in more subtle ways than what was reported about their fine-tuned pre-trained language model (PLM) predecessors. Motivated by this finding, we propose a challenging multi-hop reasoning benchmark, by generating seemingly plausible multi-hop reasoning chains, which ultimately lead to incorrect answers. We evaluate multiple open and proprietary state-of-the-art LLMs, and find that their performance to perform multi-hop reasoning is affected, as indicated by up to 45% relative decrease in F1 score when presented with such seemingly plausible alternatives. We conduct a deeper analysis and find evidence that while LLMs tend to ignore misleading lexical cues, misleading reasoning paths indeed present a significant challenge.
GLoRE: Evaluating Logical Reasoning of Large Language Models
Recently, large language models (LLMs), including notable models such as GPT-4 and burgeoning community models, have showcased significant general language understanding abilities. However, there has been a scarcity of attempts to assess the logical reasoning capacities of these LLMs, an essential facet of natural language understanding. To encourage further investigation in this area, we introduce GLoRE, a meticulously assembled General Logical Reasoning Evaluation benchmark comprised of 12 datasets that span three different types of tasks. Our experimental results show that compared to the performance of human and supervised fine-tuning, the logical reasoning capabilities of open LLM models necessitate additional improvement; ChatGPT and GPT-4 show a strong capability of logical reasoning, with GPT-4 surpassing ChatGPT by a large margin. We propose a self-consistency probing method to enhance the accuracy of ChatGPT and a fine-tuned method to boost the performance of an open LLM. We release the datasets and evaluation programs to facilitate future research.
FOLIO: Natural Language Reasoning with First-Order Logic
We present FOLIO, a human-annotated, open-domain, and logically complex and diverse dataset for reasoning in natural language (NL), equipped with first order logic (FOL) annotations. FOLIO consists of 1,435 examples (unique conclusions), each paired with one of 487 sets of premises which serve as rules to be used to deductively reason for the validity of each conclusion. The logical correctness of premises and conclusions is ensured by their parallel FOL annotations, which are automatically verified by our FOL inference engine. In addition to the main NL reasoning task, NL-FOL pairs in FOLIO automatically constitute a new NL-FOL translation dataset using FOL as the logical form. Our experiments on FOLIO systematically evaluate the FOL reasoning ability of supervised fine-tuning on medium-sized language models (BERT, RoBERTa) and few-shot prompting on large language models (GPT-NeoX, OPT, GPT-3, Codex). For NL-FOL translation, we experiment with GPT-3 and Codex. Our results show that one of the most capable Large Language Model (LLM) publicly available, GPT-3 davinci, achieves only slightly better than random results with few-shot prompting on a subset of FOLIO, and the model is especially bad at predicting the correct truth values for False and Unknown conclusions. Our dataset and code are available at https://github.com/Yale-LILY/FOLIO.
LLM Reasoners: New Evaluation, Library, and Analysis of Step-by-Step Reasoning with Large Language Models
Generating accurate step-by-step reasoning is essential for Large Language Models (LLMs) to address complex problems and enhance robustness and interpretability. Despite the flux of research on developing advanced reasoning approaches, systematically analyzing the diverse LLMs and reasoning strategies in generating reasoning chains remains a significant challenge. The difficulties stem from the lack of two key elements: (1) an automatic method for evaluating the generated reasoning chains on different tasks, and (2) a unified formalism and implementation of the diverse reasoning approaches for systematic comparison. This paper aims to close the gap: (1) We introduce AutoRace for fully automated reasoning chain evaluation. Existing metrics rely on expensive human annotations or pre-defined LLM prompts not adaptable to different tasks. In contrast, AutoRace automatically creates detailed evaluation criteria tailored for each task, and uses GPT-4 for accurate evaluation following the criteria. (2) We develop LLM Reasoners, a library for standardized modular implementation of existing and new reasoning algorithms, under a unified formulation of the search, reward, and world model components. With the new evaluation and library, (3) we conduct extensive study of different reasoning approaches (e.g., CoT, ToT, RAP). The analysis reveals interesting findings about different factors contributing to reasoning, including the reward-guidance, breadth-vs-depth in search, world model, and prompt formats, etc.
Massively Multilingual Lexical Specialization of Multilingual Transformers
While pretrained language models (PLMs) primarily serve as general-purpose text encoders that can be fine-tuned for a wide variety of downstream tasks, recent work has shown that they can also be rewired to produce high-quality word representations (i.e., static word embeddings) and yield good performance in type-level lexical tasks. While existing work primarily focused on the lexical specialization of monolingual PLMs with immense quantities of monolingual constraints, in this work we expose massively multilingual transformers (MMTs, e.g., mBERT or XLM-R) to multilingual lexical knowledge at scale, leveraging BabelNet as the readily available rich source of multilingual and cross-lingual type-level lexical knowledge. Concretely, we use BabelNet's multilingual synsets to create synonym pairs (or synonym-gloss pairs) across 50 languages and then subject the MMTs (mBERT and XLM-R) to a lexical specialization procedure guided by a contrastive objective. We show that such massively multilingual lexical specialization brings substantial gains in two standard cross-lingual lexical tasks, bilingual lexicon induction and cross-lingual word similarity, as well as in cross-lingual sentence retrieval. Crucially, we observe gains for languages unseen in specialization, indicating that multilingual lexical specialization enables generalization to languages with no lexical constraints. In a series of subsequent controlled experiments, we show that the number of specialization constraints plays a much greater role than the set of languages from which they originate.
RUPBench: Benchmarking Reasoning Under Perturbations for Robustness Evaluation in Large Language Models
With the increasing use of large language models (LLMs), ensuring reliable performance in diverse, real-world environments is essential. Despite their remarkable achievements, LLMs often struggle with adversarial inputs, significantly impacting their effectiveness in practical applications. To systematically understand the robustness of LLMs, we present RUPBench, a comprehensive benchmark designed to evaluate LLM robustness across diverse reasoning tasks. Our benchmark incorporates 15 reasoning datasets, categorized into commonsense, arithmetic, logical, and knowledge-intensive reasoning, and introduces nine types of textual perturbations at lexical, syntactic, and semantic levels. By examining the performance of state-of-the-art LLMs such as GPT-4o, Llama3, Phi-3, and Gemma on both original and perturbed datasets, we provide a detailed analysis of their robustness and error patterns. Our findings highlight that larger models tend to exhibit greater robustness to perturbations. Additionally, common error types are identified through manual inspection, revealing specific challenges faced by LLMs in different reasoning contexts. This work provides insights into areas where LLMs need further improvement to handle diverse and noisy inputs effectively.
Multilingual Sentence-Level Semantic Search using Meta-Distillation Learning
Multilingual semantic search is the task of retrieving relevant contents to a query expressed in different language combinations. This requires a better semantic understanding of the user's intent and its contextual meaning. Multilingual semantic search is less explored and more challenging than its monolingual or bilingual counterparts, due to the lack of multilingual parallel resources for this task and the need to circumvent "language bias". In this work, we propose an alignment approach: MAML-Align, specifically for low-resource scenarios. Our approach leverages meta-distillation learning based on MAML, an optimization-based Model-Agnostic Meta-Learner. MAML-Align distills knowledge from a Teacher meta-transfer model T-MAML, specialized in transferring from monolingual to bilingual semantic search, to a Student model S-MAML, which meta-transfers from bilingual to multilingual semantic search. To the best of our knowledge, we are the first to extend meta-distillation to a multilingual search application. Our empirical results show that on top of a strong baseline based on sentence transformers, our meta-distillation approach boosts the gains provided by MAML and significantly outperforms naive fine-tuning methods. Furthermore, multilingual meta-distillation learning improves generalization even to unseen languages.
Enhancing Reasoning Capabilities of LLMs via Principled Synthetic Logic Corpus
Large language models (LLMs) are capable of solving a wide range of tasks, yet they have struggled with reasoning. To address this, we propose Additional Logic Training (ALT), which aims to enhance LLMs' reasoning capabilities by program-generated logical reasoning samples. We first establish principles for designing high-quality samples by integrating symbolic logic theory and previous empirical insights. Then, based on these principles, we construct a synthetic corpus named Formal Logic Deduction Diverse (FLD^{times 2}), comprising numerous samples of multi-step deduction with unknown facts, diverse reasoning rules, diverse linguistic expressions, and challenging distractors. Finally, we empirically show that ALT on FLD^{times2} substantially enhances the reasoning capabilities of state-of-the-art LLMs, including LLaMA-3.1-70B. Improvements include gains of up to 30 points on logical reasoning benchmarks, up to 10 points on math and coding benchmarks, and 5 points on the benchmark suite BBH.
Reasoning with Language Model Prompting: A Survey
Reasoning, as an essential ability for complex problem-solving, can provide back-end support for various real-world applications, such as medical diagnosis, negotiation, etc. This paper provides a comprehensive survey of cutting-edge research on reasoning with language model prompting. We introduce research works with comparisons and summaries and provide systematic resources to help beginners. We also discuss the potential reasons for emerging such reasoning abilities and highlight future research directions. Resources are available at https://github.com/zjunlp/Prompt4ReasoningPapers (updated periodically).
