Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMedMax: Mixed-Modal Instruction Tuning for Training Biomedical Assistants
Recent advancements in mixed-modal generative models have enabled flexible integration of information across image-text content. These models have opened new avenues for developing unified biomedical assistants capable of analyzing biomedical images, answering complex questions about them, and predicting the impact of medical procedures on a patient's health. However, existing resources face challenges such as limited data availability, narrow domain coverage, and restricted sources (e.g., medical papers). To address these gaps, we present MedMax, the first large-scale multimodal biomedical instruction-tuning dataset for mixed-modal foundation models. With 1.47 million instances, MedMax encompasses a diverse range of tasks, including multimodal content generation (interleaved image-text data), biomedical image captioning and generation, visual chatting, and report understanding. These tasks span diverse medical domains such as radiology and histopathology. Subsequently, we fine-tune a mixed-modal foundation model on the MedMax dataset, achieving significant performance improvements: a 26% gain over the Chameleon model and an 18.3% improvement over GPT-4o across 12 downstream biomedical visual question-answering tasks. Additionally, we introduce a unified evaluation suite for biomedical tasks, providing a robust framework to guide the development of next-generation mixed-modal biomedical AI assistants.
Chameleon: Mixed-Modal Early-Fusion Foundation Models
We present Chameleon, a family of early-fusion token-based mixed-modal models capable of understanding and generating images and text in any arbitrary sequence. We outline a stable training approach from inception, an alignment recipe, and an architectural parameterization tailored for the early-fusion, token-based, mixed-modal setting. The models are evaluated on a comprehensive range of tasks, including visual question answering, image captioning, text generation, image generation, and long-form mixed modal generation. Chameleon demonstrates broad and general capabilities, including state-of-the-art performance in image captioning tasks, outperforms Llama-2 in text-only tasks while being competitive with models such as Mixtral 8x7B and Gemini-Pro, and performs non-trivial image generation, all in a single model. It also matches or exceeds the performance of much larger models, including Gemini Pro and GPT-4V, according to human judgments on a new long-form mixed-modal generation evaluation, where either the prompt or outputs contain mixed sequences of both images and text. Chameleon marks a significant step forward in a unified modeling of full multimodal documents.
Show-o: One Single Transformer to Unify Multimodal Understanding and Generation
We present a unified transformer, i.e., Show-o, that unifies multimodal understanding and generation. Unlike fully autoregressive models, Show-o unifies autoregressive and (discrete) diffusion modeling to adaptively handle inputs and outputs of various and mixed modalities. The unified model flexibly supports a wide range of vision-language tasks including visual question-answering, text-to-image generation, text-guided inpainting/extrapolation, and mixed-modality generation. Across various benchmarks, it demonstrates comparable or superior performance to existing individual models with an equivalent or larger number of parameters tailored for understanding or generation. This significantly highlights its potential as a next-generation foundation model. Code and models are released at https://github.com/showlab/Show-o.
Scaling Laws for Generative Mixed-Modal Language Models
Generative language models define distributions over sequences of tokens that can represent essentially any combination of data modalities (e.g., any permutation of image tokens from VQ-VAEs, speech tokens from HuBERT, BPE tokens for language or code, and so on). To better understand the scaling properties of such mixed-modal models, we conducted over 250 experiments using seven different modalities and model sizes ranging from 8 million to 30 billion, trained on 5-100 billion tokens. We report new mixed-modal scaling laws that unify the contributions of individual modalities and the interactions between them. Specifically, we explicitly model the optimal synergy and competition due to data and model size as an additive term to previous uni-modal scaling laws. We also find four empirical phenomena observed during the training, such as emergent coordinate-ascent style training that naturally alternates between modalities, guidelines for selecting critical hyper-parameters, and connections between mixed-modal competition and training stability. Finally, we test our scaling law by training a 30B speech-text model, which significantly outperforms the corresponding unimodal models. Overall, our research provides valuable insights into the design and training of mixed-modal generative models, an important new class of unified models that have unique distributional properties.
Task Vectors are Cross-Modal
We investigate the internal representations of vision-and-language models (VLMs) and how they encode task representations. We consider tasks specified through examples or instructions, using either text or image inputs. Surprisingly, we find that conceptually similar tasks are mapped to similar task vector representations, regardless of how they are specified. Our findings suggest that to output answers, tokens in VLMs undergo three distinct phases: input, task, and answer, a process which is consistent across different modalities and specifications. The task vectors we identify in VLMs are general enough to be derived in one modality (e.g., text) and transferred to another (e.g., image). Additionally, we find that ensembling exemplar and instruction based task vectors produce better task representations. Taken together, these insights shed light on the underlying mechanisms of VLMs, particularly their ability to represent tasks in a shared manner across different modalities and task specifications. Project page: https://task-vectors-are-cross-modal.github.io.
Multimodal Deep Learning
This book is the result of a seminar in which we reviewed multimodal approaches and attempted to create a solid overview of the field, starting with the current state-of-the-art approaches in the two subfields of Deep Learning individually. Further, modeling frameworks are discussed where one modality is transformed into the other, as well as models in which one modality is utilized to enhance representation learning for the other. To conclude the second part, architectures with a focus on handling both modalities simultaneously are introduced. Finally, we also cover other modalities as well as general-purpose multi-modal models, which are able to handle different tasks on different modalities within one unified architecture. One interesting application (Generative Art) eventually caps off this booklet.
MixEval-X: Any-to-Any Evaluations from Real-World Data Mixtures
Perceiving and generating diverse modalities are crucial for AI models to effectively learn from and engage with real-world signals, necessitating reliable evaluations for their development. We identify two major issues in current evaluations: (1) inconsistent standards, shaped by different communities with varying protocols and maturity levels; and (2) significant query, grading, and generalization biases. To address these, we introduce MixEval-X, the first any-to-any real-world benchmark designed to optimize and standardize evaluations across input and output modalities. We propose multi-modal benchmark mixture and adaptation-rectification pipelines to reconstruct real-world task distributions, ensuring evaluations generalize effectively to real-world use cases. Extensive meta-evaluations show our approach effectively aligns benchmark samples with real-world task distributions and the model rankings correlate strongly with that of crowd-sourced real-world evaluations (up to 0.98). We provide comprehensive leaderboards to rerank existing models and organizations and offer insights to enhance understanding of multi-modal evaluations and inform future research.
Instruct-Imagen: Image Generation with Multi-modal Instruction
This paper presents instruct-imagen, a model that tackles heterogeneous image generation tasks and generalizes across unseen tasks. We introduce *multi-modal instruction* for image generation, a task representation articulating a range of generation intents with precision. It uses natural language to amalgamate disparate modalities (e.g., text, edge, style, subject, etc.), such that abundant generation intents can be standardized in a uniform format. We then build instruct-imagen by fine-tuning a pre-trained text-to-image diffusion model with a two-stage framework. First, we adapt the model using the retrieval-augmented training, to enhance model's capabilities to ground its generation on external multimodal context. Subsequently, we fine-tune the adapted model on diverse image generation tasks that requires vision-language understanding (e.g., subject-driven generation, etc.), each paired with a multi-modal instruction encapsulating the task's essence. Human evaluation on various image generation datasets reveals that instruct-imagen matches or surpasses prior task-specific models in-domain and demonstrates promising generalization to unseen and more complex tasks.
Multi-Modal Generative Embedding Model
Most multi-modal tasks can be formulated into problems of either generation or embedding. Existing models usually tackle these two types of problems by decoupling language modules into a text decoder for generation, and a text encoder for embedding. To explore the minimalism of multi-modal paradigms, we attempt to achieve only one model per modality in this work. We propose a Multi-Modal Generative Embedding Model (MM-GEM), whereby the generative and embedding objectives are encapsulated in one Large Language Model. We also propose a PoolAggregator to boost efficiency and enable the ability of fine-grained embedding and generation. A surprising finding is that these two objectives do not significantly conflict with each other. For example, MM-GEM instantiated from ViT-Large and TinyLlama shows competitive performance on benchmarks for multimodal embedding models such as cross-modal retrieval and zero-shot classification, while has good ability of image captioning. Additionally, MM-GEM can seamlessly execute region-level image caption generation and retrieval tasks. Besides, the advanced text model in MM-GEM brings over 5% improvement in Recall@1 for long text and image retrieval.
Unified Discrete Diffusion for Simultaneous Vision-Language Generation
The recently developed discrete diffusion models perform extraordinarily well in the text-to-image task, showing significant promise for handling the multi-modality signals. In this work, we harness these traits and present a unified multimodal generation model that can conduct both the "modality translation" and "multi-modality generation" tasks using a single model, performing text-based, image-based, and even vision-language simultaneous generation. Specifically, we unify the discrete diffusion process for multimodal signals by proposing a unified transition matrix. Moreover, we design a mutual attention module with fused embedding layer and a unified objective function to emphasise the inter-modal linkages, which are vital for multi-modality generation. Extensive experiments indicate that our proposed method can perform comparably to the state-of-the-art solutions in various generation tasks.
PILL: Plug Into LLM with Adapter Expert and Attention Gate
Due to the remarkable capabilities of powerful Large Language Models (LLMs) in effectively following instructions, there has been a growing number of assistants in the community to assist humans. Recently, significant progress has been made in the development of Vision Language Models (VLMs), expanding the capabilities of LLMs and enabling them to execute more diverse instructions. However, it is foreseeable that models will likely need to handle tasks involving additional modalities such as speech, video, and others. This poses a particularly prominent challenge of dealing with the complexity of mixed modalities. To address this, we introduce a novel architecture called PILL: Plug Into LLM with adapter expert and attention gate to better decouple these complex modalities and leverage efficient fine-tuning. We introduce two modules: Firstly, utilizing Mixture-of-Modality-Adapter-Expert to independently handle different modalities, enabling better adaptation to downstream tasks while preserving the expressive capability of the original model. Secondly, by introducing Modality-Attention-Gating, which enables adaptive control of the contribution of modality tokens to the overall representation. In addition, we have made improvements to the Adapter to enhance its learning and expressive capabilities. Experimental results demonstrate that our approach exhibits competitive performance compared to other mainstream methods for modality fusion. For researchers interested in our work, we provide free access to the code and models at https://github.com/DsaltYfish/PILL.
VLM: Task-agnostic Video-Language Model Pre-training for Video Understanding
We present a simplified, task-agnostic multi-modal pre-training approach that can accept either video or text input, or both for a variety of end tasks. Existing pre-training are task-specific by adopting either a single cross-modal encoder that requires both modalities, limiting their use for retrieval-style end tasks or more complex multitask learning with two unimodal encoders, limiting early cross-modal fusion. We instead introduce new pretraining masking schemes that better mix across modalities (e.g. by forcing masks for text to predict the closest video embeddings) while also maintaining separability (e.g. unimodal predictions are sometimes required, without using all the input). Experimental results show strong performance across a wider range of tasks than any previous methods, often outperforming task-specific pre-training. Code is made available at https://github.com/pytorch/fairseq/tree/main/examples/MMPT.
Learning Task Representations from In-Context Learning
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning (ICL), where models adapt to new tasks through example-based prompts without requiring parameter updates. However, understanding how tasks are internally encoded and generalized remains a challenge. To address some of the empirical and technical gaps in the literature, we introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads within the transformer architecture. This approach computes a single task vector as a weighted sum of attention heads, with the weights optimized causally via gradient descent. Our findings show that existing methods fail to generalize effectively to modalities beyond text. In response, we also design a benchmark to evaluate whether a task vector can preserve task fidelity in functional regression tasks. The proposed method successfully extracts task-specific information from in-context demonstrations and excels in both text and regression tasks, demonstrating its generalizability across modalities. Moreover, ablation studies show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
Multi-Modal Experience Inspired AI Creation
AI creation, such as poem or lyrics generation, has attracted increasing attention from both industry and academic communities, with many promising models proposed in the past few years. Existing methods usually estimate the outputs based on single and independent visual or textual information. However, in reality, humans usually make creations according to their experiences, which may involve different modalities and be sequentially correlated. To model such human capabilities, in this paper, we define and solve a novel AI creation problem based on human experiences. More specifically, we study how to generate texts based on sequential multi-modal information. Compared with the previous works, this task is much more difficult because the designed model has to well understand and adapt the semantics among different modalities and effectively convert them into the output in a sequential manner. To alleviate these difficulties, we firstly design a multi-channel sequence-to-sequence architecture equipped with a multi-modal attention network. For more effective optimization, we then propose a curriculum negative sampling strategy tailored for the sequential inputs. To benchmark this problem and demonstrate the effectiveness of our model, we manually labeled a new multi-modal experience dataset. With this dataset, we conduct extensive experiments by comparing our model with a series of representative baselines, where we can demonstrate significant improvements in our model based on both automatic and human-centered metrics. The code and data are available at: https://github.com/Aman-4-Real/MMTG.
PaCE: Unified Multi-modal Dialogue Pre-training with Progressive and Compositional Experts
Perceiving multi-modal information and fulfilling dialogues with humans is a long-term goal of artificial intelligence. Pre-training is commonly regarded as an effective approach for multi-modal dialogue. However, due to the limited availability of multi-modal dialogue data, there is still scarce research on multi-modal dialogue pre-training. Yet another intriguing challenge emerges from the encompassing nature of multi-modal dialogue, which involves various modalities and tasks. Moreover, new forms of tasks may arise at unpredictable points in the future. Hence, it is essential for designed multi-modal dialogue models to possess sufficient flexibility to adapt to such scenarios. This paper proposes PaCE, a unified, structured, compositional multi-modal dialogue pre-training framework. It utilizes a combination of several fundamental experts to accommodate multiple dialogue-related tasks and can be pre-trained using limited dialogue and extensive non-dialogue multi-modal data. Furthermore, we propose a progressive training method where old experts from the past can assist new experts, facilitating the expansion of their capabilities. Experimental results demonstrate that PaCE achieves state-of-the-art results on eight multi-modal dialog benchmarks.
mPLUG-2: A Modularized Multi-modal Foundation Model Across Text, Image and Video
Recent years have witnessed a big convergence of language, vision, and multi-modal pretraining. In this work, we present mPLUG-2, a new unified paradigm with modularized design for multi-modal pretraining, which can benefit from modality collaboration while addressing the problem of modality entanglement. In contrast to predominant paradigms of solely relying on sequence-to-sequence generation or encoder-based instance discrimination, mPLUG-2 introduces a multi-module composition network by sharing common universal modules for modality collaboration and disentangling different modality modules to deal with modality entanglement. It is flexible to select different modules for different understanding and generation tasks across all modalities including text, image, and video. Empirical study shows that mPLUG-2 achieves state-of-the-art or competitive results on a broad range of over 30 downstream tasks, spanning multi-modal tasks of image-text and video-text understanding and generation, and uni-modal tasks of text-only, image-only, and video-only understanding. Notably, mPLUG-2 shows new state-of-the-art results of 48.0 top-1 accuracy and 80.3 CIDEr on the challenging MSRVTT video QA and video caption tasks with a far smaller model size and data scale. It also demonstrates strong zero-shot transferability on vision-language and video-language tasks. Code and models will be released in https://github.com/alibaba/AliceMind.