Factoring Statutory Reasoning as Language Understanding Challenges
Statutory reasoning is the task of determining whether a legal statute, stated in natural language, applies to the text description of a case. Prior work introduced a resource that approached statutory reasoning as a monolithic textual entailment problem, with neural baselines performing nearly at-chance. To address this challenge, we decompose statutory reasoning into four types of language-understanding challenge problems, through the introduction of concepts and structure found in Prolog programs. Augmenting an existing benchmark, we provide annotations for the four tasks, and baselines for three of them. Models for statutory reasoning are shown to benefit from the additional structure, improving on prior baselines. Further, the decomposition into subtasks facilitates finer-grained model diagnostics and clearer incremental progress.
Learning Deductive Reasoning from Synthetic Corpus based on Formal Logic
We study a synthetic corpus based approach for language models (LMs) to acquire logical deductive reasoning ability. The previous studies generated deduction examples using specific sets of deduction rules. However, these rules were limited or otherwise arbitrary, limiting the generalizability of acquired reasoning ability. We rethink this and adopt a well-grounded set of deduction rules based on formal logic theory, which can derive any other deduction rules when combined in a multistep way. Then, using the proposed corpora, which we name FLD (Formal Logic Deduction), we first evaluate and analyze the logical reasoning ability of the latest LLMs. Even GPT-4 can solve only half of the problems, suggesting that pure logical reasoning isolated from knowledge is still challenging for the LLMs, and additional training specialized in logical reasoning is indeed essential. We next empirically verify that LMs trained on FLD corpora acquire more generalizable reasoning ability. Furthermore, we identify the aspects of reasoning ability on which deduction corpora can enhance LMs and those on which they cannot, and discuss future directions on each aspect. The released corpora serve both as learning resources and as challenging benchmarks.
Selection-Inference: Exploiting Large Language Models for Interpretable Logical Reasoning
Large language models (LLMs) have been shown to be capable of impressive few-shot generalisation to new tasks. However, they still tend to perform poorly on multi-step logical reasoning problems. Here we carry out a comprehensive evaluation of LLMs on 50 tasks that probe different aspects of logical reasoning. We show that language models tend to perform fairly well at single step inference or entailment tasks, but struggle to chain together multiple reasoning steps to solve more complex problems. In light of this, we propose a Selection-Inference (SI) framework that exploits pre-trained LLMs as general processing modules, and alternates between selection and inference to generate a series of interpretable, casual reasoning steps leading to the final answer. We show that a 7B parameter LLM used within the SI framework in a 5-shot generalisation setting, with no fine-tuning, yields a performance improvement of over 100% compared to an equivalent vanilla baseline on a suite of 10 logical reasoning tasks. The same model in the same setting even outperforms a significantly larger 280B parameter baseline on the same suite of tasks. Moreover, answers produced by the SI framework are accompanied by a causal natural-language-based reasoning trace, which has important implications for the safety and trustworthiness of the system.
Reasoning with Large Language Models, a Survey
Scaling up language models to billions of parameters has opened up possibilities for in-context learning, allowing instruction tuning and few-shot learning on tasks that the model was not specifically trained for. This has achieved breakthrough performance on language tasks such as translation, summarization, and question-answering. Furthermore, in addition to these associative "System 1" tasks, recent advances in Chain-of-thought prompt learning have demonstrated strong "System 2" reasoning abilities, answering a question in the field of artificial general intelligence whether LLMs can reason. The field started with the question whether LLMs can solve grade school math word problems. This paper reviews the rapidly expanding field of prompt-based reasoning with LLMs. Our taxonomy identifies different ways to generate, evaluate, and control multi-step reasoning. We provide an in-depth coverage of core approaches and open problems, and we propose a research agenda for the near future. Finally, we highlight the relation between reasoning and prompt-based learning, and we discuss the relation between reasoning, sequential decision processes, and reinforcement learning. We find that self-improvement, self-reflection, and some metacognitive abilities of the reasoning processes are possible through the judicious use of prompts. True self-improvement and self-reasoning, to go from reasoning with LLMs to reasoning by LLMs, remains future work.
Certified Reasoning with Language Models
Language models often achieve higher accuracy when reasoning step-by-step in complex tasks. However, their reasoning can be unsound, inconsistent, or rely on undesirable prior assumptions. To tackle these issues, we introduce a class of tools for language models called guides that use state and incremental constraints to guide generation. A guide can be invoked by the model to constrain its own generation to a set of valid statements given by the tool. In turn, the model's choices can change the guide's state. We show how a general system for logical reasoning can be used as a guide, which we call LogicGuide. Given a reasoning problem in natural language, a model can formalize its assumptions for LogicGuide and then guarantee that its reasoning steps are sound. In experiments with the PrOntoQA and ProofWriter reasoning datasets, LogicGuide significantly improves the performance of GPT-3, GPT-3.5 Turbo and LLaMA (accuracy gains up to 35%). LogicGuide also drastically reduces content effects: the interference of prior and current assumptions that both humans and language models have been shown to suffer from. Finally, we explore bootstrapping LLaMA 13B from its own reasoning and find that LogicGuide is critical: by training only on certified self-generated reasoning, LLaMA can self-improve, avoiding learning from its own hallucinations.
ReSearch: Learning to Reason with Search for LLMs via Reinforcement Learning
Large Language Models (LLMs) have shown remarkable capabilities in reasoning, exemplified by the success of OpenAI-o1 and DeepSeek-R1. However, integrating reasoning with external search processes remains challenging, especially for complex multi-hop questions requiring multiple retrieval steps. We propose ReSearch, a novel framework that trains LLMs to Reason with Search via reinforcement learning without using any supervised data on reasoning steps. Our approach treats search operations as integral components of the reasoning chain, where when and how to perform searches is guided by text-based thinking, and search results subsequently influence further reasoning. We train ReSearch on Qwen2.5-7B(-Instruct) and Qwen2.5-32B(-Instruct) models and conduct extensive experiments. Despite being trained on only one dataset, our models demonstrate strong generalizability across various benchmarks. Analysis reveals that ReSearch naturally elicits advanced reasoning capabilities such as reflection and self-correction during the reinforcement learning process.
CrossWordBench: Evaluating the Reasoning Capabilities of LLMs and LVLMs with Controllable Puzzle Generation
Existing reasoning evaluation frameworks for Large Language Models (LLMs) and Large Vision-Language Models (LVLMs) predominantly either assess text-based reasoning or vision-language understanding capabilities, with limited dynamic interplay between textual and visual constraints. To address this limitation, we introduce CrossWordBench, a benchmark designed to evaluate the reasoning capabilities of both LLMs and LVLMs through the medium of crossword puzzles-a task requiring multimodal adherence to semantic constraints from text-based clues and intersectional constraints from visual grid structures. CrossWordBench leverages a controllable puzzle generation framework that produces puzzles in multiple formats (text and image) and offers different evaluation strategies ranging from direct puzzle solving to interactive modes. Our extensive evaluation of over 20 models reveals that reasoning LLMs outperform non-reasoning models substantially by effectively leveraging crossing-letter constraints. We further demonstrate that LVLMs struggle with the task, showing a strong correlation between their puzzle-solving performance and grid-parsing accuracy. Our findings offer insights into the limitations of the reasoning capabilities of current LLMs and LVLMs, and provide an effective approach for creating multimodal constrained tasks for future evaluations.
Meta Reasoning for Large Language Models
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs) inspired by human meta-reasoning. Traditional in-context learning-based reasoning techniques, such as Tree-of-Thoughts, show promise but lack consistent state-of-the-art performance across diverse tasks due to their specialized nature. MRP addresses this limitation by guiding LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task, optimizing both performance and computational efficiency. With MRP, LLM reasoning operates in two phases. Initially, the LLM identifies the most appropriate reasoning method using task input cues and objective descriptions of available methods. Subsequently, it applies the chosen method to complete the task. This dynamic strategy mirrors human meta-reasoning, allowing the model to excel in a wide range of problem domains. We evaluate the effectiveness of MRP through comprehensive benchmarks. The results demonstrate that MRP achieves or approaches state-of-the-art performance across diverse tasks. MRP represents a significant advancement in enabling LLMs to identify cognitive challenges across problems and leverage benefits across different reasoning approaches, enhancing their ability to handle diverse and complex problem domains efficiently. Every LLM deserves a Meta-Reasoning Prompting to unlock its full potential and ensure adaptability in an ever-evolving landscape of challenges and applications.
SCREWS: A Modular Framework for Reasoning with Revisions
Large language models (LLMs) can improve their accuracy on various tasks through iteratively refining and revising their output based on feedback. We observe that these revisions can introduce errors, in which case it is better to roll back to a previous result. Further, revisions are typically homogeneous: they use the same reasoning method that produced the initial answer, which may not correct errors. To enable exploration in this space, we present SCREWS, a modular framework for reasoning with revisions. It is comprised of three main modules: Sampling, Conditional Resampling, and Selection, each consisting of sub-modules that can be hand-selected per task. We show that SCREWS not only unifies several previous approaches under a common framework, but also reveals several novel strategies for identifying improved reasoning chains. We evaluate our framework with state-of-the-art LLMs (ChatGPT and GPT-4) on a diverse set of reasoning tasks and uncover useful new reasoning strategies for each: arithmetic word problems, multi-hop question answering, and code debugging. Heterogeneous revision strategies prove to be important, as does selection between original and revised candidates.
Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks. Recent advancements in Large Reasoning Models (LRMs), such as OpenAI o1 and DeepSeek-R1, have further improved performance in System-2 reasoning domains like mathematics and programming by harnessing supervised fine-tuning (SFT) and reinforcement learning (RL) techniques to enhance the Chain-of-Thought (CoT) reasoning. However, while longer CoT reasoning sequences improve performance, they also introduce significant computational overhead due to verbose and redundant outputs, known as the "overthinking phenomenon". In this paper, we provide the first structured survey to systematically investigate and explore the current progress toward achieving efficient reasoning in LLMs. Overall, relying on the inherent mechanism of LLMs, we categorize existing works into several key directions: (1) model-based efficient reasoning, which considers optimizing full-length reasoning models into more concise reasoning models or directly training efficient reasoning models; (2) reasoning output-based efficient reasoning, which aims to dynamically reduce reasoning steps and length during inference; (3) input prompts-based efficient reasoning, which seeks to enhance reasoning efficiency based on input prompt properties such as difficulty or length control. Additionally, we introduce the use of efficient data for training reasoning models, explore the reasoning capabilities of small language models, and discuss evaluation methods and benchmarking.
Answering Unseen Questions With Smaller Language Models Using Rationale Generation and Dense Retrieval
When provided with sufficient explanatory context, smaller Language Models have been shown to exhibit strong reasoning ability on challenging short-answer question-answering tasks where the questions are unseen in training. We evaluate two methods for further improvement in this setting. Both methods focus on combining rationales generated by a larger Language Model with longer contexts created from a multi-hop dense retrieval system. The first method (RR) involves training a Rationale Ranking model to score both generated rationales and retrieved contexts with respect to relevance and truthfulness. We then use the scores to derive combined contexts from both knowledge sources using a number of combinatory strategies. For the second method (RATD) we utilise retrieval-augmented training datasets developed by Hartill et al. 2023 to train a smaller Reasoning model such that it becomes proficient at utilising relevant information from longer text sequences that may be only partially evidential and frequently contain many irrelevant sentences. We find that both methods significantly improve results. Our single best Reasoning model materially improves upon strong comparable prior baselines for unseen evaluation datasets (StrategyQA 58.9 rightarrow 61.7 acc., CommonsenseQA 63.6 rightarrow 72.7 acc., ARC-DA 31.6 rightarrow 52.1 F1, IIRC 25.5 rightarrow 27.3 F1) and a version utilising our prior knowledge of each type of question in selecting a context combination strategy does even better. Our proposed models also generally outperform direct prompts against much larger models (BLOOM 175B and StableVicuna 13B) in both few-shot chain-of-thought and standard few-shot settings.
Towards a Mechanistic Interpretation of Multi-Step Reasoning Capabilities of Language Models
Recent work has shown that language models (LMs) have strong multi-step (i.e., procedural) reasoning capabilities. However, it is unclear whether LMs perform these tasks by cheating with answers memorized from pretraining corpus, or, via a multi-step reasoning mechanism. In this paper, we try to answer this question by exploring a mechanistic interpretation of LMs for multi-step reasoning tasks. Concretely, we hypothesize that the LM implicitly embeds a reasoning tree resembling the correct reasoning process within it. We test this hypothesis by introducing a new probing approach (called MechanisticProbe) that recovers the reasoning tree from the model's attention patterns. We use our probe to analyze two LMs: GPT-2 on a synthetic task (k-th smallest element), and LLaMA on two simple language-based reasoning tasks (ProofWriter & AI2 Reasoning Challenge). We show that MechanisticProbe is able to detect the information of the reasoning tree from the model's attentions for most examples, suggesting that the LM indeed is going through a process of multi-step reasoning within its architecture in many cases.
Proceedings of the First International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2024)
Reasoning is an essential component of human intelligence as it plays a fundamental role in our ability to think critically, support responsible decisions, and solve challenging problems. Traditionally, AI has addressed reasoning in the context of logic-based representations of knowledge. However, the recent leap forward in natural language processing, with the emergence of language models based on transformers, is hinting at the possibility that these models exhibit reasoning abilities, particularly as they grow in size and are trained on more data. Despite ongoing discussions about what reasoning is in language models, it is still not easy to pin down to what extent these models are actually capable of reasoning. The goal of this workshop is to create a platform for researchers from different disciplines and/or AI perspectives, to explore approaches and techniques with the aim to reconcile reasoning between language models using transformers and using logic-based representations. The specific objectives include analyzing the reasoning abilities of language models measured alongside KR methods, injecting KR-style reasoning abilities into language models (including by neuro-symbolic means), and formalizing the kind of reasoning language models carry out. This exploration aims to uncover how language models can effectively integrate and leverage knowledge and reasoning with it, thus improving their application and utility in areas where precision and reliability are a key requirement.
LAMBADA: Backward Chaining for Automated Reasoning in Natural Language
Remarkable progress has been made on automated reasoning with natural text, by using Language Models (LMs) and methods such as Chain-of-Thought and Selection-Inference. These techniques search for proofs in the forward direction from axioms to the conclusion, which suffers from a combinatorial explosion of the search space, and thus high failure rates for problems requiring longer chains of reasoning. The classical automated reasoning literature has shown that reasoning in the backward direction (i.e. from the intended conclusion to supporting axioms) is significantly more efficient at proof-finding. Importing this intuition into the LM setting, we develop a Backward Chaining algorithm, called LAMBADA, that decomposes reasoning into four sub-modules. These sub-modules are simply implemented by few-shot prompted LM inference. We show that LAMBADA achieves sizable accuracy boosts over state-of-the-art forward reasoning methods on challenging logical reasoning datasets, particularly when deep and accurate proof chains are required.
Exploring the Representation of Word Meanings in Context: A Case Study on Homonymy and Synonymy
This paper presents a multilingual study of word meaning representations in context. We assess the ability of both static and contextualized models to adequately represent different lexical-semantic relations, such as homonymy and synonymy. To do so, we created a new multilingual dataset that allows us to perform a controlled evaluation of several factors such as the impact of the surrounding context or the overlap between words, conveying the same or different senses. A systematic assessment on four scenarios shows that the best monolingual models based on Transformers can adequately disambiguate homonyms in context. However, as they rely heavily on context, these models fail at representing words with different senses when occurring in similar sentences. Experiments are performed in Galician, Portuguese, English, and Spanish, and both the dataset (with more than 3,000 evaluation items) and new models are freely released with this study.
LAR-ECHR: A New Legal Argument Reasoning Task and Dataset for Cases of the European Court of Human Rights
We present Legal Argument Reasoning (LAR), a novel task designed to evaluate the legal reasoning capabilities of Large Language Models (LLMs). The task requires selecting the correct next statement (from multiple choice options) in a chain of legal arguments from court proceedings, given the facts of the case. We constructed a dataset (LAR-ECHR) for this task using cases from the European Court of Human Rights (ECHR). We evaluated seven general-purpose LLMs on LAR-ECHR and found that (a) the ranking of the models is aligned with that of LegalBench, an established US-based legal reasoning benchmark, even though LAR-ECHR is based on EU law, (b) LAR-ECHR distinguishes top models more clearly, compared to LegalBench, (c) even the best model (GPT-4o) obtains 75.8% accuracy on LAR-ECHR, indicating significant potential for further model improvement. The process followed to construct LAR-ECHR can be replicated with cases from other legal systems.
Decomposition Enhances Reasoning via Self-Evaluation Guided Decoding
We endow Large Language Models (LLMs) with fine-grained self-evaluation to refine multi-step reasoning inference. We propose an effective prompting approach that integrates self-evaluation guidance through stochastic beam search. Our approach explores the reasoning search space using a well-calibrated automatic criterion. This enables an efficient search to produce higher-quality final predictions. With the self-evaluation guided stochastic beam search, we also balance the quality-diversity trade-off in the generation of reasoning chains. This allows our approach to adapt well with majority voting and surpass the corresponding Codex-backboned baselines by 6.34%, 9.56%, and 5.46% on the GSM8K, AQuA, and StrategyQA benchmarks, respectively, in few-shot accuracy. Analysis of our decompositional reasoning finds it pinpoints logic failures and leads to higher consistency and robustness. Our code is publicly available at https://github.com/YuxiXie/SelfEval-Guided-Decoding.
TinyLLM: Learning a Small Student from Multiple Large Language Models
Transferring the reasoning capability from stronger large language models (LLMs) to smaller ones has been quite appealing, as smaller LLMs are more flexible to deploy with less expense. Among the existing solutions, knowledge distillation stands out due to its outstanding efficiency and generalization. However, existing methods suffer from several drawbacks, including limited knowledge diversity and the lack of rich contextual information. To solve the problems and facilitate the learning of compact language models, we propose TinyLLM, a novel knowledge distillation paradigm to learn a small student LLM from multiple large teacher LLMs. In particular, we encourage the student LLM to not only generate the correct answers but also understand the rationales behind these answers. Given that different LLMs possess diverse reasoning skills, we guide the student model to assimilate knowledge from various teacher LLMs. We further introduce an in-context example generator and a teacher-forcing Chain-of-Thought strategy to ensure that the rationales are accurate and grounded in contextually appropriate scenarios. Extensive experiments on six datasets across two reasoning tasks demonstrate the superiority of our method. Results show that TinyLLM can outperform large teacher LLMs significantly, despite having a considerably smaller model size.