The (R)Evolution of Multimodal Large Language Models: A Survey
Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are being devoted to the development of Multimodal Large Language Models (MLLMs). These models can seamlessly integrate visual and textual modalities, both as input and output, while providing a dialogue-based interface and instruction-following capabilities. In this paper, we provide a comprehensive review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques. We also conduct a detailed analysis of these models across a wide range of tasks, including visual grounding, image generation and editing, visual understanding, and domain-specific applications. Additionally, we compile and describe training datasets and evaluation benchmarks, conducting comparisons among existing models in terms of performance and computational requirements. Overall, this survey offers a comprehensive overview of the current state of the art, laying the groundwork for future MLLMs.
Uni-Perceiver: Pre-training Unified Architecture for Generic Perception for Zero-shot and Few-shot Tasks
Biological intelligence systems of animals perceive the world by integrating information in different modalities and processing simultaneously for various tasks. In contrast, current machine learning research follows a task-specific paradigm, leading to inefficient collaboration between tasks and high marginal costs of developing perception models for new tasks. In this paper, we present a generic perception architecture named Uni-Perceiver, which processes a variety of modalities and tasks with unified modeling and shared parameters. Specifically, Uni-Perceiver encodes different task inputs and targets from arbitrary modalities into a unified representation space with a modality-agnostic Transformer encoder and lightweight modality-specific tokenizers. Different perception tasks are modeled as the same formulation, that is, finding the maximum likelihood target for each input through the similarity of their representations. The model is pre-trained on several uni-modal and multi-modal tasks, and evaluated on a variety of downstream tasks, including novel tasks that did not appear in the pre-training stage. Results show that our pre-trained model without any tuning can achieve reasonable performance even on novel tasks. The performance can be improved to a level close to state-of-the-art methods by conducting prompt tuning on 1% of downstream task data. Full-data fine-tuning further delivers results on par with or better than state-of-the-art results. Code shall be released.
Towards Unifying Medical Vision-and-Language Pre-training via Soft Prompts
Medical vision-and-language pre-training (Med-VLP) has shown promising improvements on many downstream medical tasks owing to its applicability to extracting generic representations from medical images and texts. Practically, there exist two typical types, i.e., the fusion-encoder type and the dual-encoder type, depending on whether a heavy fusion module is used. The former is superior at multi-modal tasks owing to the sufficient interaction between modalities; the latter is good at uni-modal and cross-modal tasks due to the single-modality encoding ability. To take advantage of these two types, we propose an effective yet straightforward scheme named PTUnifier to unify the two types. We first unify the input format by introducing visual and textual prompts, which serve as a feature bank that stores the most representative images/texts. By doing so, a single model could serve as a foundation model that processes various tasks adopting different input formats (i.e., image-only, text-only, and image-text-pair). Furthermore, we construct a prompt pool (instead of static ones) to improve diversity and scalability. Experimental results show that our approach achieves state-of-the-art results on a broad range of tasks, spanning uni-modal tasks (i.e., image/text classification and text summarization), cross-modal tasks (i.e., image-to-text generation and image-text/text-image retrieval), and multi-modal tasks (i.e., visual question answering), demonstrating the effectiveness of our approach. Note that the adoption of prompts is orthogonal to most existing Med-VLP approaches and could be a beneficial and complementary extension to these approaches.
Zipper: A Multi-Tower Decoder Architecture for Fusing Modalities
Integrating multiple generative foundation models, especially those trained on different modalities, into something greater than the sum of its parts poses significant challenges. Two key hurdles are the availability of aligned data (concepts that contain similar meaning but is expressed differently in different modalities), and effectively leveraging unimodal representations in cross-domain generative tasks, without compromising their original unimodal capabilities. We propose Zipper, a multi-tower decoder architecture that addresses these concerns by using cross-attention to flexibly compose multimodal generative models from independently pre-trained unimodal decoders. In our experiments fusing speech and text modalities, we show the proposed architecture performs very competitively in scenarios with limited aligned text-speech data. We also showcase the flexibility of our model to selectively maintain unimodal (e.g., text-to-text generation) generation performance by freezing the corresponding modal tower (e.g. text). In cross-modal tasks such as automatic speech recognition (ASR) where the output modality is text, we show that freezing the text backbone results in negligible performance degradation. In cross-modal tasks such as text-to-speech generation (TTS) where the output modality is speech, we show that using a pre-trained speech backbone results in superior performance to the baseline.
From Introspection to Best Practices: Principled Analysis of Demonstrations in Multimodal In-Context Learning
Motivated by in-context learning (ICL) capabilities of Large Language models (LLMs), multimodal LLMs with additional visual modality are also exhibited with similar ICL abilities when multiple image-text pairs are provided as demonstrations. However, relatively less work has been done to investigate the principles behind how and why multimodal ICL works. We conduct a systematic and principled evaluation of multimodal ICL for models of different scales on a broad spectrum of new yet critical tasks. Through perturbations over different modality information, we show that modalities matter differently across tasks in multimodal ICL. Considering such modality impact, we further utilize modality-driven demonstration strategies to boost ICL performance. We also identify that demonstration selection is closely related to the models' ability to capture task inductive biases from multimodal ICL. Our principled analysis provides a comprehensive way of understanding the role of demonstrations in multimodal in-context learning, and sheds light on effectively improving multimodal ICL on a wide range of tasks even if those tasks are not seen in or even contradict pretraining data.
Multi-modal Latent Diffusion
Multi-modal data-sets are ubiquitous in modern applications, and multi-modal Variational Autoencoders are a popular family of models that aim to learn a joint representation of the different modalities. However, existing approaches suffer from a coherence-quality tradeoff, where models with good generation quality lack generative coherence across modalities, and vice versa. We discuss the limitations underlying the unsatisfactory performance of existing methods, to motivate the need for a different approach. We propose a novel method that uses a set of independently trained, uni-modal, deterministic autoencoders. Individual latent variables are concatenated into a common latent space, which is fed to a masked diffusion model to enable generative modeling. We also introduce a new multi-time training method to learn the conditional score network for multi-modal diffusion. Our methodology substantially outperforms competitors in both generation quality and coherence, as shown through an extensive experimental campaign.
u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model
Recent advances such as LLaVA and Mini-GPT4 have successfully integrated visual information into LLMs, yielding inspiring outcomes and giving rise to a new generation of multi-modal LLMs, or MLLMs. Nevertheless, these methods struggle with hallucinations and the mutual interference between tasks. To tackle these problems, we propose an efficient and accurate approach to adapt to downstream tasks by utilizing LLM as a bridge to connect multiple expert models, namely u-LLaVA. Firstly, we incorporate the modality alignment module and multi-task modules into LLM. Then, we reorganize or rebuild multi-type public datasets to enable efficient modality alignment and instruction following. Finally, task-specific information is extracted from the trained LLM and provided to different modules for solving downstream tasks. The overall framework is simple, effective, and achieves state-of-the-art performance across multiple benchmarks. We also release our model, the generated data, and the code base publicly available.
Multimodal Pathway: Improve Transformers with Irrelevant Data from Other Modalities
We propose to improve transformers of a specific modality with irrelevant data from other modalities, e.g., improve an ImageNet model with audio or point cloud datasets. We would like to highlight that the data samples of the target modality are irrelevant to the other modalities, which distinguishes our method from other works utilizing paired (e.g., CLIP) or interleaved data of different modalities. We propose a methodology named Multimodal Pathway - given a target modality and a transformer designed for it, we use an auxiliary transformer trained with data of another modality and construct pathways to connect components of the two models so that data of the target modality can be processed by both models. In this way, we utilize the universal sequence-to-sequence modeling abilities of transformers obtained from two modalities. As a concrete implementation, we use a modality-specific tokenizer and task-specific head as usual but utilize the transformer blocks of the auxiliary model via a proposed method named Cross-Modal Re-parameterization, which exploits the auxiliary weights without any inference costs. On the image, point cloud, video, and audio recognition tasks, we observe significant and consistent performance improvements with irrelevant data from other modalities. The code and models are available at https://github.com/AILab-CVC/M2PT.
What Matters in Training a GPT4-Style Language Model with Multimodal Inputs?
Recent advancements in Large Language Models (LLMs) such as GPT4 have displayed exceptional multi-modal capabilities in following open-ended instructions given images. However, the performance of these models heavily relies on design choices such as network structures, training data, and training strategies, and these choices have not been extensively discussed in the literature, making it difficult to quantify progress in this field. To address this issue, this paper presents a systematic and comprehensive study, quantitatively and qualitatively, on training such models. We implement over 20 variants with controlled settings. Concretely, for network structures, we compare different LLM backbones and model designs. For training data, we investigate the impact of data and sampling strategies. For instructions, we explore the influence of diversified prompts on the instruction-following ability of the trained models. For benchmarks, we contribute the first, to our best knowledge, comprehensive evaluation set including both image and video tasks through crowd-sourcing. Based on our findings, we present Lynx, which performs the most accurate multi-modal understanding while keeping the best multi-modal generation ability compared to existing open-sourced GPT4-style models.
Image Anything: Towards Reasoning-coherent and Training-free Multi-modal Image Generation
The multifaceted nature of human perception and comprehension indicates that, when we think, our body can naturally take any combination of senses, a.k.a., modalities and form a beautiful picture in our brain. For example, when we see a cattery and simultaneously perceive the cat's purring sound, our brain can construct a picture of a cat in the cattery. Intuitively, generative AI models should hold the versatility of humans and be capable of generating images from any combination of modalities efficiently and collaboratively. This paper presents ImgAny, a novel end-to-end multi-modal generative model that can mimic human reasoning and generate high-quality images. Our method serves as the first attempt in its capacity of efficiently and flexibly taking any combination of seven modalities, ranging from language, audio to vision modalities, including image, point cloud, thermal, depth, and event data. Our key idea is inspired by human-level cognitive processes and involves the integration and harmonization of multiple input modalities at both the entity and attribute levels without specific tuning across modalities. Accordingly, our method brings two novel training-free technical branches: 1) Entity Fusion Branch ensures the coherence between inputs and outputs. It extracts entity features from the multi-modal representations powered by our specially constructed entity knowledge graph; 2) Attribute Fusion Branch adeptly preserves and processes the attributes. It efficiently amalgamates distinct attributes from diverse input modalities via our proposed attribute knowledge graph. Lastly, the entity and attribute features are adaptively fused as the conditional inputs to the pre-trained Stable Diffusion model for image generation. Extensive experiments under diverse modality combinations demonstrate its exceptional capability for visual content creation.
Model Composition for Multimodal Large Language Models
Recent developments in Multimodal Large Language Models (MLLMs) have shown rapid progress, moving towards the goal of creating versatile MLLMs that understand inputs from various modalities. However, existing methods typically rely on joint training with paired multimodal instruction data, which is resource-intensive and challenging to extend to new modalities. In this paper, we propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model. Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters. Furthermore, we introduce DAMC to address parameter interference and mismatch issues during the merging process, thereby enhancing the model performance. To facilitate research in this area, we propose MCUB, a benchmark for assessing ability of MLLMs to understand inputs from diverse modalities. Experiments on this benchmark and four other multimodal understanding tasks show significant improvements over baselines, proving that model composition can create a versatile model capable of processing inputs from multiple modalities.
4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities
Current multimodal and multitask foundation models like 4M or UnifiedIO show promising results, but in practice their out-of-the-box abilities to accept diverse inputs and perform diverse tasks are limited by the (usually rather small) number of modalities and tasks they are trained on. In this paper, we expand upon the capabilities of them by training a single model on tens of highly diverse modalities and by performing co-training on large-scale multimodal datasets and text corpora. This includes training on several semantic and geometric modalities, feature maps from recent state of the art models like DINOv2 and ImageBind, pseudo labels of specialist models like SAM and 4DHumans, and a range of new modalities that allow for novel ways to interact with the model and steer the generation, for example image metadata or color palettes. A crucial step in this process is performing discrete tokenization on various modalities, whether they are image-like, neural network feature maps, vectors, structured data like instance segmentation or human poses, or data that can be represented as text. Through this, we expand on the out-of-the-box capabilities of multimodal models and specifically show the possibility of training one model to solve at least 3x more tasks/modalities than existing ones and doing so without a loss in performance. This enables more fine-grained and controllable multimodal generation capabilities and allows us to study the distillation of models trained on diverse data and objectives into a unified model. We successfully scale the training to a three billion parameter model using tens of modalities and different datasets. The resulting models and training code are open sourced at 4m.epfl.ch.
A Survey on Multimodal Benchmarks: In the Era of Large AI Models
The rapid evolution of Multimodal Large Language Models (MLLMs) has brought substantial advancements in artificial intelligence, significantly enhancing the capability to understand and generate multimodal content. While prior studies have largely concentrated on model architectures and training methodologies, a thorough analysis of the benchmarks used for evaluating these models remains underexplored. This survey addresses this gap by systematically reviewing 211 benchmarks that assess MLLMs across four core domains: understanding, reasoning, generation, and application. We provide a detailed analysis of task designs, evaluation metrics, and dataset constructions, across diverse modalities. We hope that this survey will contribute to the ongoing advancement of MLLM research by offering a comprehensive overview of benchmarking practices and identifying promising directions for future work. An associated GitHub repository collecting the latest papers is available.
Ask in Any Modality: A Comprehensive Survey on Multimodal Retrieval-Augmented Generation
Large Language Models (LLMs) struggle with hallucinations and outdated knowledge due to their reliance on static training data. Retrieval-Augmented Generation (RAG) mitigates these issues by integrating external dynamic information enhancing factual and updated grounding. Recent advances in multimodal learning have led to the development of Multimodal RAG, incorporating multiple modalities such as text, images, audio, and video to enhance the generated outputs. However, cross-modal alignment and reasoning introduce unique challenges to Multimodal RAG, distinguishing it from traditional unimodal RAG. This survey offers a structured and comprehensive analysis of Multimodal RAG systems, covering datasets, metrics, benchmarks, evaluation, methodologies, and innovations in retrieval, fusion, augmentation, and generation. We precisely review training strategies, robustness enhancements, and loss functions, while also exploring the diverse Multimodal RAG scenarios. Furthermore, we discuss open challenges and future research directions to support advancements in this evolving field. This survey lays the foundation for developing more capable and reliable AI systems that effectively leverage multimodal dynamic external knowledge bases. Resources are available at https://github.com/llm-lab-org/Multimodal-RAG-Survey.