Re-Reading Improves Reasoning in Language Models
Reasoning presents a significant and challenging issue for Large Language Models (LLMs). The predominant focus of research has revolved around developing diverse prompting strategies to guide and structure the reasoning processes of LLMs. However, these approaches based on decoder-only causal language models often operate the input question in a single forward pass, potentially missing the rich, back-and-forth interactions inherent in human reasoning. Scant attention has been paid to a critical dimension, i.e., the input question itself embedded within the prompts. In response, we introduce a deceptively simple yet highly effective prompting strategy, termed question "re-reading". Drawing inspiration from human learning and problem-solving, re-reading entails revisiting the question information embedded within input prompts. This approach aligns seamlessly with the cognitive principle of reinforcement, enabling LLMs to extract deeper insights, identify intricate patterns, establish more nuanced connections, and ultimately enhance their reasoning capabilities across various tasks. Experiments conducted on a series of reasoning benchmarks serve to underscore the effectiveness and generality of our method. Moreover, our findings demonstrate that our approach seamlessly integrates with various language models, though-eliciting prompting methods, and ensemble techniques, further underscoring its versatility and compatibility in the realm of LLMs.
LogicVista: Multimodal LLM Logical Reasoning Benchmark in Visual Contexts
We propose LogicVista, an evaluation benchmark that assesses the integrated logical reasoning capabilities of multimodal large language models (MLLMs) in Visual contexts. Recent advancements in MLLMs have demonstrated various fascinating abilities, from crafting poetry based on an image to performing mathematical reasoning. However, there is still a lack of systematic evaluation of MLLMs' proficiency in logical reasoning tasks, which are essential for activities like navigation and puzzle-solving. Thus we evaluate general logical cognition abilities across 5 logical reasoning tasks encompassing 9 different capabilities, using a sample of 448 multiple-choice questions. Each question is annotated with the correct answer and the human-written reasoning behind the selection, enabling both open-ended and multiple-choice evaluation. A total of 8 MLLMs are comprehensively evaluated using LogicVista. Code and Data Available at https://github.com/Yijia-Xiao/LogicVista.
Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying
Studies have underscored how, regardless of the recent breakthrough and swift advances in AI research, even state-of-the-art Large Language models (LLMs) continue to struggle when performing logical and mathematical reasoning. The results seem to suggest that LLMs still work as (highly advanced) data pattern identifiers, scoring poorly when attempting to generalise and solve reasoning problems the models have never previously seen or that are not close to samples presented in their training data. To address this compelling concern, this paper makes use of the notion of critical questions from the literature on argumentation theory, focusing in particular on Toulmin's model of argumentation. We show that employing these critical questions can improve the reasoning capabilities of LLMs. By probing the rationale behind the models' reasoning process, the LLM can assess whether some logical mistake is occurring and correct it before providing the final reply to the user prompt. The underlying idea is drawn from the gold standard of any valid argumentative procedure: the conclusion is valid if it is entailed by accepted premises. Or, to paraphrase such Aristotelian principle in a real-world approximation, characterised by incomplete information and presumptive logic, the conclusion is valid if not proved otherwise. This approach successfully steers the models' output through a reasoning pipeline, resulting in better performance against the baseline and its Chain-of-Thought (CoT) implementation. To this end, an extensive evaluation of the proposed approach on the MT-Bench Reasoning and Math tasks across a range of LLMs is provided.
Typhoon T1: An Open Thai Reasoning Model
This paper introduces Typhoon T1, an open effort to develop an open Thai reasoning model. A reasoning model is a relatively new type of generative model built on top of large language models (LLMs). A reasoning model generates a long chain of thought before arriving at a final answer, an approach found to improve performance on complex tasks. However, details on developing such a model are limited, especially for reasoning models that can generate traces in a low-resource language. Typhoon T1 presents an open effort that dives into the details of developing a reasoning model in a more cost-effective way by leveraging supervised fine-tuning using open datasets, instead of reinforcement learning. This paper shares the details about synthetic data generation and training, as well as our dataset and model weights. Additionally, we provide insights gained from developing a reasoning model that generalizes across domains and is capable of generating reasoning traces in a low-resource language, using Thai as an example. We hope this open effort provides a foundation for further research in this field.
Learning To Teach Large Language Models Logical Reasoning
Large language models (LLMs) have gained enormous attention from both academia and industry, due to their exceptional ability in language generation and extremely powerful generalization. However, current LLMs still output unreliable content in practical reasoning tasks due to their inherent issues (e.g., hallucination). To better disentangle this problem, in this paper, we conduct an in-depth investigation to systematically explore the capability of LLMs in logical reasoning. More in detail, we first investigate the deficiency of LLMs in logical reasoning on different tasks, including event relation extraction and deductive reasoning. Our study demonstrates that LLMs are not good reasoners in solving tasks with rigorous reasoning and will produce counterfactual answers, which require us to iteratively refine. Therefore, we comprehensively explore different strategies to endow LLMs with logical reasoning ability, and thus enable them to generate more logically consistent answers across different scenarios. Based on our approach, we also contribute a synthesized dataset (LLM-LR) involving multi-hop reasoning for evaluation and pre-training. Extensive quantitative and qualitative analyses on different tasks also validate the effectiveness and necessity of teaching LLMs with logic and provide insights for solving practical tasks with LLMs in future work.
MinT: Boosting Generalization in Mathematical Reasoning via Multi-View Fine-Tuning
Reasoning in mathematical domains remains a significant challenge for relatively small language models (LMs). Many current methods focus on specializing LMs in mathematical reasoning and rely heavily on knowledge distillation from powerful but inefficient large LMs (LLMs). In this work, we explore a new direction that avoids over-reliance on LLM teachers, introducing a multi-view fine-tuning method that efficiently exploits existing mathematical problem datasets with diverse annotation styles. Our approach uniquely considers the various annotation formats as different "views" and leverages them in training the model. By postpending distinct instructions to input questions, models can learn to generate solutions in diverse formats in a flexible manner. Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches that utilize knowledge distillation, as well as carefully established baselines. Additionally, the proposed method grants the models promising generalization ability across various views and datasets, and the capability to learn from inaccurate or incomplete noisy data. We hope our multi-view training paradigm could inspire future studies in other machine reasoning domains.
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval
Multi-hop reasoning (i.e., reasoning across two or more documents) is a key ingredient for NLP models that leverage large corpora to exhibit broad knowledge. To retrieve evidence passages, multi-hop models must contend with a fast-growing search space across the hops, represent complex queries that combine multiple information needs, and resolve ambiguity about the best order in which to hop between training passages. We tackle these problems via Baleen, a system that improves the accuracy of multi-hop retrieval while learning robustly from weak training signals in the many-hop setting. To tame the search space, we propose condensed retrieval, a pipeline that summarizes the retrieved passages after each hop into a single compact context. To model complex queries, we introduce a focused late interaction retriever that allows different parts of the same query representation to match disparate relevant passages. Lastly, to infer the hopping dependencies among unordered training passages, we devise latent hop ordering, a weak-supervision strategy in which the trained retriever itself selects the sequence of hops. We evaluate Baleen on retrieval for two-hop question answering and many-hop claim verification, establishing state-of-the-art performance.
NeedleBench: Can LLMs Do Retrieval and Reasoning in 1 Million Context Window?
In evaluating the long-context capabilities of large language models (LLMs), identifying content relevant to a user's query from original long documents is a crucial prerequisite for any LLM to answer questions based on long text. We present NeedleBench, a framework consisting of a series of progressively more challenging tasks for assessing bilingual long-context capabilities, spanning multiple length intervals (4k, 8k, 32k, 128k, 200k, 1000k, and beyond) and different depth ranges, allowing the strategic insertion of critical data points in different text depth zones to rigorously test the retrieval and reasoning capabilities of models in diverse contexts. We use the NeedleBench framework to assess how well the leading open-source models can identify key information relevant to the question and apply that information to reasoning in bilingual long texts. Furthermore, we propose the Ancestral Trace Challenge (ATC) to mimic the complexity of logical reasoning challenges that are likely to be present in real-world long-context tasks, providing a simple method for evaluating LLMs in dealing with complex long-context situations. Our results suggest that current LLMs have significant room for improvement in practical long-context applications, as they struggle with the complexity of logical reasoning challenges that are likely to be present in real-world long-context tasks. All codes and resources are available at OpenCompass: https://github.com/open-compass/opencompass.
Reliable Reasoning Beyond Natural Language
Despite their linguistic competence, Large Language models (LLMs) often exhibit limitations in their ability to reason reliably and flexibly. To address this, we propose a neurosymbolic approach that prompts LLMs to extract and encode all relevant information from a problem statement as logical code statements, and then use a logic programming language (Prolog) to conduct the iterative computations of explicit deductive reasoning. Our approach significantly enhances the performance of LLMs on the standard mathematical reasoning benchmark, GSM8k, and the Navigate dataset from the BIG-bench dataset. Additionally, we introduce a novel dataset, the Non-Linear Reasoning (NLR) dataset, consisting of 55 unique word problems that target the shortcomings of the next token prediction paradigm of LLMs and require complex non-linear reasoning but only basic arithmetic skills to solve. Our findings demonstrate that the integration of Prolog enables LLMs to achieve high performance on the NLR dataset, which even the most advanced language models (including GPT4) fail to solve using text only.
Logical Reasoning in Large Language Models: A Survey
With the emergence of advanced reasoning models like OpenAI o3 and DeepSeek-R1, large language models (LLMs) have demonstrated remarkable reasoning capabilities. However, their ability to perform rigorous logical reasoning remains an open question. This survey synthesizes recent advancements in logical reasoning within LLMs, a critical area of AI research. It outlines the scope of logical reasoning in LLMs, its theoretical foundations, and the benchmarks used to evaluate reasoning proficiency. We analyze existing capabilities across different reasoning paradigms - deductive, inductive, abductive, and analogical - and assess strategies to enhance reasoning performance, including data-centric tuning, reinforcement learning, decoding strategies, and neuro-symbolic approaches. The review concludes with future directions, emphasizing the need for further exploration to strengthen logical reasoning in AI systems.
ALERT: Adapting Language Models to Reasoning Tasks
Current large language models can perform reasonably well on complex tasks that require step-by-step reasoning with few-shot learning. Are these models applying reasoning skills they have learnt during pre-training and reason outside of their training context, or are they simply memorizing their training corpus at finer granularity and have learnt to better understand their context? To tease apart these possibilities, we introduce ALERT, a benchmark and suite of analyses for assessing language models' reasoning ability comparing pre-trained and finetuned models on complex tasks that require reasoning skills to solve. ALERT provides a test bed to asses any language model on fine-grained reasoning skills, which spans over 20 datasets and covers 10 different reasoning skills. We leverage ALERT to further investigate the role of finetuning. With extensive empirical analysis we find that language models learn more reasoning skills such as textual entailment, abductive reasoning, and analogical reasoning during finetuning stage compared to pretraining state. We also find that when language models are finetuned they tend to overfit to the prompt template, which hurts the robustness of models causing generalization problems.
Evaluating Multi-Hop Reasoning in Large Language Models: A Chemistry-Centric Case Study
In this study, we introduced a new benchmark consisting of a curated dataset and a defined evaluation process to assess the compositional reasoning capabilities of large language models within the chemistry domain. We designed and validated a fully automated pipeline, verified by subject matter experts, to facilitate this task. Our approach integrates OpenAI reasoning models with named entity recognition (NER) systems to extract chemical entities from recent literature, which are then augmented with external knowledge bases to form a comprehensive knowledge graph. By generating multi-hop questions across these graphs, we assess LLM performance in both context-augmented and non-context augmented settings. Our experiments reveal that even state-of-the-art models face significant challenges in multi-hop compositional reasoning. The results reflect the importance of augmenting LLMs with document retrieval, which can have a substantial impact on improving their performance. However, even perfect retrieval accuracy with full context does not eliminate reasoning errors, underscoring the complexity of compositional reasoning. This work not only benchmarks and highlights the limitations of current LLMs but also presents a novel data generation pipeline capable of producing challenging reasoning datasets across various domains. Overall, this research advances our understanding of reasoning in computational linguistics.
Do Large Language Models Perform Latent Multi-Hop Reasoning without Exploiting Shortcuts?
We evaluate how well Large Language Models (LLMs) latently recall and compose facts to answer multi-hop queries like "In the year Scarlett Johansson was born, the Summer Olympics were hosted in the country of". One major challenge in evaluating this ability is that LLMs may have developed shortcuts by encounters of the head entity "Scarlett Johansson" and the answer entity "United States" in the same training sequences or merely guess the answer based on frequency-based priors. To prevent shortcuts, we exclude test queries where the head and answer entities co-appear in pretraining corpora. Through careful selection of relations and facts and systematic removal of cases where models might guess answers or exploit partial matches, we construct an evaluation dataset SOCRATES (ShOrtCut-fRee lATent rEaSoning). We observe that LLMs demonstrate promising latent multi-hop reasoning abilities without exploiting shortcuts, but only for certain types of queries. For queries requiring latent recall of countries as the intermediate answer, the best models achieve 80% latent composability, but this drops to just 5% for the recall of years. Comparisons with Chain-of-Thought composability highlight a significant gap between the ability of models to reason latently versus explicitly. Analysis reveals that latent representations of the intermediate answer are constructed more often in queries with higher latent composability, and shows the emergence of latent multi-hop reasoning during pretraining.
Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs
Reasoning is a fundamental component for achieving language understanding. Among the multiple types of reasoning, conditional reasoning, the ability to draw different conclusions depending on some condition, has been understudied in large language models (LLMs). Recent prompting methods, such as chain of thought, have significantly improved LLMs on reasoning tasks. Nevertheless, there is still little understanding of what triggers reasoning abilities in LLMs. We hypothesize that code prompts can trigger conditional reasoning in LLMs trained on text and code. We propose a chain of prompts that transforms a natural language problem into code and prompts the LLM with the generated code. Our experiments find that code prompts exhibit a performance boost between 2.6 and 7.7 points on GPT 3.5 across multiple datasets requiring conditional reasoning. We then conduct experiments to discover how code prompts elicit conditional reasoning abilities and through which features. We observe that prompts need to contain natural language text accompanied by high-quality code that closely represents the semantics of the instance text. Furthermore, we show that code prompts are more efficient, requiring fewer demonstrations, and that they trigger superior state tracking of variables or key entities.
Large Language Models are In-Context Semantic Reasoners rather than Symbolic Reasoners
The emergent few-shot reasoning capabilities of Large Language Models (LLMs) have excited the natural language and machine learning community over recent years. Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear. In this work, we hypothesize that the learned semantics of language tokens do the most heavy lifting during the reasoning process. Different from human's symbolic reasoning process, the semantic representations of LLMs could create strong connections among tokens, thus composing a superficial logical chain. To test our hypothesis, we decouple semantics from the language reasoning process and evaluate three kinds of reasoning abilities, i.e., deduction, induction and abduction. Our findings reveal that semantics play a vital role in LLMs' in-context reasoning -- LLMs perform significantly better when semantics are consistent with commonsense but struggle to solve symbolic or counter-commonsense reasoning tasks by leveraging in-context new knowledge. The surprising observations question whether modern LLMs have mastered the inductive, deductive and abductive reasoning abilities as in human intelligence, and motivate research on unveiling the magic existing within the black-box LLMs. On the whole, our analysis provides a novel perspective on the role of semantics in developing and evaluating language models' reasoning abilities. Code is available at {https://github.com/XiaojuanTang/ICSR}.
From System 1 to System 2: A Survey of Reasoning Large Language Models
Achieving human-level intelligence requires refining the transition from the fast, intuitive System 1 to the slower, more deliberate System 2 reasoning. While System 1 excels in quick, heuristic decisions, System 2 relies on logical reasoning for more accurate judgments and reduced biases. Foundational Large Language Models (LLMs) excel at fast decision-making but lack the depth for complex reasoning, as they have not yet fully embraced the step-by-step analysis characteristic of true System 2 thinking. Recently, reasoning LLMs like OpenAI's o1/o3 and DeepSeek's R1 have demonstrated expert-level performance in fields such as mathematics and coding, closely mimicking the deliberate reasoning of System 2 and showcasing human-like cognitive abilities. This survey begins with a brief overview of the progress in foundational LLMs and the early development of System 2 technologies, exploring how their combination has paved the way for reasoning LLMs. Next, we discuss how to construct reasoning LLMs, analyzing their features, the core methods enabling advanced reasoning, and the evolution of various reasoning LLMs. Additionally, we provide an overview of reasoning benchmarks, offering an in-depth comparison of the performance of representative reasoning LLMs. Finally, we explore promising directions for advancing reasoning LLMs and maintain a real-time https://github.com/zzli2022/Awesome-Slow-Reason-System{GitHub Repository} to track the latest developments. We hope this survey will serve as a valuable resource to inspire innovation and drive progress in this rapidly evolving field.
SR-FoT: A Syllogistic-Reasoning Framework of Thought for Large Language Models Tackling Knowledge-based Reasoning Tasks
Deductive reasoning is a crucial logical capability that assists us in solving complex problems based on existing knowledge. Although augmented by Chain-of-Thought prompts, Large Language Models (LLMs) might not follow the correct reasoning paths. Enhancing the deductive reasoning abilities of LLMs, and leveraging their extensive built-in knowledge for various reasoning tasks, remains an open question. Attempting to mimic the human deductive reasoning paradigm, we propose a multi-stage Syllogistic-Reasoning Framework of Thought (SR-FoT) that enables LLMs to perform syllogistic deductive reasoning to handle complex knowledge-based reasoning tasks. Our SR-FoT begins by interpreting the question and then uses the interpretation and the original question to propose a suitable major premise. It proceeds by generating and answering minor premise questions in two stages to match the minor premises. Finally, it guides LLMs to use the previously generated major and minor premises to perform syllogistic deductive reasoning to derive the answer to the original question. Extensive and thorough experiments on knowledge-based reasoning tasks have demonstrated the effectiveness and advantages of our SR-FoT.