A Detailed Audio-Text Data Simulation Pipeline using Single-Event Sounds
Recently, there has been an increasing focus on audio-text cross-modal learning. However, most of the existing audio-text datasets contain only simple descriptions of sound events. Compared with classification labels, the advantages of such descriptions are significantly limited. In this paper, we first analyze the detailed information that human descriptions of audio may contain beyond sound event labels. Based on the analysis, we propose an automatic pipeline for curating audio-text pairs with rich details. Leveraging the property that sounds can be mixed and concatenated in the time domain, we control details in four aspects: temporal relationship, loudness, speaker identity, and occurrence number, in simulating audio mixtures. Corresponding details are transformed into captions by large language models. Audio-text pairs with rich details in text descriptions are thereby obtained. We validate the effectiveness of our pipeline with a small amount of simulated data, demonstrating that the simulated data enables models to learn detailed audio captioning.
MUTEX: Learning Unified Policies from Multimodal Task Specifications
Humans use different modalities, such as speech, text, images, videos, etc., to communicate their intent and goals with teammates. For robots to become better assistants, we aim to endow them with the ability to follow instructions and understand tasks specified by their human partners. Most robotic policy learning methods have focused on one single modality of task specification while ignoring the rich cross-modal information. We present MUTEX, a unified approach to policy learning from multimodal task specifications. It trains a transformer-based architecture to facilitate cross-modal reasoning, combining masked modeling and cross-modal matching objectives in a two-stage training procedure. After training, MUTEX can follow a task specification in any of the six learned modalities (video demonstrations, goal images, text goal descriptions, text instructions, speech goal descriptions, and speech instructions) or a combination of them. We systematically evaluate the benefits of MUTEX in a newly designed dataset with 100 tasks in simulation and 50 tasks in the real world, annotated with multiple instances of task specifications in different modalities, and observe improved performance over methods trained specifically for any single modality. More information at https://ut-austin-rpl.github.io/MUTEX/
ChatBridge: Bridging Modalities with Large Language Model as a Language Catalyst
Building general-purpose models that can perceive diverse real-world modalities and solve various tasks is an appealing target in artificial intelligence. In this paper, we present ChatBridge, a novel multimodal language model that leverages the expressive capabilities of language as the catalyst to bridge the gap between various modalities. We show that only language-paired two-modality data is sufficient to connect all modalities. ChatBridge leverages recent large language models (LLM) and extends their zero-shot capabilities to incorporate diverse multimodal inputs. ChatBridge undergoes a two-stage training. The first stage aligns each modality with language, which brings emergent multimodal correlation and collaboration abilities. The second stage instruction-finetunes ChatBridge to align it with user intent with our newly proposed multimodal instruction tuning dataset, named MULTIS, which covers a wide range of 16 multimodal tasks of text, image, video, and audio modalities. We show strong quantitative and qualitative results on zero-shot multimodal tasks covering text, image, video, and audio modalities. All codes, data, and models of ChatBridge will be open-sourced.
DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation
Text-to-image (T2I) generation models have significantly advanced in recent years. However, effective interaction with these models is challenging for average users due to the need for specialized prompt engineering knowledge and the inability to perform multi-turn image generation, hindering a dynamic and iterative creation process. Recent attempts have tried to equip Multi-modal Large Language Models (MLLMs) with T2I models to bring the user's natural language instructions into reality. Hence, the output modality of MLLMs is extended, and the multi-turn generation quality of T2I models is enhanced thanks to the strong multi-modal comprehension ability of MLLMs. However, many of these works face challenges in identifying correct output modalities and generating coherent images accordingly as the number of output modalities increases and the conversations go deeper. Therefore, we propose DialogGen, an effective pipeline to align off-the-shelf MLLMs and T2I models to build a Multi-modal Interactive Dialogue System (MIDS) for multi-turn Text-to-Image generation. It is composed of drawing prompt alignment, careful training data curation, and error correction. Moreover, as the field of MIDS flourishes, comprehensive benchmarks are urgently needed to evaluate MIDS fairly in terms of output modality correctness and multi-modal output coherence. To address this issue, we introduce the Multi-modal Dialogue Benchmark (DialogBen), a comprehensive bilingual benchmark designed to assess the ability of MLLMs to generate accurate and coherent multi-modal content that supports image editing. It contains two evaluation metrics to measure the model's ability to switch modalities and the coherence of the output images. Our extensive experiments on DialogBen and user study demonstrate the effectiveness of DialogGen compared with other State-of-the-Art models.
Align Anything: Training All-Modality Models to Follow Instructions with Language Feedback
Reinforcement learning from human feedback (RLHF) has proven effective in enhancing the instruction-following capabilities of large language models; however, it remains underexplored in the cross-modality domain. As the number of modalities increases, aligning all-modality models with human intentions -- such as instruction following -- becomes a pressing challenge. In this work, we make the first attempt to fine-tune all-modality models (i.e. input and output with any modality, also named any-to-any models) using human preference data across all modalities (including text, image, audio, and video), ensuring its behavior aligns with human intentions. This endeavor presents several challenges. First, there is no large-scale all-modality human preference data in existing open-source resources, as most datasets are limited to specific modalities, predominantly text and image. Secondly, the effectiveness of binary preferences in RLHF for post-training alignment in complex all-modality scenarios remains an unexplored area. Finally, there is a lack of a systematic framework to evaluate the capabilities of all-modality models, particularly regarding modality selection and synergy. To address these challenges, we propose the align-anything framework, which includes meticulously annotated 200k all-modality human preference data. Then, we introduce an alignment method that learns from unified language feedback, effectively capturing complex modality-specific human preferences and enhancing the model's instruction-following capabilities. Furthermore, to assess performance improvements in all-modality models after post-training alignment, we construct a challenging all-modality capability evaluation framework -- eval-anything. All data, models, and code frameworks have been open-sourced for the community. For more details, please refer to https://github.com/PKU-Alignment/align-anything.
CoMT: A Novel Benchmark for Chain of Multi-modal Thought on Large Vision-Language Models
Large Vision-Language Models (LVLMs) have recently demonstrated amazing success in multi-modal tasks, including advancements in Multi-modal Chain-of-Thought (MCoT) reasoning. Despite these successes, current benchmarks still follow a traditional paradigm with multi-modal input and text-modal output, which leads to significant drawbacks such as missing visual operations and vague expressions. Motivated by this, we introduce a novel Chain of Multi-modal Thought (CoMT) benchmark to address these limitations. Different from the traditional MCoT benchmark, CoMT requires both multi-modal input and multi-modal reasoning output, aiming to mimic human-like reasoning that inherently integrates visual operation. Specifically, CoMT consists of four categories: (1) Visual Creation, (2) Visual Deletion, (3) Visual Update, and (4) Visual Selection to comprehensively explore complex visual operations and concise expression in real scenarios. We evaluate various LVLMs and strategies on CoMT, revealing some key insights into the capabilities and limitations of the current approaches. We hope that CoMT can inspire more research on introducing multi-modal generation into the reasoning process.
Unified Model for Image, Video, Audio and Language Tasks
Large Language Models (LLMs) have made the ambitious quest for generalist agents significantly far from being a fantasy. A key hurdle for building such general models is the diversity and heterogeneity of tasks and modalities. A promising solution is unification, allowing the support of a myriad of tasks and modalities within one unified framework. While few large models (e.g., Flamingo (Alayrac et al., 2022), trained on massive datasets, can support more than two modalities, current small to mid-scale unified models are still limited to 2 modalities, usually image-text or video-text. The question that we ask is: is it possible to build efficiently a unified model that can support all modalities? To answer this, we propose UnIVAL, a step further towards this ambitious goal. Without relying on fancy datasets sizes or models with billions of parameters, the ~ 0.25B parameter UnIVAL model goes beyond two modalities and unifies text, images, video, and audio into a single model. Our model is efficiently pretrained on many tasks, based on task balancing and multimodal curriculum learning. UnIVAL shows competitive performance to existing state-of-the-art approaches, across image and video-text tasks. The feature representations learned from image and video-text modalities, allows the model to achieve competitive performance when finetuned on audio-text tasks, despite not being pretrained on audio. Thanks to the unified model, we propose a novel study on multimodal model merging via weight interpolation of models trained on different multimodal tasks, showing their benefits in particular for out-of-distribution generalization. Finally, we motivate unification by showing the synergy between tasks. The model weights and code are released here: https://github.com/mshukor/UnIVAL.
One Model, Multiple Modalities: A Sparsely Activated Approach for Text, Sound, Image, Video and Code
People perceive the world with multiple senses (e.g., through hearing sounds, reading words and seeing objects). However, most existing AI systems only process an individual modality. This paper presents an approach that excels at handling multiple modalities of information with a single model. In our "{SkillNet}" model, different parts of the parameters are specialized for processing different modalities. Unlike traditional dense models that always activate all the model parameters, our model sparsely activates parts of the parameters whose skills are relevant to the task. Such model design enables SkillNet to learn skills in a more interpretable way. We develop our model for five modalities including text, image, sound, video and code. Results show that, SkillNet performs comparably to five modality-specific fine-tuned models. Moreover, our model supports self-supervised pretraining with the same sparsely activated way, resulting in better initialized parameters for different modalities. We find that pretraining significantly improves the performance of SkillNet on five modalities, on par with or even better than baselines with modality-specific pretraining. On the task of Chinese text-to-image retrieval, our final system achieves higher accuracy than existing leading systems including Wukong{ViT-B} and Wenlan 2.0 while using less number of activated parameters.
Towards Multi-Task Multi-Modal Models: A Video Generative Perspective
Advancements in language foundation models have primarily fueled the recent surge in artificial intelligence. In contrast, generative learning of non-textual modalities, especially videos, significantly trails behind language modeling. This thesis chronicles our endeavor to build multi-task models for generating videos and other modalities under diverse conditions, as well as for understanding and compression applications. Given the high dimensionality of visual data, we pursue concise and accurate latent representations. Our video-native spatial-temporal tokenizers preserve high fidelity. We unveil a novel approach to mapping bidirectionally between visual observation and interpretable lexical terms. Furthermore, our scalable visual token representation proves beneficial across generation, compression, and understanding tasks. This achievement marks the first instances of language models surpassing diffusion models in visual synthesis and a video tokenizer outperforming industry-standard codecs. Within these multi-modal latent spaces, we study the design of multi-task generative models. Our masked multi-task transformer excels at the quality, efficiency, and flexibility of video generation. We enable a frozen language model, trained solely on text, to generate visual content. Finally, we build a scalable generative multi-modal transformer trained from scratch, enabling the generation of videos containing high-fidelity motion with the corresponding audio given diverse conditions. Throughout the course, we have shown the effectiveness of integrating multiple tasks, crafting high-fidelity latent representation, and generating multiple modalities. This work suggests intriguing potential for future exploration in generating non-textual data and enabling real-time, interactive experiences across various media forms.
Retrieving Multimodal Information for Augmented Generation: A Survey
In this survey, we review methods that retrieve multimodal knowledge to assist and augment generative models. This group of works focuses on retrieving grounding contexts from external sources, including images, codes, tables, graphs, and audio. As multimodal learning and generative AI have become more and more impactful, such retrieval augmentation offers a promising solution to important concerns such as factuality, reasoning, interpretability, and robustness. We provide an in-depth review of retrieval-augmented generation in different modalities and discuss potential future directions. As this is an emerging field, we continue to add new papers and methods.
mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data
Multimodal embedding models have gained significant attention for their ability to map data from different modalities, such as text and images, into a unified representation space. However, the limited labeled multimodal data often hinders embedding performance. Recent approaches have leveraged data synthesis to address this problem, yet the quality of synthetic data remains a critical bottleneck. In this work, we identify three criteria for high-quality synthetic multimodal data. First, broad scope ensures that the generated data covers diverse tasks and modalities, making it applicable to various downstream scenarios. Second, robust cross-modal alignment makes different modalities semantically consistent. Third, high fidelity ensures that the synthetic data maintains realistic details to enhance its reliability. Guided by these principles, we synthesize datasets that: (1) cover a wide range of tasks, modality combinations, and languages, (2) are generated via a deep thinking process within a single pass of a multimodal large language model, and (3) incorporate real-world images with accurate and relevant texts, ensuring fidelity through self-evaluation and refinement. Leveraging these high-quality synthetic and labeled datasets, we train a multimodal multilingual E5 model mmE5. Extensive experiments demonstrate that mmE5 achieves state-of-the-art performance on the MMEB Benchmark and superior multilingual performance on the XTD benchmark. Our codes, datasets and models are released in https://github.com/haon-chen/mmE5.
Multi-modal Generation via Cross-Modal In-Context Learning
In this work, we study the problem of generating novel images from complex multimodal prompt sequences. While existing methods achieve promising results for text-to-image generation, they often struggle to capture fine-grained details from lengthy prompts and maintain contextual coherence within prompt sequences. Moreover, they often result in misaligned image generation for prompt sequences featuring multiple objects. To address this, we propose a Multi-modal Generation via Cross-Modal In-Context Learning (MGCC) method that generates novel images from complex multimodal prompt sequences by leveraging the combined capabilities of large language models (LLMs) and diffusion models. Our MGCC comprises a novel Cross-Modal Refinement module to explicitly learn cross-modal dependencies between the text and image in the LLM embedding space, and a contextual object grounding module to generate object bounding boxes specifically targeting scenes with multiple objects. Our MGCC demonstrates a diverse range of multimodal capabilities, like novel image generation, the facilitation of multimodal dialogue, and generation of texts. Experimental evaluations on two benchmark datasets, demonstrate the effectiveness of our method. On Visual Story Generation (VIST) dataset with multimodal inputs, our MGCC achieves a CLIP Similarity score of 0.652 compared to SOTA GILL 0.641. Similarly, on Visual Dialogue Context (VisDial) having lengthy dialogue sequences, our MGCC achieves an impressive CLIP score of 0.660, largely outperforming existing SOTA method scoring 0.645. Code: https://github.com/VIROBO-15/MGCC
VinTAGe: Joint Video and Text Conditioning for Holistic Audio Generation
Recent advances in audio generation have focused on text-to-audio (T2A) and video-to-audio (V2A) tasks. However, T2A or V2A methods cannot generate holistic sounds (onscreen and off-screen). This is because T2A cannot generate sounds aligning with onscreen objects, while V2A cannot generate semantically complete (offscreen sounds missing). In this work, we address the task of holistic audio generation: given a video and a text prompt, we aim to generate both onscreen and offscreen sounds that are temporally synchronized with the video and semantically aligned with text and video. Previous approaches for joint text and video-to-audio generation often suffer from modality bias, favoring one modality over the other. To overcome this limitation, we introduce VinTAGe, a flow-based transformer model that jointly considers text and video to guide audio generation. Our framework comprises two key components: a Visual-Text Encoder and a Joint VT-SiT model. To reduce modality bias and improve generation quality, we employ pretrained uni-modal text-to-audio and video-to-audio generation models for additional guidance. Due to the lack of appropriate benchmarks, we also introduce VinTAGe-Bench, a dataset of 636 video-text-audio pairs containing both onscreen and offscreen sounds. Our comprehensive experiments on VinTAGe-Bench demonstrate that joint text and visual interaction is necessary for holistic audio generation. Furthermore, VinTAGe achieves state-of-the-art results on the VGGSound benchmark. Our source code and pre-trained models will be released. Demo is available at: https://www.youtube.com/watch?v=QmqWhUjPkJI.