Can Retriever-Augmented Language Models Reason? The Blame Game Between the Retriever and the Language Model
Augmenting pretrained language models with retrievers to select the supporting documents has shown promise in effectively solving common NLP problems, including language modeling and question answering, in an interpretable way. In this paper, we first study the strengths and weaknesses of different retriever-augmented language models (REALM, kNN-LM, FiD coupled with DPR, and ATLAS and Flan-T5 coupled with Contriever) in reasoning over the retrieved statements in different tasks. We show how the retrieve-then-read models' limitations in reasoning are rooted both in the retriever module as well as the language model. Our experimental results demonstrate that the similarity metric used by the retrievers is generally insufficient for reasoning tasks. Additionally, we show that the language models in retriever-augmented models do not take the complicated relations between the statements into account, which leads to poor reasoning performance even when using the larger models. Moreover, we analyze the reasoning performance of large language models using multihop retrieval but we only observe minor improvements. Overall, this shows great room for further research in this area.
A Survey of Mathematical Reasoning in the Era of Multimodal Large Language Model: Benchmark, Method & Challenges
Mathematical reasoning, a core aspect of human cognition, is vital across many domains, from educational problem-solving to scientific advancements. As artificial general intelligence (AGI) progresses, integrating large language models (LLMs) with mathematical reasoning tasks is becoming increasingly significant. This survey provides the first comprehensive analysis of mathematical reasoning in the era of multimodal large language models (MLLMs). We review over 200 studies published since 2021, and examine the state-of-the-art developments in Math-LLMs, with a focus on multimodal settings. We categorize the field into three dimensions: benchmarks, methodologies, and challenges. In particular, we explore multimodal mathematical reasoning pipeline, as well as the role of (M)LLMs and the associated methodologies. Finally, we identify five major challenges hindering the realization of AGI in this domain, offering insights into the future direction for enhancing multimodal reasoning capabilities. This survey serves as a critical resource for the research community in advancing the capabilities of LLMs to tackle complex multimodal reasoning tasks.
MDK12-Bench: A Multi-Discipline Benchmark for Evaluating Reasoning in Multimodal Large Language Models
Multimodal reasoning, which integrates language and visual cues into problem solving and decision making, is a fundamental aspect of human intelligence and a crucial step toward artificial general intelligence. However, the evaluation of multimodal reasoning capabilities in Multimodal Large Language Models (MLLMs) remains inadequate. Most existing reasoning benchmarks are constrained by limited data size, narrow domain coverage, and unstructured knowledge distribution. To close these gaps, we introduce MDK12-Bench, a multi-disciplinary benchmark assessing the reasoning capabilities of MLLMs via real-world K-12 examinations. Spanning six disciplines (math, physics, chemistry, biology, geography, and information science), our benchmark comprises 140K reasoning instances across diverse difficulty levels from primary school to 12th grade. It features 6,827 instance-level knowledge point annotations based on a well-organized knowledge structure, detailed answer explanations, difficulty labels and cross-year partitions, providing a robust platform for comprehensive evaluation. Additionally, we present a novel dynamic evaluation framework to mitigate data contamination issues by bootstrapping question forms, question types, and image styles during evaluation. Extensive experiment on MDK12-Bench reveals the significant limitation of current MLLMs in multimodal reasoning. The findings on our benchmark provide insights into the development of the next-generation models. Our data and codes are available at https://github.com/LanceZPF/MDK12.
Towards Reasoning Ability of Small Language Models
Reasoning has long been viewed as an emergent property of large language models (LLMs), appearing at or above a certain scale (sim100B parameters). However, recent studies challenge this assumption, showing that small language models (SLMs) can also achieve competitive reasoning performance. SLMs are increasingly favored for their efficiency and deployability. However, there is a lack of systematic study on the reasoning abilities of diverse SLMs, including those trained from scratch or derived from LLMs through quantization, pruning, and distillation. This raises a critical question: Can SLMs achieve reasoning abilities comparable to LLMs? In this work, we systematically survey, benchmark, and analyze 72 SLMs from six model families across 14 reasoning benchmarks. For reliable evaluation, we examine four evaluation methods and compare four LLM judges against human evaluations on 800 data points. We repeat all experiments three times to ensure a robust performance assessment. Additionally, we analyze the impact of different prompting strategies in small models. Beyond accuracy, we also evaluate model robustness under adversarial conditions and intermediate reasoning steps. Our findings challenge the assumption that scaling is the only way to achieve strong reasoning. Instead, we foresee a future where SLMs with strong reasoning capabilities can be developed through structured training or post-training compression. They can serve as efficient alternatives to LLMs for reasoning-intensive tasks.
Multilingual Sentence-T5: Scalable Sentence Encoders for Multilingual Applications
Prior work on multilingual sentence embedding has demonstrated that the efficient use of natural language inference (NLI) data to build high-performance models can outperform conventional methods. However, the potential benefits from the recent ``exponential'' growth of language models with billions of parameters have not yet been fully explored. In this paper, we introduce Multilingual Sentence T5 (m-ST5), as a larger model of NLI-based multilingual sentence embedding, by extending Sentence T5, an existing monolingual model. By employing the low-rank adaptation (LoRA) technique, we have achieved a successful scaling of the model's size to 5.7 billion parameters. We conducted experiments to evaluate the performance of sentence embedding and verified that the method outperforms the NLI-based prior approach. Furthermore, we also have confirmed a positive correlation between the size of the model and its performance. It was particularly noteworthy that languages with fewer resources or those with less linguistic similarity to English benefited more from the parameter increase. Our model is available at https://huggingface.co/pkshatech/m-ST5.
Archer: A Human-Labeled Text-to-SQL Dataset with Arithmetic, Commonsense and Hypothetical Reasoning
We present Archer, a challenging bilingual text-to-SQL dataset specific to complex reasoning, including arithmetic, commonsense and hypothetical reasoning. It contains 1,042 English questions and 1,042 Chinese questions, along with 521 unique SQL queries, covering 20 English databases across 20 domains. Notably, this dataset demonstrates a significantly higher level of complexity compared to existing publicly available datasets. Our evaluation shows that Archer challenges the capabilities of current state-of-the-art models, with a high-ranked model on the Spider leaderboard achieving only 6.73% execution accuracy on Archer test set. Thus, Archer presents a significant challenge for future research in this field.
Quantifying Logical Consistency in Transformers via Query-Key Alignment
Large language models (LLMs) have demonstrated impressive performance in various natural language processing tasks, yet their ability to perform multi-step logical reasoning remains an open challenge. Although Chain-of-Thought prompting has improved logical reasoning by enabling models to generate intermediate steps, it lacks mechanisms to assess the coherence of these logical transitions. In this paper, we propose a novel, lightweight evaluation strategy for logical reasoning that uses query-key alignments inside transformer attention heads. By computing a single forward pass and extracting a "QK-score" from carefully chosen heads, our method reveals latent representations that reliably separate valid from invalid inferences, offering a scalable alternative to traditional ablation-based techniques. We also provide an empirical validation on multiple logical reasoning benchmarks, demonstrating improved robustness of our evaluation method against distractors and increased reasoning depth. The experiments were conducted on a diverse set of models, ranging from 1.5B to 70B parameters.
Polymath: A Challenging Multi-modal Mathematical Reasoning Benchmark
Multi-modal Large Language Models (MLLMs) exhibit impressive problem-solving abilities in various domains, but their visual comprehension and abstract reasoning skills remain under-evaluated. To this end, we present PolyMATH, a challenging benchmark aimed at evaluating the general cognitive reasoning abilities of MLLMs. PolyMATH comprises 5,000 manually collected high-quality images of cognitive textual and visual challenges across 10 distinct categories, including pattern recognition, spatial reasoning, and relative reasoning. We conducted a comprehensive, and quantitative evaluation of 15 MLLMs using four diverse prompting strategies, including Chain-of-Thought and Step-Back. The best scores achieved on PolyMATH are ~41%, ~36%, and ~27%, obtained by Claude-3.5 Sonnet, GPT-4o and Gemini-1.5 Pro respectively - highlighting the logical and visual complexity of these questions. A further fine-grained error analysis reveals that these models struggle to understand spatial relations and perform drawn-out, high-level reasoning. This is further strengthened by our ablation study estimating MLLM performance when given textual descriptions in place of diagrams. As evidenced by ~4% improvement over textual descriptions as opposed to actual images, we discover that models do not truly comprehend visual diagrams and the spatial information therein, and are thus prone to logical errors. Finally, we evaluate the OpenAI o1 models and find that their performance only matches the human baseline, highlighting the difficulty of the benchmark. The results on PolyMATH highlight the room for improvement in multi-modal reasoning and provide unique insights to guide the development of future MLLMs.
Pre-training Language Models for Comparative Reasoning
Comparative reasoning is a process of comparing objects, concepts, or entities to draw conclusions, which constitutes a fundamental cognitive ability. In this paper, we propose a novel framework to pre-train language models for enhancing their abilities of comparative reasoning over texts. While there have been approaches for NLP tasks that require comparative reasoning, they suffer from costly manual data labeling and limited generalizability to different tasks. Our approach introduces a novel method of collecting scalable data for text-based entity comparison, which leverages both structured and unstructured data. Moreover, we present a framework of pre-training language models via three novel objectives on comparative reasoning. Evaluation on downstream tasks including comparative question answering, question generation, and summarization shows that our pre-training framework significantly improves the comparative reasoning abilities of language models, especially under low-resource conditions. This work also releases the first integrated benchmark for comparative reasoning.