On Uni-Modal Feature Learning in Supervised Multi-Modal Learning
We abstract the features (i.e. learned representations) of multi-modal data into 1) uni-modal features, which can be learned from uni-modal training, and 2) paired features, which can only be learned from cross-modal interactions. Multi-modal models are expected to benefit from cross-modal interactions on the basis of ensuring uni-modal feature learning. However, recent supervised multi-modal late-fusion training approaches still suffer from insufficient learning of uni-modal features on each modality. We prove that this phenomenon does hurt the model's generalization ability. To this end, we propose to choose a targeted late-fusion learning method for the given supervised multi-modal task from Uni-Modal Ensemble(UME) and the proposed Uni-Modal Teacher(UMT), according to the distribution of uni-modal and paired features. We demonstrate that, under a simple guiding strategy, we can achieve comparable results to other complex late-fusion or intermediate-fusion methods on various multi-modal datasets, including VGG-Sound, Kinetics-400, UCF101, and ModelNet40.
MLLM-Tool: A Multimodal Large Language Model For Tool Agent Learning
Recently, the astonishing performance of large language models (LLMs) in natural language comprehension and generation tasks triggered lots of exploration of using them as central controllers to build agent systems. Multiple studies focus on bridging the LLMs to external tools to extend the application scenarios. However, the current LLMs' perceiving tool-use ability is limited to a single text query, which may result in ambiguity in understanding the users' real intentions. LLMs are expected to eliminate that by perceiving the visual- or auditory-grounded instructions' information. Therefore, in this paper, we propose MLLM-Tool, a system incorporating open-source LLMs and multi-modal encoders so that the learnt LLMs can be conscious of multi-modal input instruction and then select the function-matched tool correctly. To facilitate the evaluation of the model's capability, we collect a dataset featured by consisting of multi-modal input tools from HuggingFace. Another important feature of our dataset is that our dataset also contains multiple potential choices for the same instruction due to the existence of identical functions and synonymous functions, which provides more potential solutions for the same query. The experiments reveal that our MLLM-Tool is capable of recommending appropriate tools for multi-modal instructions. Codes and data are available at https://github.com/MLLM-Tool/MLLM-Tool.
M^{2}UGen: Multi-modal Music Understanding and Generation with the Power of Large Language Models
The current landscape of research leveraging large language models (LLMs) is experiencing a surge. Many works harness the powerful reasoning capabilities of these models to comprehend various modalities, such as text, speech, images, videos, etc. They also utilize LLMs to understand human intention and generate desired outputs like images, videos, and music. However, research that combines both understanding and generation using LLMs is still limited and in its nascent stage. To address this gap, we introduce a Multi-modal Music Understanding and Generation (M^{2}UGen) framework that integrates LLM's abilities to comprehend and generate music for different modalities. The M^{2}UGen framework is purpose-built to unlock creative potential from diverse sources of inspiration, encompassing music, image, and video through the use of pretrained MERT, ViT, and ViViT models, respectively. To enable music generation, we explore the use of AudioLDM 2 and MusicGen. Bridging multi-modal understanding and music generation is accomplished through the integration of the LLaMA 2 model. Furthermore, we make use of the MU-LLaMA model to generate extensive datasets that support text/image/video-to-music generation, facilitating the training of our M^{2}UGen framework. We conduct a thorough evaluation of our proposed framework. The experimental results demonstrate that our model achieves or surpasses the performance of the current state-of-the-art models.
TM2D: Bimodality Driven 3D Dance Generation via Music-Text Integration
We propose a novel task for generating 3D dance movements that simultaneously incorporate both text and music modalities. Unlike existing works that generate dance movements using a single modality such as music, our goal is to produce richer dance movements guided by the instructive information provided by the text. However, the lack of paired motion data with both music and text modalities limits the ability to generate dance movements that integrate both. To alleviate this challenge, we propose to utilize a 3D human motion VQ-VAE to project the motions of the two datasets into a latent space consisting of quantized vectors, which effectively mix the motion tokens from the two datasets with different distributions for training. Additionally, we propose a cross-modal transformer to integrate text instructions into motion generation architecture for generating 3D dance movements without degrading the performance of music-conditioned dance generation. To better evaluate the quality of the generated motion, we introduce two novel metrics, namely Motion Prediction Distance (MPD) and Freezing Score, to measure the coherence and freezing percentage of the generated motion. Extensive experiments show that our approach can generate realistic and coherent dance movements conditioned on both text and music while maintaining comparable performance with the two single modalities. Code will be available at: https://garfield-kh.github.io/TM2D/.
From Specific-MLLM to Omni-MLLM: A Survey about the MLLMs alligned with Multi-Modality
From the Specific-MLLM, which excels in single-modal tasks, to the Omni-MLLM, which extends the range of general modalities, this evolution aims to achieve understanding and generation of multimodal information. Omni-MLLM treats the features of different modalities as different "foreign languages," enabling cross-modal interaction and understanding within a unified space. To promote the advancement of related research, we have compiled 47 relevant papers to provide the community with a comprehensive introduction to Omni-MLLM. We first explain the four core components of Omni-MLLM for unified modeling and interaction of multiple modalities. Next, we introduce the effective integration achieved through "alignment pretraining" and "instruction fine-tuning," and discuss open-source datasets and testing of interaction capabilities. Finally, we summarize the main challenges facing current Omni-MLLM and outline future directions.
EMMA: Your Text-to-Image Diffusion Model Can Secretly Accept Multi-Modal Prompts
Recent advancements in image generation have enabled the creation of high-quality images from text conditions. However, when facing multi-modal conditions, such as text combined with reference appearances, existing methods struggle to balance multiple conditions effectively, typically showing a preference for one modality over others. To address this challenge, we introduce EMMA, a novel image generation model accepting multi-modal prompts built upon the state-of-the-art text-to-image (T2I) diffusion model, ELLA. EMMA seamlessly incorporates additional modalities alongside text to guide image generation through an innovative Multi-modal Feature Connector design, which effectively integrates textual and supplementary modal information using a special attention mechanism. By freezing all parameters in the original T2I diffusion model and only adjusting some additional layers, we reveal an interesting finding that the pre-trained T2I diffusion model can secretly accept multi-modal prompts. This interesting property facilitates easy adaptation to different existing frameworks, making EMMA a flexible and effective tool for producing personalized and context-aware images and even videos. Additionally, we introduce a strategy to assemble learned EMMA modules to produce images conditioned on multiple modalities simultaneously, eliminating the need for additional training with mixed multi-modal prompts. Extensive experiments demonstrate the effectiveness of EMMA in maintaining high fidelity and detail in generated images, showcasing its potential as a robust solution for advanced multi-modal conditional image generation tasks.
VIMI: Grounding Video Generation through Multi-modal Instruction
Existing text-to-video diffusion models rely solely on text-only encoders for their pretraining. This limitation stems from the absence of large-scale multimodal prompt video datasets, resulting in a lack of visual grounding and restricting their versatility and application in multimodal integration. To address this, we construct a large-scale multimodal prompt dataset by employing retrieval methods to pair in-context examples with the given text prompts and then utilize a two-stage training strategy to enable diverse video generation tasks within the same model. In the first stage, we propose a multimodal conditional video generation framework for pretraining on these augmented datasets, establishing a foundational model for grounded video generation. Secondly, we finetune the model from the first stage on three video generation tasks, incorporating multi-modal instructions. This process further refines the model's ability to handle diverse inputs and tasks, ensuring seamless integration of multi-modal information. After this two-stage train-ing process, VIMI demonstrates multimodal understanding capabilities, producing contextually rich and personalized videos grounded in the provided inputs, as shown in Figure 1. Compared to previous visual grounded video generation methods, VIMI can synthesize consistent and temporally coherent videos with large motion while retaining the semantic control. Lastly, VIMI also achieves state-of-the-art text-to-video generation results on UCF101 benchmark.
Multimodal Inconsistency Reasoning (MMIR): A New Benchmark for Multimodal Reasoning Models
Existing Multimodal Large Language Models (MLLMs) are predominantly trained and tested on consistent visual-textual inputs, leaving open the question of whether they can handle inconsistencies in real-world, layout-rich content. To bridge this gap, we propose the Multimodal Inconsistency Reasoning (MMIR) benchmark to assess MLLMs' ability to detect and reason about semantic mismatches in artifacts such as webpages, presentation slides, and posters. MMIR comprises 534 challenging samples, each containing synthetically injected errors across five reasoning-heavy categories: Factual Contradiction, Identity Misattribution, Contextual Mismatch, Quantitative Discrepancy, and Temporal/Spatial Incoherence. We evaluate six state-of-the-art MLLMs, showing that models with dedicated multimodal reasoning capabilities, such as o1, substantially outperform their counterparts while open-source models remain particularly vulnerable to inconsistency errors. Detailed error analyses further show that models excel in detecting inconsistencies confined to a single modality, particularly in text, but struggle with cross-modal conflicts and complex layouts. Probing experiments reveal that single-modality prompting, including Chain-of-Thought (CoT) and Set-of-Mark (SoM) methods, yields marginal gains, revealing a key bottleneck in cross-modal reasoning. Our findings highlight the need for advanced multimodal reasoning and point to future research on multimodal inconsistency.
UniversalRAG: Retrieval-Augmented Generation over Multiple Corpora with Diverse Modalities and Granularities
Retrieval-Augmented Generation (RAG) has shown substantial promise in improving factual accuracy by grounding model responses with external knowledge relevant to queries. However, most existing RAG approaches are limited to a text-only corpus, and while recent efforts have extended RAG to other modalities such as images and videos, they typically operate over a single modality-specific corpus. In contrast, real-world queries vary widely in the type of knowledge they require, which a single type of knowledge source cannot address. To address this, we introduce UniversalRAG, a novel RAG framework designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities. Specifically, motivated by the observation that forcing all modalities into a unified representation space derived from a single combined corpus causes a modality gap, where the retrieval tends to favor items from the same modality as the query, we propose a modality-aware routing mechanism that dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it. Also, beyond modality, we organize each modality into multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity and scope of the query. We validate UniversalRAG on 8 benchmarks spanning multiple modalities, showing its superiority over modality-specific and unified baselines.
Multi-level Matching Network for Multimodal Entity Linking
Multimodal entity linking (MEL) aims to link ambiguous mentions within multimodal contexts to corresponding entities in a multimodal knowledge base. Most existing approaches to MEL are based on representation learning or vision-and-language pre-training mechanisms for exploring the complementary effect among multiple modalities. However, these methods suffer from two limitations. On the one hand, they overlook the possibility of considering negative samples from the same modality. On the other hand, they lack mechanisms to capture bidirectional cross-modal interaction. To address these issues, we propose a Multi-level Matching network for Multimodal Entity Linking (M3EL). Specifically, M3EL is composed of three different modules: (i) a Multimodal Feature Extraction module, which extracts modality-specific representations with a multimodal encoder and introduces an intra-modal contrastive learning sub-module to obtain better discriminative embeddings based on uni-modal differences; (ii) an Intra-modal Matching Network module, which contains two levels of matching granularity: Coarse-grained Global-to-Global and Fine-grained Global-to-Local, to achieve local and global level intra-modal interaction; (iii) a Cross-modal Matching Network module, which applies bidirectional strategies, Textual-to-Visual and Visual-to-Textual matching, to implement bidirectional cross-modal interaction. Extensive experiments conducted on WikiMEL, RichpediaMEL, and WikiDiverse datasets demonstrate the outstanding performance of M3EL when compared to the state-of-the-art baselines.
RESTORE: Towards Feature Shift for Vision-Language Prompt Learning
Prompt learning is effective for fine-tuning foundation models to improve their generalization across a variety of downstream tasks. However, the prompts that are independently optimized along a single modality path, may sacrifice the vision-language alignment of pre-trained models in return for improved performance on specific tasks and classes, leading to poorer generalization. In this paper, we first demonstrate that prompt tuning along only one single branch of CLIP (e.g., language or vision) is the reason why the misalignment occurs. Without proper regularization across the learnable parameters in different modalities, prompt learning violates the original pre-training constraints inherent in the two-tower architecture. To address such misalignment, we first propose feature shift, which is defined as the variation of embeddings after introducing the learned prompts, to serve as an explanatory tool. We dive into its relation with generalizability and thereafter propose RESTORE, a multi-modal prompt learning method that exerts explicit constraints on cross-modal consistency. To be more specific, to prevent feature misalignment, a feature shift consistency is introduced to synchronize inter-modal feature shifts by measuring and regularizing the magnitude of discrepancy during prompt tuning. In addition, we propose a "surgery" block to avoid short-cut hacking, where cross-modal misalignment can still be severe if the feature shift of each modality varies drastically at the same rate. It is implemented as feed-forward adapters upon both modalities to alleviate the misalignment problem. Extensive experiments on 15 datasets demonstrate that our method outperforms the state-of-the-art prompt tuning methods without compromising feature alignment.
Multimodal Procedural Planning via Dual Text-Image Prompting
Embodied agents have achieved prominent performance in following human instructions to complete tasks. However, the potential of providing instructions informed by texts and images to assist humans in completing tasks remains underexplored. To uncover this capability, we present the multimodal procedural planning (MPP) task, in which models are given a high-level goal and generate plans of paired text-image steps, providing more complementary and informative guidance than unimodal plans. The key challenges of MPP are to ensure the informativeness, temporal coherence,and accuracy of plans across modalities. To tackle this, we propose Text-Image Prompting (TIP), a dual-modality prompting method that jointly leverages zero-shot reasoning ability in large language models (LLMs) and compelling text-to-image generation ability from diffusion-based models. TIP improves the interaction in the dual modalities using Text-to-Image Bridge and Image-to-Text Bridge, allowing LLMs to guide the textual-grounded image plan generation and leveraging the descriptions of image plans to ground the textual plan reversely. To address the lack of relevant datasets, we collect WIKIPLAN and RECIPEPLAN as a testbed for MPP. Our results show compelling human preferences and automatic scores against unimodal and multimodal baselines on WIKIPLAN and RECIPEPLAN in terms of informativeness, temporal coherence, and plan accuracy. Our code and data: https://github.com/YujieLu10/MPP.
Improving Joint Speech-Text Representations Without Alignment
The last year has seen astonishing progress in text-prompted image generation premised on the idea of a cross-modal representation space in which the text and image domains are represented jointly. In ASR, this idea has found application as joint speech-text encoders that can scale to the capacities of very large parameter models by being trained on both unpaired speech and text. While these methods show promise, they have required special treatment of the sequence-length mismatch inherent in speech and text, either by up-sampling heuristics or an explicit alignment model. In this work, we offer evidence that joint speech-text encoders naturally achieve consistent representations across modalities by disregarding sequence length, and argue that consistency losses could forgive length differences and simply assume the best alignment. We show that such a loss improves downstream WER in both a large-parameter monolingual and multilingual system.
OmniBench: Towards The Future of Universal Omni-Language Models
Recent advancements in multimodal large language models (MLLMs) have aimed to integrate and interpret data across diverse modalities. However, the capacity of these models to concurrently process and reason about multiple modalities remains inadequately explored, partly due to the lack of comprehensive modality-wise benchmarks. We introduce OmniBench, a novel benchmark designed to rigorously evaluate models' ability to recognize, interpret, and reason across visual, acoustic, and textual inputs simultaneously. We define models capable of such tri-modal processing as omni-language models (OLMs). OmniBench is distinguished by high-quality human annotations, ensuring that accurate responses require integrated understanding and reasoning across all three modalities. Our main findings reveal that: i) open-source OLMs exhibit critical limitations in instruction-following and reasoning capabilities within tri-modal contexts; and ii) the baseline models perform poorly (below 50% accuracy) even when provided with alternative textual representations of images and audio. These results suggest that the ability to construct a consistent context from text, image, and audio is often overlooked in existing MLLM training paradigms. We advocate for future research to focus on developing more robust tri-modal integration techniques and training strategies to enhance OLM performance across diverse modalities. The codes and live leaderboard could be found at https://m-a-p.ai/OmniBench.
Cross the Gap: Exposing the Intra-modal Misalignment in CLIP via Modality Inversion
Pre-trained multi-modal Vision-Language Models like CLIP are widely used off-the-shelf for a variety of applications. In this paper, we show that the common practice of individually exploiting the text or image encoders of these powerful multi-modal models is highly suboptimal for intra-modal tasks like image-to-image retrieval. We argue that this is inherently due to the CLIP-style inter-modal contrastive loss that does not enforce any intra-modal constraints, leading to what we call intra-modal misalignment. To demonstrate this, we leverage two optimization-based modality inversion techniques that map representations from their input modality to the complementary one without any need for auxiliary data or additional trained adapters. We empirically show that, in the intra-modal tasks of image-to-image and text-to-text retrieval, approaching these tasks inter-modally significantly improves performance with respect to intra-modal baselines on more than fifteen datasets. Additionally, we demonstrate that approaching a native inter-modal task (e.g. zero-shot image classification) intra-modally decreases performance, further validating our findings. Finally, we show that incorporating an intra-modal term in the pre-training objective or narrowing the modality gap between the text and image feature embedding spaces helps reduce the intra-modal misalignment. The code is publicly available at: https://github.com/miccunifi/Cross-the-Gap.
MIO: A Foundation Model on Multimodal Tokens
In this paper, we introduce MIO, a novel foundation model built on multimodal tokens, capable of understanding and generating speech, text, images, and videos in an end-to-end, autoregressive manner. While the emergence of large language models (LLMs) and multimodal large language models (MM-LLMs) propels advancements in artificial general intelligence through their versatile capabilities, they still lack true any-to-any understanding and generation. Recently, the release of GPT-4o has showcased the remarkable potential of any-to-any LLMs for complex real-world tasks, enabling omnidirectional input and output across images, speech, and text. However, it is closed-source and does not support the generation of multimodal interleaved sequences. To address this gap, we present MIO, which is trained on a mixture of discrete tokens across four modalities using causal multimodal modeling. MIO undergoes a four-stage training process: (1) alignment pre-training, (2) interleaved pre-training, (3) speech-enhanced pre-training, and (4) comprehensive supervised fine-tuning on diverse textual, visual, and speech tasks. Our experimental results indicate that MIO exhibits competitive, and in some cases superior, performance compared to previous dual-modal baselines, any-to-any model baselines, and even modality-specific baselines. Moreover, MIO demonstrates advanced capabilities inherent to its any-to-any feature, such as interleaved video-text generation, chain-of-visual-thought reasoning, visual guideline generation, instructional image editing, etc.
DM^2S^2: Deep Multi-Modal Sequence Sets with Hierarchical Modality Attention
There is increasing interest in the use of multimodal data in various web applications, such as digital advertising and e-commerce. Typical methods for extracting important information from multimodal data rely on a mid-fusion architecture that combines the feature representations from multiple encoders. However, as the number of modalities increases, several potential problems with the mid-fusion model structure arise, such as an increase in the dimensionality of the concatenated multimodal features and missing modalities. To address these problems, we propose a new concept that considers multimodal inputs as a set of sequences, namely, deep multimodal sequence sets (DM^2S^2). Our set-aware concept consists of three components that capture the relationships among multiple modalities: (a) a BERT-based encoder to handle the inter- and intra-order of elements in the sequences, (b) intra-modality residual attention (IntraMRA) to capture the importance of the elements in a modality, and (c) inter-modality residual attention (InterMRA) to enhance the importance of elements with modality-level granularity further. Our concept exhibits performance that is comparable to or better than the previous set-aware models. Furthermore, we demonstrate that the visualization of the learned InterMRA and IntraMRA weights can provide an interpretation of the prediction results.
Explore the Limits of Omni-modal Pretraining at Scale
We propose to build omni-modal intelligence, which is capable of understanding any modality and learning universal representations. In specific, we propose a scalable pretraining paradigm, named Multimodal Context (MiCo), which can scale up the numbers of modalities and amount of data, together with the model parameters, in the pretraining process. With MiCo, the pretrained models show significant emergent abilities in multimodal learning, which are evaluated on the following tasks: i) single-modality perception benchmarks of 10 different modalities, ii) 25 cross-modality understanding tasks of retrieval, question-answering, captioning, and iii) 18 multimodal large language model benchmarks. Our models establish 37 new records for state-of-the-art performance. We hope that our research could contribute to the development of omni-modal intelligence. Code and Models are at https://github.com/invictus717/MiCo
UnifiedMLLM: Enabling Unified Representation for Multi-modal Multi-tasks With Large Language Model
Significant advancements has recently been achieved in the field of multi-modal large language models (MLLMs), demonstrating their remarkable capabilities in understanding and reasoning across diverse tasks. However, these models are often trained for specific tasks and rely on task-specific input-output formats, limiting their applicability to a broader range of tasks. This raises a fundamental question: Can we develop a unified approach to represent and handle different multi-modal tasks to maximize the generalizability of MLLMs? In this paper, we propose UnifiedMLLM, a comprehensive model designed to represent various tasks using a unified representation. Our model exhibits strong capabilities in comprehending the implicit intent of user instructions and preforming reasoning. In addition to generating textual responses, our model also outputs task tokens and grounding tokens, serving as indicators of task types and task granularity. These outputs are subsequently routed through the task router and directed to specific expert models for task completion. To train our model, we construct a task-specific dataset and an 100k multi-task dataset encompassing complex scenarios. Employing a three-stage training strategy, we equip our model with robust reasoning and task processing capabilities while preserving its generalization capacity and knowledge reservoir. Extensive experiments showcase the impressive performance of our unified representation approach across various tasks, surpassing existing methodologies. Furthermore, our approach exhibits exceptional scalability and generality. Our code, model, and dataset will be available at https://github.com/lzw-lzw/UnifiedMLLM.
SwitchGPT: Adapting Large Language Models for Non-Text Outputs
Large Language Models (LLMs), primarily trained on text-based datasets, exhibit exceptional proficiencies in understanding and executing complex linguistic instructions via text outputs. However, they falter when requests to generate non-text ones. Concurrently, modality conversion models, such as text-to-image, despite generating high-quality images, suffer from a lack of extensive textual pretraining. As a result, these models are only capable of accommodating specific image descriptions rather than comprehending more complex instructions. To bridge this gap, we propose a novel approach, \methodname, from a modality conversion perspective that evolves a text-based LLM into a multi-modal one. We specifically employ a minimal dataset to instruct LLMs to recognize the intended output modality as directed by the instructions. Consequently, the adapted LLM can effectively summon various off-the-shelf modality conversion models from the model zoos to generate non-text responses. This circumvents the necessity for complicated pretraining that typically requires immense quantities of paired multi-modal data, while simultaneously inheriting the extensive knowledge of LLMs and the ability of high-quality generative models. To evaluate and compare the adapted multi-modal LLM with its traditional counterparts, we have constructed a multi-modal instruction benchmark that solicits diverse modality outputs. The experiment results reveal that, with minimal training, LLMs can be conveniently adapted to comprehend requests for non-text responses, thus achieving higher flexibility in multi-modal scenarios. Code and data will be made available at https://github.com/xinke-wang/SwitchGPT.
Learning from Emotions, Demographic Information and Implicit User Feedback in Task-Oriented Document-Grounded Dialogues
The success of task-oriented and document-grounded dialogue systems depends on users accepting and enjoying using them. To achieve this, recently published work in the field of Human-Computer Interaction suggests that the combination of considering demographic information, user emotions and learning from the implicit feedback in their utterances, is particularly important. However, these findings have not yet been transferred to the field of Natural Language Processing, where these data are primarily studied separately. Accordingly, no sufficiently annotated dataset is available. To address this gap, we introduce FEDI, the first English dialogue dataset for task-oriented document-grounded dialogues annotated with demographic information, user emotions and implicit feedback. Our experiments with FLAN-T5, GPT-2 and LLaMA-2 show that these data have the potential to improve task completion and the factual consistency of the generated responses and user acceptance.
Assessing GPT4-V on Structured Reasoning Tasks
Multi-modality promises to unlock further uses for large language models. Recently, the state-of-the-art language model GPT-4 was enhanced with vision capabilities. We carry out a prompting evaluation of GPT-4V and five other baselines on structured reasoning tasks, such as mathematical reasoning, visual data analysis, and code generation. We show that visual Chain-of-Thought, an extension of Chain-of-Thought to multi-modal LLMs, yields significant improvements over the vanilla model. We also present a categorized analysis of scenarios where these models perform well and where they struggle, highlighting challenges associated with coherent multimodal reasoning.
On Meta-Prompting
Certain statistical models are capable of interpreting input strings as instructions, or prompts, and carry out tasks based on them. Many approaches to prompting and pre-training these models involve the automated generation of these prompts. We call these approaches meta-prompting, or prompting to obtain prompts. We propose a theoretical framework based on category theory to generalize and describe them. This framework is flexible enough to account for LLM stochasticity; and allows us to obtain formal results around task agnosticity and equivalence of various meta-prompting approaches. We experiment with meta-prompting in two active areas of model research: creativity and ideation. We find that user preference favors (p < 0.01) the prompts generated under meta-prompting, as well as their corresponding outputs, over a series of hardcoded baseline prompts that include the original task prompt. Using our framework, we argue that meta-prompting is more effective than basic prompting at generating desirable outputs.
M^3GPT: An Advanced Multimodal, Multitask Framework for Motion Comprehension and Generation
This paper presents M^3GPT, an advanced Multimodal, Multitask framework for Motion comprehension and generation. M^3GPT operates on three fundamental principles. The first focuses on creating a unified representation space for various motion-relevant modalities. We employ discrete vector quantization for multimodal control and generation signals, such as text, music and motion/dance, enabling seamless integration into a large language model (LLM) with a single vocabulary. The second involves modeling model generation directly in the raw motion space. This strategy circumvents the information loss associated with discrete tokenizer, resulting in more detailed and comprehensive model generation. Third, M^3GPT learns to model the connections and synergies among various motion-relevant tasks. Text, the most familiar and well-understood modality for LLMs, is utilized as a bridge to establish connections between different motion tasks, facilitating mutual reinforcement. To our knowledge, M^3GPT is the first model capable of comprehending and generating motions based on multiple signals. Extensive experiments highlight M^3GPT's superior performance across various motion-relevant tasks and its powerful zero-shot generalization capabilities for extremely challenging tasks.
MultiModN- Multimodal, Multi-Task, Interpretable Modular Networks
Predicting multiple real-world tasks in a single model often requires a particularly diverse feature space. Multimodal (MM) models aim to extract the synergistic predictive potential of multiple data types to create a shared feature space with aligned semantic meaning across inputs of drastically varying sizes (i.e. images, text, sound). Most current MM architectures fuse these representations in parallel, which not only limits their interpretability but also creates a dependency on modality availability. We present MultiModN, a multimodal, modular network that fuses latent representations in a sequence of any number, combination, or type of modality while providing granular real-time predictive feedback on any number or combination of predictive tasks. MultiModN's composable pipeline is interpretable-by-design, as well as innately multi-task and robust to the fundamental issue of biased missingness. We perform four experiments on several benchmark MM datasets across 10 real-world tasks (predicting medical diagnoses, academic performance, and weather), and show that MultiModN's sequential MM fusion does not compromise performance compared with a baseline of parallel fusion. By simulating the challenging bias of missing not-at-random (MNAR), this work shows that, contrary to MultiModN, parallel fusion baselines erroneously learn MNAR and suffer catastrophic failure when faced with different patterns of MNAR at inference. To the best of our knowledge, this is the first inherently MNAR-resistant approach to MM modeling. In conclusion, MultiModN provides granular insights, robustness, and flexibility without compromising performance.
Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models
Multimodal large language models (MLLMs) can simultaneously process visual, textual, and auditory data, capturing insights that complement human analysis. However, existing video question-answering (VidQA) benchmarks and datasets often exhibit a bias toward a single modality, despite the goal of requiring advanced reasoning skills that integrate diverse modalities to answer the queries. In this work, we introduce the modality importance score (MIS) to identify such bias. It is designed to assess which modality embeds the necessary information to answer the question. Additionally, we propose an innovative method using state-of-the-art MLLMs to estimate the modality importance, which can serve as a proxy for human judgments of modality perception. With this MIS, we demonstrate the presence of unimodal bias and the scarcity of genuinely multimodal questions in existing datasets. We further validate the modality importance score with multiple ablation studies to evaluate the performance of MLLMs on permuted feature sets. Our results indicate that current models do not effectively integrate information due to modality imbalance in existing datasets. Our proposed MLLM-derived MIS can guide the curation of modality-balanced datasets that advance multimodal learning and enhance MLLMs' capabilities to understand and utilize synergistic relations across modalities.
MoMa: Efficient Early-Fusion Pre-training with Mixture of Modality-Aware Experts
We introduce MoMa, a novel modality-aware mixture-of-experts (MoE) architecture designed for pre-training mixed-modal, early-fusion language models. MoMa processes images and text in arbitrary sequences by dividing expert modules into modality-specific groups. These groups exclusively process designated tokens while employing learned routing within each group to maintain semantically informed adaptivity. Our empirical results reveal substantial pre-training efficiency gains through this modality-specific parameter allocation. Under a 1-trillion-token training budget, the MoMa 1.4B model, featuring 4 text experts and 4 image experts, achieves impressive FLOPs savings: 3.7x overall, with 2.6x for text and 5.2x for image processing compared to a compute-equivalent dense baseline, measured by pre-training loss. This outperforms the standard expert-choice MoE with 8 mixed-modal experts, which achieves 3x overall FLOPs savings (3x for text, 2.8x for image). Combining MoMa with mixture-of-depths (MoD) further improves pre-training FLOPs savings to 4.2x overall (text: 3.4x, image: 5.3x), although this combination hurts performance in causal inference due to increased sensitivity to router accuracy. These results demonstrate MoMa's potential to significantly advance the efficiency of mixed-modal, early-fusion language model pre-training, paving the way for more resource-efficient and capable multimodal AI systems.