REL: Working out is all you need
Recent developments, particularly OpenAI's O1 model, have demonstrated the remarkable potential of Large Language Models (LLMs) for complex reasoning tasks. Through analysis of O1's outputs and provided sample Chain-of-Thought (CoT) demonstrations, we observe that it approaches problem-solving in a distinctly human-like manner, systematically brainstorming ideas, testing hypotheses, verifying results, and planning comprehensive solutions. These sophisticated reasoning capabilities remain notably absent in other state-of-the-art language models. In this paper, we hypothesize that this performance gap stems from the limited availability of high-quality reasoning process data in current training sets. We demonstrate that by constructing a specialized dataset focused on explicit problem-solving workflows ("worked solutions"), we can elicit substantially improved planning capabilities from existing models. Additionally, we propose the Reasoning Enhancement Loop (REL), a method for generating synthetic worked solutions.
Towards Large Reasoning Models: A Survey of Reinforced Reasoning with Large Language Models
Language has long been conceived as an essential tool for human reasoning. The breakthrough of Large Language Models (LLMs) has sparked significant research interest in leveraging these models to tackle complex reasoning tasks. Researchers have moved beyond simple autoregressive token generation by introducing the concept of "thought" -- a sequence of tokens representing intermediate steps in the reasoning process. This innovative paradigm enables LLMs' to mimic complex human reasoning processes, such as tree search and reflective thinking. Recently, an emerging trend of learning to reason has applied reinforcement learning (RL) to train LLMs to master reasoning processes. This approach enables the automatic generation of high-quality reasoning trajectories through trial-and-error search algorithms, significantly expanding LLMs' reasoning capacity by providing substantially more training data. Furthermore, recent studies demonstrate that encouraging LLMs to "think" with more tokens during test-time inference can further significantly boost reasoning accuracy. Therefore, the train-time and test-time scaling combined to show a new research frontier -- a path toward Large Reasoning Model. The introduction of OpenAI's o1 series marks a significant milestone in this research direction. In this survey, we present a comprehensive review of recent progress in LLM reasoning. We begin by introducing the foundational background of LLMs and then explore the key technical components driving the development of large reasoning models, with a focus on automated data construction, learning-to-reason techniques, and test-time scaling. We also analyze popular open-source projects at building large reasoning models, and conclude with open challenges and future research directions.
Enhancing Mathematical Reasoning in LLMs with Background Operators
We propose utilizing background operators for mathematical reasoning in large language models (LLMs). To achieve this, we define a set of fundamental mathematical predicates as the basic building blocks. For each mathematical problem, we develop a Prolog solution that includes problem-specific predicates and intermediate predicates derived from these background operators, ensuring that each solution adheres to the defined operator set. We introduce the MATH-Prolog corpus, which is derived from the counting and probability categories of the MATH corpus. For efficient data augmentation, we apply K-fold cross-validated self-training. This method incrementally generates new Prolog solutions for each fold, incorporating those verified as correct into the training set throughout the model training process. Our experimental results demonstrate that 5-fold crossvalidated self-training effectively identifies new, accurate Prolog solutions, achieving an accuracy of 84.6% on the cross-validated set, and 84.8% on the test set during fine-tuning the Meta-Llama-3.1-8B-Instruct model. This approach successfully uncovers new solutions with fully computable inference steps for previously unseen problems. Additionally, incorporating the background mathematical predicates into the prompt enhances solution coverage.
Cross-lingual Argumentation Mining: Machine Translation (and a bit of Projection) is All You Need!
Argumentation mining (AM) requires the identification of complex discourse structures and has lately been applied with success monolingually. In this work, we show that the existing resources are, however, not adequate for assessing cross-lingual AM, due to their heterogeneity or lack of complexity. We therefore create suitable parallel corpora by (human and machine) translating a popular AM dataset consisting of persuasive student essays into German, French, Spanish, and Chinese. We then compare (i) annotation projection and (ii) bilingual word embeddings based direct transfer strategies for cross-lingual AM, finding that the former performs considerably better and almost eliminates the loss from cross-lingual transfer. Moreover, we find that annotation projection works equally well when using either costly human or cheap machine translations. Our code and data are available at http://github.com/UKPLab/coling2018-xling_argument_mining.
Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths
Advanced models such as OpenAI o1 exhibit impressive problem-solving capabilities through step-by-step reasoning. However, they may still falter on more complex problems, making errors that disrupt their reasoning paths. We attribute this to the expansive solution space, where each step has the risk of diverging into mistakes. To enhance language model reasoning, we introduce a specialized training framework called Reasoning Paths Optimization (RPO), which enables learning to reason and explore from diverse paths. Our approach encourages favorable branches at each reasoning step while penalizing unfavorable ones, enhancing the model's overall problem-solving performance. Reasoning Paths Optimization does not rely on large-scale human-annotated rationales or outputs from closed-source models, making it scalable and data-efficient. We focus on multi-step reasoning tasks, such as math word problems and science-based exam questions. The experiments demonstrate that our framework significantly enhances the reasoning performance of large language models, with up to 3.1% and 4.3% improvement on GSM8K and MMLU (STEM) respectively. Our data and code can be found at https://reasoning-paths.github.io.
Resolving Legalese: A Multilingual Exploration of Negation Scope Resolution in Legal Documents
Resolving the scope of a negation within a sentence is a challenging NLP task. The complexity of legal texts and the lack of annotated in-domain negation corpora pose challenges for state-of-the-art (SotA) models when performing negation scope resolution on multilingual legal data. Our experiments demonstrate that models pre-trained without legal data underperform in the task of negation scope resolution. Our experiments, using language models exclusively fine-tuned on domains like literary texts and medical data, yield inferior results compared to the outcomes documented in prior cross-domain experiments. We release a new set of annotated court decisions in German, French, and Italian and use it to improve negation scope resolution in both zero-shot and multilingual settings. We achieve token-level F1-scores of up to 86.7% in our zero-shot cross-lingual experiments, where the models are trained on two languages of our legal datasets and evaluated on the third. Our multilingual experiments, where the models were trained on all available negation data and evaluated on our legal datasets, resulted in F1-scores of up to 91.1%.
CUNI Submission to MRL 2023 Shared Task on Multi-lingual Multi-task Information Retrieval
We present the Charles University system for the MRL~2023 Shared Task on Multi-lingual Multi-task Information Retrieval. The goal of the shared task was to develop systems for named entity recognition and question answering in several under-represented languages. Our solutions to both subtasks rely on the translate-test approach. We first translate the unlabeled examples into English using a multilingual machine translation model. Then, we run inference on the translated data using a strong task-specific model. Finally, we project the labeled data back into the original language. To keep the inferred tags on the correct positions in the original language, we propose a method based on scoring the candidate positions using a label-sensitive translation model. In both settings, we experiment with finetuning the classification models on the translated data. However, due to a domain mismatch between the development data and the shared task validation and test sets, the finetuned models could not outperform our baselines.
Deductive Beam Search: Decoding Deducible Rationale for Chain-of-Thought Reasoning
Recent advancements have significantly augmented the reasoning capabilities of Large Language Models (LLMs) through various methodologies, especially chain-of-thought (CoT) reasoning. However, previous methods fail to address reasoning errors in intermediate steps, leading to accumulative errors. In this paper, we propose Deductive Beam Search (DBS), which seamlessly integrates CoT and deductive reasoning with step-wise beam search for LLMs. Our approach deploys a verifier, verifying the deducibility of a reasoning step and its premises, thus alleviating the error accumulation. Furthermore, we introduce a scalable and labor-free data construction method to amplify our model's verification capabilities. Extensive experiments demonstrate that our approach significantly enhances the base performance of LLMs of various scales (7B, 13B, 70B, and ChatGPT) across 8 reasoning datasets from 3 diverse reasoning genres, including arithmetic, commonsense, and symbolic. Moreover, our analysis proves DBS's capability of detecting diverse and subtle reasoning errors and robustness on different model scales.
Progressive Multimodal Reasoning via Active Retrieval
Multi-step multimodal reasoning tasks pose significant challenges for multimodal large language models (MLLMs), and finding effective ways to enhance their performance in such scenarios remains an unresolved issue. In this paper, we propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs through Active Retrieval (AR) and Monte Carlo Tree Search (MCTS). Our approach begins with the development of a unified retrieval module that retrieves key supporting insights for solving complex reasoning problems from a hybrid-modal retrieval corpus. To bridge the gap in automated multimodal reasoning verification, we employ the MCTS algorithm combined with an active retrieval mechanism, which enables the automatic generation of step-wise annotations. This strategy dynamically retrieves key insights for each reasoning step, moving beyond traditional beam search sampling to improve the diversity and reliability of the reasoning space. Additionally, we introduce a process reward model that aligns progressively to support the automatic verification of multimodal reasoning tasks. Experimental results across three complex multimodal reasoning benchmarks confirm the effectiveness of the AR-MCTS framework in enhancing the performance of various multimodal models. Further analysis demonstrates that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.
Multi-Step Reasoning in Korean and the Emergent Mirage
We introduce HRMCR (HAE-RAE Multi-Step Commonsense Reasoning), a benchmark designed to evaluate large language models' ability to perform multi-step reasoning in culturally specific contexts, focusing on Korean. The questions are automatically generated via templates and algorithms, requiring LLMs to integrate Korean cultural knowledge into sequential reasoning steps. Consistent with prior observations on emergent abilities, our experiments reveal that models trained on fewer than \(2 \cdot 10^{25}\) training FLOPs struggle to solve any questions, showing near-zero performance. Beyond this threshold, performance improves sharply. State-of-the-art models (e.g., O1) still score under 50\%, underscoring the difficulty of our tasks. Notably, stepwise analysis suggests the observed emergent behavior may stem from compounding errors across multiple steps rather than reflecting a genuinely new capability. We publicly release the benchmark and commit to regularly updating the dataset to prevent contamination.