Multi-Track MusicLDM: Towards Versatile Music Generation with Latent Diffusion Model
Diffusion models have shown promising results in cross-modal generation tasks involving audio and music, such as text-to-sound and text-to-music generation. These text-controlled music generation models typically focus on generating music by capturing global musical attributes like genre and mood. However, music composition is a complex, multilayered task that often involves musical arrangement as an integral part of the process. This process involves composing each instrument to align with existing ones in terms of beat, dynamics, harmony, and melody, requiring greater precision and control over tracks than text prompts usually provide. In this work, we address these challenges by extending the MusicLDM, a latent diffusion model for music, into a multi-track generative model. By learning the joint probability of tracks sharing a context, our model is capable of generating music across several tracks that correspond well to each other, either conditionally or unconditionally. Additionally, our model is capable of arrangement generation, where the model can generate any subset of tracks given the others (e.g., generating a piano track complementing given bass and drum tracks). We compared our model with an existing multi-track generative model and demonstrated that our model achieves considerable improvements across objective metrics for both total and arrangement generation tasks.
Controlling Personality-Based Stylistic Variation with Neural Natural Language Generators
Natural language generators for task-oriented dialogue must effectively realize system dialogue actions and their associated semantics. In many applications, it is also desirable for generators to control the style of an utterance. To date, work on task-oriented neural generation has primarily focused on semantic fidelity rather than achieving stylistic goals, while work on style has been done in contexts where it is difficult to measure content preservation. Here we present three different sequence-to-sequence models and carefully test how well they disentangle content and style. We use a statistical generator, Personage, to synthesize a new corpus of over 88,000 restaurant domain utterances whose style varies according to models of personality, giving us total control over both the semantic content and the stylistic variation in the training data. We then vary the amount of explicit stylistic supervision given to the three models. We show that our most explicit model can simultaneously achieve high fidelity to both semantic and stylistic goals: this model adds a context vector of 36 stylistic parameters as input to the hidden state of the encoder at each time step, showing the benefits of explicit stylistic supervision, even when the amount of training data is large.
MORE: Multi-mOdal REtrieval Augmented Generative Commonsense Reasoning
Since commonsense information has been recorded significantly less frequently than its existence, language models pre-trained by text generation have difficulty to learn sufficient commonsense knowledge. Several studies have leveraged text retrieval to augment the models' commonsense ability. Unlike text, images capture commonsense information inherently but little effort has been paid to effectively utilize them. In this work, we propose a novel Multi-mOdal REtrieval (MORE) augmentation framework, to leverage both text and images to enhance the commonsense ability of language models. Extensive experiments on the Common-Gen task have demonstrated the efficacy of MORE based on the pre-trained models of both single and multiple modalities.
Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models
Multimodal learning typically relies on the assumption that all modalities are fully available during both the training and inference phases. However, in real-world scenarios, consistently acquiring complete multimodal data presents significant challenges due to various factors. This often leads to the issue of missing modalities, where data for certain modalities are absent, posing considerable obstacles not only for the availability of multimodal pretrained models but also for their fine-tuning and the preservation of robustness in downstream tasks. To address these challenges, we propose a novel framework integrating parameter-efficient fine-tuning of unimodal pretrained models with a self-supervised joint-embedding learning method. This framework enables the model to predict the embedding of a missing modality in the representation space during inference. Our method effectively predicts the missing embedding through prompt tuning, leveraging information from available modalities. We evaluate our approach on several multimodal benchmark datasets and demonstrate its effectiveness and robustness across various scenarios of missing modalities.
Hypergraph Multi-modal Large Language Model: Exploiting EEG and Eye-tracking Modalities to Evaluate Heterogeneous Responses for Video Understanding
Understanding of video creativity and content often varies among individuals, with differences in focal points and cognitive levels across different ages, experiences, and genders. There is currently a lack of research in this area, and most existing benchmarks suffer from several drawbacks: 1) a limited number of modalities and answers with restrictive length; 2) the content and scenarios within the videos are excessively monotonous, transmitting allegories and emotions that are overly simplistic. To bridge the gap to real-world applications, we introduce a large-scale Subjective Response Indicators for Advertisement Videos dataset, namely SRI-ADV. Specifically, we collected real changes in Electroencephalographic (EEG) and eye-tracking regions from different demographics while they viewed identical video content. Utilizing this multi-modal dataset, we developed tasks and protocols to analyze and evaluate the extent of cognitive understanding of video content among different users. Along with the dataset, we designed a Hypergraph Multi-modal Large Language Model (HMLLM) to explore the associations among different demographics, video elements, EEG, and eye-tracking indicators. HMLLM could bridge semantic gaps across rich modalities and integrate information beyond different modalities to perform logical reasoning. Extensive experimental evaluations on SRI-ADV and other additional video-based generative performance benchmarks demonstrate the effectiveness of our method. The codes and dataset will be released at https://github.com/suay1113/HMLLM.
A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks
This survey and application guide to multimodal large language models(MLLMs) explores the rapidly developing field of MLLMs, examining their architectures, applications, and impact on AI and Generative Models. Starting with foundational concepts, we delve into how MLLMs integrate various data types, including text, images, video and audio, to enable complex AI systems for cross-modal understanding and generation. It covers essential topics such as training methods, architectural components, and practical applications in various fields, from visual storytelling to enhanced accessibility. Through detailed case studies and technical analysis, the text examines prominent MLLM implementations while addressing key challenges in scalability, robustness, and cross-modal learning. Concluding with a discussion of ethical considerations, responsible AI development, and future directions, this authoritative resource provides both theoretical frameworks and practical insights. It offers a balanced perspective on the opportunities and challenges in the development and deployment of MLLMs, and is highly valuable for researchers, practitioners, and students interested in the intersection of natural language processing and computer vision.
Self-Supervised Learning in Event Sequences: A Comparative Study and Hybrid Approach of Generative Modeling and Contrastive Learning
This study investigates self-supervised learning techniques to obtain representations of Event Sequences. It is a key modality in various applications, including but not limited to banking, e-commerce, and healthcare. We perform a comprehensive study of generative and contrastive approaches in self-supervised learning, applying them both independently. We find that there is no single supreme method. Consequently, we explore the potential benefits of combining these approaches. To achieve this goal, we introduce a novel method that aligns generative and contrastive embeddings as distinct modalities, drawing inspiration from contemporary multimodal research. Generative and contrastive approaches are often treated as mutually exclusive, leaving a gap for their combined exploration. Our results demonstrate that this aligned model performs at least on par with, and mostly surpasses, existing methods and is more universal across a variety of tasks. Furthermore, we demonstrate that self-supervised methods consistently outperform the supervised approach on our datasets.
C3Net: Compound Conditioned ControlNet for Multimodal Content Generation
We present Compound Conditioned ControlNet, C3Net, a novel generative neural architecture taking conditions from multiple modalities and synthesizing multimodal contents simultaneously (e.g., image, text, audio). C3Net adapts the ControlNet architecture to jointly train and make inferences on a production-ready diffusion model and its trainable copies. Specifically, C3Net first aligns the conditions from multi-modalities to the same semantic latent space using modality-specific encoders based on contrastive training. Then, it generates multimodal outputs based on the aligned latent space, whose semantic information is combined using a ControlNet-like architecture called Control C3-UNet. Correspondingly, with this system design, our model offers an improved solution for joint-modality generation through learning and explaining multimodal conditions instead of simply taking linear interpolations on the latent space. Meanwhile, as we align conditions to a unified latent space, C3Net only requires one trainable Control C3-UNet to work on multimodal semantic information. Furthermore, our model employs unimodal pretraining on the condition alignment stage, outperforming the non-pretrained alignment even on relatively scarce training data and thus demonstrating high-quality compound condition generation. We contribute the first high-quality tri-modal validation set to validate quantitatively that C3Net outperforms or is on par with first and contemporary state-of-the-art multimodal generation. Our codes and tri-modal dataset will be released.
Generative Multimodal Models are In-Context Learners
The human ability to easily solve multimodal tasks in context (i.e., with only a few demonstrations or simple instructions), is what current multimodal systems have largely struggled to imitate. In this work, we demonstrate that the task-agnostic in-context learning capabilities of large multimodal models can be significantly enhanced by effective scaling-up. We introduce Emu2, a generative multimodal model with 37 billion parameters, trained on large-scale multimodal sequences with a unified autoregressive objective. Emu2 exhibits strong multimodal in-context learning abilities, even emerging to solve tasks that require on-the-fly reasoning, such as visual prompting and object-grounded generation. The model sets a new record on multiple multimodal understanding tasks in few-shot settings. When instruction-tuned to follow specific instructions, Emu2 further achieves new state-of-the-art on challenging tasks such as question answering benchmarks for large multimodal models and open-ended subject-driven generation. These achievements demonstrate that Emu2 can serve as a base model and general-purpose interface for a wide range of multimodal tasks. Code and models are publicly available to facilitate future research.
Step-Audio: Unified Understanding and Generation in Intelligent Speech Interaction
Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contributions include: 1) a 130B-parameter unified speech-text multi-modal model that achieves unified understanding and generation, with the Step-Audio-Chat version open-sourced; 2) a generative speech data engine that establishes an affordable voice cloning framework and produces the open-sourced lightweight Step-Audio-TTS-3B model through distillation; 3) an instruction-driven fine control system enabling dynamic adjustments across dialects, emotions, singing, and RAP; 4) an enhanced cognitive architecture augmented with tool calling and role-playing abilities to manage complex tasks effectively. Based on our new StepEval-Audio-360 evaluation benchmark, Step-Audio achieves state-of-the-art performance in human evaluations, especially in terms of instruction following. On open-source benchmarks like LLaMA Question, shows 9.3% average performance improvement, demonstrating our commitment to advancing the development of open-source multi-modal language technologies. Our code and models are available at https://github.com/stepfun-ai/Step-Audio.
Harmonizing Visual Text Comprehension and Generation
In this work, we present TextHarmony, a unified and versatile multimodal generative model proficient in comprehending and generating visual text. Simultaneously generating images and texts typically results in performance degradation due to the inherent inconsistency between vision and language modalities. To overcome this challenge, existing approaches resort to modality-specific data for supervised fine-tuning, necessitating distinct model instances. We propose Slide-LoRA, which dynamically aggregates modality-specific and modality-agnostic LoRA experts, partially decoupling the multimodal generation space. Slide-LoRA harmonizes the generation of vision and language within a singular model instance, thereby facilitating a more unified generative process. Additionally, we develop a high-quality image caption dataset, DetailedTextCaps-100K, synthesized with a sophisticated closed-source MLLM to enhance visual text generation capabilities further. Comprehensive experiments across various benchmarks demonstrate the effectiveness of the proposed approach. Empowered by Slide-LoRA, TextHarmony achieves comparable performance to modality-specific fine-tuning results with only a 2% increase in parameters and shows an average improvement of 2.5% in visual text comprehension tasks and 4.0% in visual text generation tasks. Our work delineates the viability of an integrated approach to multimodal generation within the visual text domain, setting a foundation for subsequent inquiries.
Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning
Prompt-based learning has been demonstrated as a compelling paradigm contributing to large language models' tremendous success (LLMs). Inspired by their success in language tasks, existing research has leveraged LLMs in embodied instruction following and task planning. However, not much attention has been paid to embodied tasks with multimodal prompts, combining vision signals with text descriptions. This type of task poses a major challenge to robots' capability to understand the interconnection and complementarity between vision and language signals. In this work, we introduce an effective framework that learns a policy to perform robot manipulation with multimodal prompts from multi-task expert trajectories. Our methods consist of a two-stage training pipeline that performs inverse dynamics pretraining and multi-task finetuning. To facilitate multimodal understanding, we design our multimodal prompt encoder by augmenting a pretrained LM with a residual connection to the visual input and model the dependencies among action dimensions. Empirically, we evaluate the efficacy of our method on the VIMA-BENCH and establish a new state-of-the-art (10% improvement in success rate). Moreover, we demonstrate that our model exhibits remarkable in-context learning ability.
Unified Speech-Text Pre-training for Speech Translation and Recognition
We describe a method to jointly pre-train speech and text in an encoder-decoder modeling framework for speech translation and recognition. The proposed method incorporates four self-supervised and supervised subtasks for cross modality learning. A self-supervised speech subtask leverages unlabelled speech data, and a (self-)supervised text to text subtask makes use of abundant text training data. Two auxiliary supervised speech tasks are included to unify speech and text modeling space. Our contribution lies in integrating linguistic information from the text corpus into the speech pre-training. Detailed analysis reveals learning interference among subtasks. Two pre-training configurations for speech translation and recognition, respectively, are presented to alleviate subtask interference. Our experiments show the proposed method can effectively fuse speech and text information into one model. It achieves between 1.7 and 2.3 BLEU improvement above the state of the art on the MuST-C speech translation dataset and comparable WERs to wav2vec 2.0 on the Librispeech speech recognition task.
Mini-Omni2: Towards Open-source GPT-4o with Vision, Speech and Duplex Capabilities
GPT-4o, an all-encompassing model, represents a milestone in the development of large multi-modal language models. It can understand visual, auditory, and textual modalities, directly output audio, and support flexible duplex interaction. Models from the open-source community often achieve some functionalities of GPT-4o, such as visual understanding and voice chat. Nevertheless, training a unified model that incorporates all modalities is challenging due to the complexities of multi-modal data, intricate model architectures, and training processes. In this paper, we introduce Mini-Omni2, a visual-audio assistant capable of providing real-time, end-to-end voice responses to visoin and audio queries. By integrating pretrained visual and auditory encoders, Mini-Omni2 maintains performance in individual modalities. We propose a three-stage training process to align modalities, allowing the language model to handle multi-modal inputs and outputs after training on a limited dataset. For interaction, we introduce a command-based interruption mechanism, enabling more flexible interaction with users. To the best of our knowledge, Mini-Omni2 is one of the closest reproductions of GPT-4o, which have similar form of functionality, and we hope it can offer valuable insights for subsequent research.
Multimedia Generative Script Learning for Task Planning
Goal-oriented generative script learning aims to generate subsequent steps to reach a particular goal, which is an essential task to assist robots or humans in performing stereotypical activities. An important aspect of this process is the ability to capture historical states visually, which provides detailed information that is not covered by text and will guide subsequent steps. Therefore, we propose a new task, Multimedia Generative Script Learning, to generate subsequent steps by tracking historical states in both text and vision modalities, as well as presenting the first benchmark containing 5,652 tasks and 79,089 multimedia steps. This task is challenging in three aspects: the multimedia challenge of capturing the visual states in images, the induction challenge of performing unseen tasks, and the diversity challenge of covering different information in individual steps. We propose to encode visual state changes through a selective multimedia encoder to address the multimedia challenge, transfer knowledge from previously observed tasks using a retrieval-augmented decoder to overcome the induction challenge, and further present distinct information at each step by optimizing a diversity-oriented contrastive learning objective. We define metrics to evaluate both generation and inductive quality. Experiment results demonstrate that our approach significantly outperforms strong baselines.
Multi-Modal Generative AI: Multi-modal LLM, Diffusion and Beyond
Multi-modal generative AI has received increasing attention in both academia and industry. Particularly, two dominant families of techniques are: i) The multi-modal large language model (MLLM) such as GPT-4V, which shows impressive ability for multi-modal understanding; ii) The diffusion model such as Sora, which exhibits remarkable multi-modal powers, especially with respect to visual generation. As such, one natural question arises: Is it possible to have a unified model for both understanding and generation? To answer this question, in this paper, we first provide a detailed review of both MLLM and diffusion models, including their probabilistic modeling procedure, multi-modal architecture design, and advanced applications to image/video large language models as well as text-to-image/video generation. Then, we discuss the two important questions on the unified model: i) whether the unified model should adopt the auto-regressive or diffusion probabilistic modeling, and ii) whether the model should utilize a dense architecture or the Mixture of Experts(MoE) architectures to better support generation and understanding, two objectives. We further provide several possible strategies for building a unified model and analyze their potential advantages and disadvantages. We also summarize existing large-scale multi-modal datasets for better model pretraining in the future. To conclude the paper, we present several challenging future directions, which we believe can contribute to the ongoing advancement of multi-modal generative AI.
Diff-TTSG: Denoising probabilistic integrated speech and gesture synthesis
With read-aloud speech synthesis achieving high naturalness scores, there is a growing research interest in synthesising spontaneous speech. However, human spontaneous face-to-face conversation has both spoken and non-verbal aspects (here, co-speech gestures). Only recently has research begun to explore the benefits of jointly synthesising these two modalities in a single system. The previous state of the art used non-probabilistic methods, which fail to capture the variability of human speech and motion, and risk producing oversmoothing artefacts and sub-optimal synthesis quality. We present the first diffusion-based probabilistic model, called Diff-TTSG, that jointly learns to synthesise speech and gestures together. Our method can be trained on small datasets from scratch. Furthermore, we describe a set of careful uni- and multi-modal subjective tests for evaluating integrated speech and gesture synthesis systems, and use them to validate our proposed approach. Please see https://shivammehta25.github.io/Diff-TTSG/ for video examples, data, and code.
A Study of Autoregressive Decoders for Multi-Tasking in Computer Vision
There has been a recent explosion of computer vision models which perform many tasks and are composed of an image encoder (usually a ViT) and an autoregressive decoder (usually a Transformer). However, most of this work simply presents one system and its results, leaving many questions regarding design decisions and trade-offs of such systems unanswered. In this work, we aim to provide such answers. We take a close look at autoregressive decoders for multi-task learning in multimodal computer vision, including classification, captioning, visual question answering, and optical character recognition. Through extensive systematic experiments, we study the effects of task and data mixture, training and regularization hyperparameters, conditioning type and specificity, modality combination, and more. Importantly, we compare these to well-tuned single-task baselines to highlight the cost incurred by multi-tasking. A key finding is that a small decoder learned on top of a frozen pretrained encoder works surprisingly well. We call this setup locked-image tuning with decoder (LiT-decoder). It can be seen as teaching a decoder to interact with a pretrained vision model via natural language.
Joint Reasoning on Hybrid-knowledge sources for Task-Oriented Dialog
Traditional systems designed for task oriented dialog utilize knowledge present only in structured knowledge sources to generate responses. However, relevant information required to generate responses may also reside in unstructured sources, such as documents. Recent state of the art models such as HyKnow and SeKnow aimed at overcoming these challenges make limiting assumptions about the knowledge sources. For instance, these systems assume that certain types of information, such as a phone number, is always present in a structured knowledge base (KB) while information about aspects such as entrance ticket prices, would always be available in documents. In this paper, we create a modified version of the MutliWOZ-based dataset prepared by SeKnow to demonstrate how current methods have significant degradation in performance when strict assumptions about the source of information are removed. Then, in line with recent work exploiting pre-trained language models, we fine-tune a BART based model using prompts for the tasks of querying knowledge sources, as well as, for response generation, without making assumptions about the information present in each knowledge source. Through a series of experiments, we demonstrate that our model is robust to perturbations to knowledge modality (source of information), and that it can fuse information from structured as well as unstructured knowledge to generate responses.
AVE Speech Dataset: A Comprehensive Benchmark for Multi-Modal Speech Recognition Integrating Audio, Visual, and Electromyographic Signals
The global aging population faces considerable challenges, particularly in communication, due to the prevalence of hearing and speech impairments. To address these, we introduce the AVE speech dataset, a comprehensive multi-modal benchmark for speech recognition tasks. The dataset includes a 100-sentence Mandarin Chinese corpus with audio signals, lip-region video recordings, and six-channel electromyography (EMG) data, collected from 100 participants. Each subject read the entire corpus ten times, with each sentence averaging approximately two seconds in duration, resulting in over 55 hours of multi-modal speech data per modality. Experiments demonstrate that combining these modalities significantly improves recognition performance, particularly in cross-subject and high-noise environments. To our knowledge, this is the first publicly available sentence-level dataset integrating these three modalities for large-scale Mandarin speech recognition. We expect this dataset to drive advancements in both acoustic and non-acoustic speech recognition research, enhancing cross-modal learning and human-machine interaction.
Unifying Vision-and-Language Tasks via Text Generation
Existing methods for vision-and-language learning typically require designing task-specific architectures and objectives for each task. For example, a multi-label answer classifier for visual question answering, a region scorer for referring expression comprehension, and a language decoder for image captioning, etc. To alleviate these hassles, in this work, we propose a unified framework that learns different tasks in a single architecture with the same language modeling objective, i.e., multimodal conditional text generation, where our models learn to generate labels in text based on the visual and textual inputs. On 7 popular vision-and-language benchmarks, including visual question answering, referring expression comprehension, visual commonsense reasoning, most of which have been previously modeled as discriminative tasks, our generative approach (with a single unified architecture) reaches comparable performance to recent task-specific state-of-the-art vision-and-language models. Moreover, our generative approach shows better generalization ability on questions that have rare answers. Also, we show that our framework allows multi-task learning in a single architecture with a single set of parameters, achieving similar performance to separately optimized single-task models. Our code is publicly available at: https://github.com/j-min/VL-T5
StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized Image-Dialogue Data
The remarkable multimodal capabilities demonstrated by OpenAI's GPT-4 have sparked significant interest in the development of multimodal Large Language Models (LLMs). A primary research objective of such models is to align visual and textual modalities effectively while comprehending human instructions. Current methodologies often rely on annotations derived from benchmark datasets to construct image-dialogue datasets for training purposes, akin to instruction tuning in LLMs. However, these datasets often exhibit domain bias, potentially constraining the generative capabilities of the models. In an effort to mitigate these limitations, we propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning. This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models to yield a diverse and controllable dataset with varied image content. This not only provides greater flexibility compared to existing methodologies but also significantly enhances several model capabilities. Our research includes comprehensive experiments conducted on various datasets using the open-source LLAVA model as a testbed for our proposed pipeline. Our results underscore marked enhancements across more than ten commonly assessed capabilities,
Spider: Any-to-Many Multimodal LLM
Multimodal LLMs (MLLMs) have emerged as an extension of Large Language Models (LLMs), enabling the integration of various modalities. However, Any-to-Any MLLMs are limited to generating pairwise modalities 'Text + X' within a single response, such as Text + {Image or Audio or Video}. To address this limitation, we introduce Spider, a novel efficient Any-to-Many Modalities Generation (AMMG) framework, which can generate an arbitrary combination of modalities 'Text + Xs', such as Text + {Image and Audio and Video}. To achieve efficient AMMG, our Spider integrates three core components: a Base Model for basic X-to-X (i.e., Any-to-Any) modality processing, a novel Efficient Decoders-Controller for controlling multimodal Decoders to generate Xs (many-modal) contents, and an Any-to-Many Instruction Template designed for producing Xs signal prompts. To train Spider, we constructed a novel Text-formatted Many-Modal (TMM) dataset, which facilitates the learning of the X-to-Xs (i.e., Any-to-Many) capability necessary for AMMG. Ultimately, the well-trained Spider generates a pseudo X-to-Xs dataset, the first-ever X-to-Xs many-modal dataset, enhancing the potential for AMMG task in future research. Overall, this work not only pushes the boundary of multimodal interaction but also provides rich data support for advancing the field.
Multimodal Graph Learning for Generative Tasks
Multimodal learning combines multiple data modalities, broadening the types and complexity of data our models can utilize: for example, from plain text to image-caption pairs. Most multimodal learning algorithms focus on modeling simple one-to-one pairs of data from two modalities, such as image-caption pairs, or audio-text pairs. However, in most real-world settings, entities of different modalities interact with each other in more complex and multifaceted ways, going beyond one-to-one mappings. We propose to represent these complex relationships as graphs, allowing us to capture data with any number of modalities, and with complex relationships between modalities that can flexibly vary from one sample to another. Toward this goal, we propose Multimodal Graph Learning (MMGL), a general and systematic framework for capturing information from multiple multimodal neighbors with relational structures among them. In particular, we focus on MMGL for generative tasks, building upon pretrained Language Models (LMs), aiming to augment their text generation with multimodal neighbor contexts. We study three research questions raised by MMGL: (1) how can we infuse multiple neighbor information into the pretrained LMs, while avoiding scalability issues? (2) how can we infuse the graph structure information among multimodal neighbors into the LMs? and (3) how can we finetune the pretrained LMs to learn from the neighbor context in a parameter-efficient manner? We conduct extensive experiments to answer these three questions on MMGL and analyze the empirical results to pave the way for future MMGL research.
Eliciting Human Preferences with Language Models
Language models (LMs) can be directed to perform target tasks by using labeled examples or natural language prompts. But selecting examples or writing prompts for can be challenging--especially in tasks that involve unusual edge cases, demand precise articulation of nebulous preferences, or require an accurate mental model of LM behavior. We propose to use *LMs themselves* to guide the task specification process. In this paper, we introduce **Generative Active Task Elicitation (GATE)**: a learning framework in which models elicit and infer intended behavior through free-form, language-based interaction with users. We study GATE in three domains: email validation, content recommendation, and moral reasoning. In preregistered experiments, we show that LMs prompted to perform GATE (e.g., by generating open-ended questions or synthesizing informative edge cases) elicit responses that are often more informative than user-written prompts or labels. Users report that interactive task elicitation requires less effort than prompting or example labeling and surfaces novel considerations not initially anticipated by users. Our findings suggest that LM-driven elicitation can be a powerful tool for aligning models to complex human preferences and values.
HaploVL: A Single-Transformer Baseline for Multi-Modal Understanding
Recent advancements in large language models (LLMs) have significantly propelled the development of large multi-modal models (LMMs), highlighting the potential for general and intelligent assistants. However, most LMMs model visual and textual modalities separately, leading to recent efforts to develop native LMMs using a single transformer. Despite the promise, these native models are resource-intensive and often exhibit performance gaps compared to their compositional counterparts. To alleviate this issue, we propose a simple yet efficient method to construct a baseline for the native and end-to-end large multi-modal model in a single transformer. First, we propose a new early-fusion LMM that can fuse multi-modal inputs in the early stage and respond to visual instructions in an auto-regressive manner. Second, we devise an efficient training recipe for the proposed model, which harnesses the prior knowledge of the pre-trained models, addressing both the performance limitations and the challenge of resource consumption. The proposed model demonstrates superior performance compared to other LMMs using one transformer and significantly narrows the performance gap with compositional LMMs.
Multi-Modal Open-Domain Dialogue
Recent work in open-domain conversational agents has demonstrated that significant improvements in model engagingness and humanness metrics can be achieved via massive scaling in both pre-training data and model size (Adiwardana et al., 2020; Roller et al., 2020). However, if we want to build agents with human-like abilities, we must expand beyond handling just text. A particularly important topic is the ability to see images and communicate about what is perceived. With the goal of engaging humans in multi-modal dialogue, we investigate combining components from state-of-the-art open-domain dialogue agents with those from state-of-the-art vision models. We study incorporating different image fusion schemes and domain-adaptive pre-training and fine-tuning strategies, and show that our best resulting model outperforms strong existing models in multi-modal dialogue while simultaneously performing as well as its predecessor (text-only) BlenderBot (Roller et al., 2020) in text-based conversation. We additionally investigate and incorporate safety components in our final model, and show that such efforts do not diminish model performance with respect to engagingness metrics.
Dual Modality Prompt Tuning for Vision-Language Pre-Trained Model
With the emergence of large pre-trained vison-language model like CLIP, transferable representations can be adapted to a wide range of downstream tasks via prompt tuning. Prompt tuning tries to probe the beneficial information for downstream tasks from the general knowledge stored in the pre-trained model. A recently proposed method named Context Optimization (CoOp) introduces a set of learnable vectors as text prompt from the language side. However, tuning the text prompt alone can only adjust the synthesized "classifier", while the computed visual features of the image encoder can not be affected , thus leading to sub-optimal solutions. In this paper, we propose a novel Dual-modality Prompt Tuning (DPT) paradigm through learning text and visual prompts simultaneously. To make the final image feature concentrate more on the target visual concept, a Class-Aware Visual Prompt Tuning (CAVPT) scheme is further proposed in our DPT, where the class-aware visual prompt is generated dynamically by performing the cross attention between text prompts features and image patch token embeddings to encode both the downstream task-related information and visual instance information. Extensive experimental results on 11 datasets demonstrate the effectiveness and generalization ability of the proposed method. Our code is available in https://github.com/fanrena/DPT.
What Makes Training Multi-Modal Classification Networks Hard?
Consider end-to-end training of a multi-modal vs. a single-modal network on a task with multiple input modalities: the multi-modal network receives more information, so it should match or outperform its single-modal counterpart. In our experiments, however, we observe the opposite: the best single-modal network always outperforms the multi-modal network. This observation is consistent across different combinations of modalities and on different tasks and benchmarks. This paper identifies two main causes for this performance drop: first, multi-modal networks are often prone to overfitting due to increased capacity. Second, different modalities overfit and generalize at different rates, so training them jointly with a single optimization strategy is sub-optimal. We address these two problems with a technique we call Gradient Blending, which computes an optimal blend of modalities based on their overfitting behavior. We demonstrate that Gradient Blending outperforms widely-used baselines for avoiding overfitting and achieves state-of-the-art accuracy on various tasks including human action recognition, ego-centric action recognition, and acoustic event detection.