Testing the General Deductive Reasoning Capacity of Large Language Models Using OOD Examples
Given the intractably large size of the space of proofs, any model that is capable of general deductive reasoning must generalize to proofs of greater complexity. Recent studies have shown that large language models (LLMs) possess some abstract deductive reasoning ability given chain-of-thought prompts. However, they have primarily been tested on proofs using modus ponens or of a specific size, and from the same distribution as the in-context examples. To measure the general deductive reasoning ability of LLMs, we test on a broad set of deduction rules and measure their ability to generalize to more complex proofs from simpler demonstrations from multiple angles: depth-, width-, and compositional generalization. To facilitate systematic exploration, we construct a new synthetic and programmable reasoning dataset that enables control over deduction rules and proof complexity. Our experiments on four LLMs of various sizes and training objectives show that they are able to generalize to longer and compositional proofs. However, they require explicit demonstrations to produce hypothetical subproofs, specifically in proof by cases and proof by contradiction.
Hint Marginalization for Improved Reasoning in Large Language Models
Large Language Models (LLMs) have exhibited an impressive capability to perform reasoning tasks, especially if they are encouraged to generate a sequence of intermediate steps. Reasoning performance can be improved by suitably combining multiple LLM responses, generated either in parallel in a single query, or via sequential interactions with LLMs throughout the reasoning process. Existing strategies for combination, such as self-consistency and progressive-hint-prompting, make inefficient usage of the LLM responses. We present Hint Marginalization, a novel and principled algorithmic framework to enhance the reasoning capabilities of LLMs. Our approach can be viewed as an iterative sampling strategy for forming a Monte Carlo approximation of an underlying distribution of answers, with the goal of identifying the mode the most likely answer. Empirical evaluation on several benchmark datasets for arithmetic reasoning demonstrates the superiority of the proposed approach.
Ensembling Large Language Models with Process Reward-Guided Tree Search for Better Complex Reasoning
Despite recent advances in large language models, open-source models often struggle to consistently perform well on complex reasoning tasks. Existing ensemble methods, whether applied at the token or output levels, fail to address these challenges. In response, we present Language model Ensemble with Monte Carlo Tree Search (LE-MCTS), a novel framework for process-level ensembling of language models. LE-MCTS formulates step-by-step reasoning with an ensemble of language models as a Markov decision process. In this framework, states represent intermediate reasoning paths, while actions consist of generating the next reasoning step using one of the language models selected from a predefined pool. Guided by a process-based reward model, LE-MCTS performs a tree search over the reasoning steps generated by different language models, identifying the most accurate reasoning chain. Experimental results on five mathematical reasoning benchmarks demonstrate that our approach outperforms both single language model decoding algorithms and language model ensemble methods. Notably, LE-MCTS improves performance by 3.6% and 4.3% on the MATH and MQA datasets, respectively, highlighting its effectiveness in solving complex reasoning problems.
VERUS-LM: a Versatile Framework for Combining LLMs with Symbolic Reasoning
A recent approach to neurosymbolic reasoning is to explicitly combine the strengths of large language models (LLMs) and symbolic solvers to tackle complex reasoning tasks. However, current approaches face significant limitations, including poor generalizability due to task-specific prompts, inefficiencies caused by the lack of separation between knowledge and queries, and restricted inferential capabilities. These shortcomings hinder their scalability and applicability across diverse domains. In this paper, we introduce VERUS-LM, a novel framework designed to address these challenges. VERUS-LM employs a generic prompting mechanism, clearly separates domain knowledge from queries, and supports a wide range of different logical reasoning tasks. This framework enhances adaptability, reduces computational cost, and allows for richer forms of reasoning, such as optimization and constraint satisfaction. We show that our approach succeeds in diverse reasoning on a novel dataset, markedly outperforming LLMs. Additionally, our system achieves competitive results on common reasoning benchmarks when compared to other state-of-the-art approaches, and significantly surpasses them on the difficult AR-LSAT dataset. By pushing the boundaries of hybrid reasoning, VERUS-LM represents a significant step towards more versatile neurosymbolic AI systems
HellaSwag-Pro: A Large-Scale Bilingual Benchmark for Evaluating the Robustness of LLMs in Commonsense Reasoning
Large language models (LLMs) have shown remarkable capabilities in commonsense reasoning; however, some variations in questions can trigger incorrect responses. Do these models truly understand commonsense knowledge, or just memorize expression patterns? To investigate this question, we present the first extensive robustness evaluation of LLMs in commonsense reasoning. We introduce HellaSwag-Pro, a large-scale bilingual benchmark consisting of 11,200 cases, by designing and compiling seven types of question variants. To construct this benchmark, we propose a two-stage method to develop Chinese HellaSwag, a finely annotated dataset comprising 12,000 instances across 56 categories. We conduct extensive experiments on 41 representative LLMs, revealing that these LLMs are far from robust in commonsense reasoning. Furthermore, this robustness varies depending on the language in which the LLM is tested. This work establishes a high-quality evaluation benchmark, with extensive experiments offering valuable insights to the community in commonsense reasoning for LLMs.
Reasoning about Ambiguous Definite Descriptions
Natural language reasoning plays an increasingly important role in improving language models' ability to solve complex language understanding tasks. An interesting use case for reasoning is the resolution of context-dependent ambiguity. But no resources exist to evaluate how well Large Language Models can use explicit reasoning to resolve ambiguity in language. We propose to use ambiguous definite descriptions for this purpose and create and publish the first benchmark dataset consisting of such phrases. Our method includes all information required to resolve the ambiguity in the prompt, which means a model does not require anything but reasoning to do well. We find this to be a challenging task for recent LLMs. Code and data available at: https://github.com/sfschouten/exploiting-ambiguity
RobustLR: Evaluating Robustness to Logical Perturbation in Deductive Reasoning
Transformers have been shown to be able to perform deductive reasoning on a logical rulebase containing rules and statements written in English natural language. While the progress is promising, it is currently unclear if these models indeed perform logical reasoning by understanding the underlying logical semantics in the language. To this end, we propose RobustLR, a suite of evaluation datasets that evaluate the robustness of these models to minimal logical edits in rulebases and some standard logical equivalence conditions. In our experiments with RoBERTa and T5, we find that the models trained in prior works do not perform consistently on the different perturbations in RobustLR, thus showing that the models are not robust to the proposed logical perturbations. Further, we find that the models find it especially hard to learn logical negation and disjunction operators. Overall, using our evaluation sets, we demonstrate some shortcomings of the deductive reasoning-based language models, which can eventually help towards designing better models for logical reasoning over natural language. All the datasets and code base have been made publicly available.
Distillation and Refinement of Reasoning in Small Language Models for Document Re-ranking
We present a novel approach for training small language models for reasoning-intensive document ranking that combines knowledge distillation with reinforcement learning optimization. While existing methods often rely on expensive human annotations or large black-box language models, our methodology leverages web data and a teacher LLM to automatically generate high-quality training examples with relevance explanations. By framing document ranking as a reinforcement learning problem and incentivizing explicit reasoning capabilities, we train a compact 3B parameter language model that achieves state-of-the-art performance on the BRIGHT benchmark. Our model ranks third on the leaderboard while using substantially fewer parameters than other approaches, outperforming models that are over 20 times larger. Through extensive experiments, we demonstrate that generating explanations during inference, rather than directly predicting relevance scores, enables more effective reasoning with smaller language models. The self-supervised nature of our method offers a scalable and interpretable solution for modern information retrieval systems.
Learning From Correctness Without Prompting Makes LLM Efficient Reasoner
Large language models (LLMs) have demonstrated outstanding performance across various tasks, yet they still exhibit limitations such as hallucination, unfaithful reasoning, and toxic content. One potential approach to mitigate these issues is learning from human or external feedback (e.g. tools). In this paper, we introduce an intrinsic self-correct reasoning framework for LLMs that eliminates the need for human feedback, external tools, and handcraft prompts. The proposed framework, based on a multi-step reasoning paradigm Learning from Correctness (LeCo), improves reasoning performance without needing to learn from errors. This paradigm prioritizes learning from correct reasoning steps, and a unique method to measure confidence for each reasoning step based on generation logits. Experimental results across various multi-step reasoning tasks demonstrate the effectiveness of the framework in improving reasoning performance with reduced token consumption.
PolyLM: An Open Source Polyglot Large Language Model
Large language models (LLMs) demonstrate remarkable ability to comprehend, reason, and generate following nature language instructions. However, the development of LLMs has been primarily focused on high-resource languages, such as English, thereby limiting their applicability and research in other languages. Consequently, we present PolyLM, a multilingual LLM trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B. To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training. Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning. To assess the model's performance, we collect several existing multilingual tasks, including multilingual understanding, question answering, generation, and translation. Extensive experiments show that PolyLM surpasses other open-source models such as LLaMA and BLOOM on multilingual tasks while maintaining comparable performance in English. Our models, alone with the instruction data and multilingual benchmark, are available at: https://modelscope.cn/models/damo/nlp_polylm_13b_text_generation.