Contrasting with Symile: Simple Model-Agnostic Representation Learning for Unlimited Modalities
Contrastive learning methods, such as CLIP, leverage naturally paired data-for example, images and their corresponding text captions-to learn general representations that transfer efficiently to downstream tasks. While such approaches are generally applied to two modalities, domains such as robotics, healthcare, and video need to support many types of data at once. We show that the pairwise application of CLIP fails to capture joint information between modalities, thereby limiting the quality of the learned representations. To address this issue, we present Symile, a simple contrastive learning approach that captures higher-order information between any number of modalities. Symile provides a flexible, architecture-agnostic objective for learning modality-specific representations. To develop Symile's objective, we derive a lower bound on total correlation, and show that Symile representations for any set of modalities form a sufficient statistic for predicting the remaining modalities. Symile outperforms pairwise CLIP, even with modalities missing in the data, on cross-modal classification and retrieval across several experiments including on an original multilingual dataset of 33M image, text and audio samples and a clinical dataset of chest X-rays, electrocardiograms, and laboratory measurements. All datasets and code used in this work are publicly available at https://github.com/rajesh-lab/symile.
LEATHER: A Framework for Learning to Generate Human-like Text in Dialogue
Algorithms for text-generation in dialogue can be misguided. For example, in task-oriented settings, reinforcement learning that optimizes only task-success can lead to abysmal lexical diversity. We hypothesize this is due to poor theoretical understanding of the objectives in text-generation and their relation to the learning process (i.e., model training). To this end, we propose a new theoretical framework for learning to generate text in dialogue. Compared to existing theories of learning, our framework allows for analysis of the multi-faceted goals inherent to text-generation. We use our framework to develop theoretical guarantees for learners that adapt to unseen data. As an example, we apply our theory to study data-shift within a cooperative learning algorithm proposed for the GuessWhat?! visual dialogue game. From this insight, we propose a new algorithm, and empirically, we demonstrate our proposal improves both task-success and human-likeness of the generated text. Finally, we show statistics from our theory are empirically predictive of multiple qualities of the generated dialogue, suggesting our theory is useful for model-selection when human evaluations are not available.
Learning Human Skill Generators at Key-Step Levels
We are committed to learning human skill generators at key-step levels. The generation of skills is a challenging endeavor, but its successful implementation could greatly facilitate human skill learning and provide more experience for embodied intelligence. Although current video generation models can synthesis simple and atomic human operations, they struggle with human skills due to their complex procedure process. Human skills involve multi-step, long-duration actions and complex scene transitions, so the existing naive auto-regressive methods for synthesizing long videos cannot generate human skills. To address this, we propose a novel task, the Key-step Skill Generation (KS-Gen), aimed at reducing the complexity of generating human skill videos. Given the initial state and a skill description, the task is to generate video clips of key steps to complete the skill, rather than a full-length video. To support this task, we introduce a carefully curated dataset and define multiple evaluation metrics to assess performance. Considering the complexity of KS-Gen, we propose a new framework for this task. First, a multimodal large language model (MLLM) generates descriptions for key steps using retrieval argument. Subsequently, we use a Key-step Image Generator (KIG) to address the discontinuity between key steps in skill videos. Finally, a video generation model uses these descriptions and key-step images to generate video clips of the key steps with high temporal consistency. We offer a detailed analysis of the results, hoping to provide more insights on human skill generation. All models and data are available at https://github.com/MCG-NJU/KS-Gen.
Hateful Meme Detection through Context-Sensitive Prompting and Fine-Grained Labeling
The prevalence of multi-modal content on social media complicates automated moderation strategies. This calls for an enhancement in multi-modal classification and a deeper understanding of understated meanings in images and memes. Although previous efforts have aimed at improving model performance through fine-tuning, few have explored an end-to-end optimization pipeline that accounts for modalities, prompting, labeling, and fine-tuning. In this study, we propose an end-to-end conceptual framework for model optimization in complex tasks. Experiments support the efficacy of this traditional yet novel framework, achieving the highest accuracy and AUROC. Ablation experiments demonstrate that isolated optimizations are not ineffective on their own.
Debiasing Multimodal Large Language Models via Noise-Aware Preference Optimization
Multimodal Large Language Models excel in various tasks, yet often struggle with modality bias, where the model tends to rely heavily on a single modality and overlook critical information in other modalities, which leads to incorrect focus and generating irrelevant responses. In this paper, we propose using the paradigm of preference optimization to solve the modality bias problem, including RLAIFVBias, a debiased preference optimization dataset, and a Noise Aware Preference Optimization algorithm. Specifically, we first construct the dataset by introducing perturbations to reduce the informational content of certain modalities, compelling the model to rely on a specific modality when generating negative responses. To address the inevitable noise in automatically constructed data, we combine the noise robust Mean Absolute Error with the Binary Cross Entropy in Direct Preference Optimization by a negative Box Cox transformation, and dynamically adjust the algorithm noise robustness based on the evaluated noise levels in the data. Extensive experiments validate our approach, demonstrating not only its effectiveness in mitigating modality bias but also its significant role in minimizing hallucinations.
OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework
In this work, we pursue a unified paradigm for multimodal pretraining to break the scaffolds of complex task/modality-specific customization. We propose OFA, a Task-Agnostic and Modality-Agnostic framework that supports Task Comprehensiveness. OFA unifies a diverse set of cross-modal and unimodal tasks, including image generation, visual grounding, image captioning, image classification, language modeling, etc., in a simple sequence-to-sequence learning framework. OFA follows the instruction-based learning in both pretraining and finetuning stages, requiring no extra task-specific layers for downstream tasks. In comparison with the recent state-of-the-art vision & language models that rely on extremely large cross-modal datasets, OFA is pretrained on only 20M publicly available image-text pairs. Despite its simplicity and relatively small-scale training data, OFA achieves new SOTAs in a series of cross-modal tasks while attaining highly competitive performances on uni-modal tasks. Our further analysis indicates that OFA can also effectively transfer to unseen tasks and unseen domains. Our code and models are publicly available at https://github.com/OFA-Sys/OFA.
UniRAG: Universal Retrieval Augmentation for Multi-Modal Large Language Models
Recently, Multi-Modal(MM) Large Language Models(LLMs) have unlocked many complex use-cases that require MM understanding (e.g., image captioning or visual question answering) and MM generation (e.g., text-guided image generation or editing) capabilities. To further improve the output fidelity of MM-LLMs we introduce the model-agnostic UniRAG technique that adds relevant retrieved information to prompts as few-shot examples during inference. Unlike the common belief that Retrieval Augmentation (RA) mainly improves generation or understanding of uncommon entities, our evaluation results on the MSCOCO dataset with common entities show that both proprietary models like GPT4 and Gemini-Pro and smaller open-source models like Llava, LaVIT, and Emu2 significantly enhance their generation quality when their input prompts are augmented with relevant information retrieved by MM retrievers like UniIR models.
Cream of the Crop: Harvesting Rich, Scalable and Transferable Multi-Modal Data for Instruction Fine-Tuning
The hypothesis that pretrained large language models (LLMs) necessitate only minimal supervision during the fine-tuning (SFT) stage (Zhou et al., 2024) has been substantiated by recent advancements in data curation and selection research. However, their stability and generalizability are compromised due to the vulnerability to experimental setups and validation protocols, falling short of surpassing random sampling (Diddee & Ippolito, 2024; Xia et al., 2024b). Built upon LLMs, multi-modal LLMs (MLLMs), combined with the sheer token volume and heightened heterogeneity of data sources, amplify both the significance and complexity of data selection. To harvest multi-modal instructional data in a robust and efficient manner, we re-define the granularity of the quality metric by decomposing it into 14 vision-language-related capabilities, and introduce multi-modal rich scorers to evaluate the capabilities of each data candidate. To promote diversity, in light of the inherent objective of the alignment stage, we take interaction style as diversity indicator and use a multi-modal rich styler to identify data instruction patterns. In doing so, our multi-modal rich scorers and styler (mmSSR) guarantee that high-scoring information is conveyed to users in diversified forms. Free from embedding-based clustering or greedy sampling, mmSSR efficiently scales to millions of data with varying budget constraints, supports customization for general or specific capability acquisition, and facilitates training-free generalization to new domains for curation. Across 10+ experimental settings, validated by 14 multi-modal benchmarks, we demonstrate consistent improvements over random sampling, baseline strategies and state-of-the-art selection methods, achieving 99.1% of full performance with only 30% of the 2.6M data.
JEN-1 DreamStyler: Customized Musical Concept Learning via Pivotal Parameters Tuning
Large models for text-to-music generation have achieved significant progress, facilitating the creation of high-quality and varied musical compositions from provided text prompts. However, input text prompts may not precisely capture user requirements, particularly when the objective is to generate music that embodies a specific concept derived from a designated reference collection. In this paper, we propose a novel method for customized text-to-music generation, which can capture the concept from a two-minute reference music and generate a new piece of music conforming to the concept. We achieve this by fine-tuning a pretrained text-to-music model using the reference music. However, directly fine-tuning all parameters leads to overfitting issues. To address this problem, we propose a Pivotal Parameters Tuning method that enables the model to assimilate the new concept while preserving its original generative capabilities. Additionally, we identify a potential concept conflict when introducing multiple concepts into the pretrained model. We present a concept enhancement strategy to distinguish multiple concepts, enabling the fine-tuned model to generate music incorporating either individual or multiple concepts simultaneously. Since we are the first to work on the customized music generation task, we also introduce a new dataset and evaluation protocol for the new task. Our proposed Jen1-DreamStyler outperforms several baselines in both qualitative and quantitative evaluations. Demos will be available at https://www.jenmusic.ai/research#DreamStyler.
Transferable speech-to-text large language model alignment module
By leveraging the power of Large Language Models(LLMs) and speech foundation models, state of the art speech-text bimodal works can achieve challenging tasks like spoken translation(ST) and question answering(SQA) altogether with much simpler architectures. In this paper, we utilize the capability of Whisper encoder and pre-trained Yi-6B. Empirical results reveal that modal alignment can be achieved with one layer module and hundred hours of speech-text multitask corpus. We further swap the Yi-6B with human preferences aligned version of Yi-6B-Chat during inference, and discover that the alignment capability is applicable as well. In addition, the alignment subspace revealed by singular value decomposition(SVD) also implies linear alignment subspace is sparse, which leaves the possibility to concatenate other features like voice-print or video to expand modality.
Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning
We present CM3Leon (pronounced "Chameleon"), a retrieval-augmented, token-based, decoder-only multi-modal language model capable of generating and infilling both text and images. CM3Leon uses the CM3 multi-modal architecture but additionally shows the extreme benefits of scaling up and tuning on more diverse instruction-style data. It is the first multi-modal model trained with a recipe adapted from text-only language models, including a large-scale retrieval-augmented pre-training stage and a second multi-task supervised fine-tuning (SFT) stage. It is also a general-purpose model that can do both text-to-image and image-to-text generation, allowing us to introduce self-contained contrastive decoding methods that produce high-quality outputs. Extensive experiments demonstrate that this recipe is highly effective for multi-modal models. CM3Leon achieves state-of-the-art performance in text-to-image generation with 5x less training compute than comparable methods (zero-shot MS-COCO FID of 4.88). After SFT, CM3Leon can also demonstrate unprecedented levels of controllability in tasks ranging from language-guided image editing to image-controlled generation and segmentation.
Preference Tuning with Human Feedback on Language, Speech, and Vision Tasks: A Survey
Preference tuning is a crucial process for aligning deep generative models with human preferences. This survey offers a thorough overview of recent advancements in preference tuning and the integration of human feedback. The paper is organized into three main sections: 1) introduction and preliminaries: an introduction to reinforcement learning frameworks, preference tuning tasks, models, and datasets across various modalities: language, speech, and vision, as well as different policy approaches, 2) in-depth examination of each preference tuning approach: a detailed analysis of the methods used in preference tuning, and 3) applications, discussion, and future directions: an exploration of the applications of preference tuning in downstream tasks, including evaluation methods for different modalities, and an outlook on future research directions. Our objective is to present the latest methodologies in preference tuning and model alignment, enhancing the understanding of this field for researchers and practitioners. We hope to encourage further engagement and innovation in this area.
Judge Anything: MLLM as a Judge Across Any Modality
Evaluating generative foundation models on open-ended multimodal understanding (MMU) and generation (MMG) tasks across diverse modalities (e.g., images, audio, video) poses significant challenges due to the complexity of cross-modal interactions. To this end, the idea of utilizing Multimodal LLMs (MLLMs) as automated judges has emerged, with encouraging results in assessing vision-language understanding tasks. Moving further, this paper extends MLLM-as-a-Judge across modalities to a unified manner by introducing two benchmarks, TaskAnything and JudgeAnything, to respectively evaluate the overall performance and judging capabilities of MLLMs across any-to-any modality tasks. Specifically, TaskAnything evaluates the MMU and MMG capabilities across 15 any-to-any modality categories, employing 1,500 queries curated from well-established benchmarks. Furthermore, JudgeAnything evaluates the judging capabilities of 5 advanced (e.g., GPT-4o and Gemini-2.0-Flash) from the perspectives of Pair Comparison and Score Evaluation, providing a standardized testbed that incorporates human judgments and detailed rubrics. Our extensive experiments reveal that while these MLLMs show promise in assessing MMU (i.e., achieving an average of 66.55% in Pair Comparison setting and 42.79% in Score Evaluation setting), they encounter significant challenges with MMG tasks (i.e., averaging only 53.37% in Pair Comparison setting and 30.05% in Score Evaluation setting), exposing cross-modality biases and hallucination issues. To address this, we present OmniArena, an automated platform for evaluating omni-models and multimodal reward models. Our work highlights the need for fairer evaluation protocols and stronger alignment with human preferences. The source code and dataset are publicly available at: https://urrealhero.github.io/judgeanythingweb/.
Tell What You Hear From What You See -- Video to Audio Generation Through Text
The content of visual and audio scenes is multi-faceted such that a video can be paired with various audio and vice-versa. Thereby, in video-to-audio generation task, it is imperative to introduce steering approaches for controlling the generated audio. While Video-to-Audio generation is a well-established generative task, existing methods lack such controllability. In this work, we propose VATT, a multi-modal generative framework that takes a video and an optional text prompt as input, and generates audio and optional textual description of the audio. Such a framework has two advantages: i) Video-to-Audio generation process can be refined and controlled via text which complements the context of visual information, and ii) The model can suggest what audio to generate for the video by generating audio captions. VATT consists of two key modules: VATT Converter, a LLM that is fine-tuned for instructions and includes a projection layer that maps video features to the LLM vector space; and VATT Audio, a transformer that generates audio tokens from visual frames and from optional text prompt using iterative parallel decoding. The audio tokens are converted to a waveform by pretrained neural codec. Experiments show that when VATT is compared to existing video-to-audio generation methods in objective metrics, it achieves competitive performance when the audio caption is not provided. When the audio caption is provided as a prompt, VATT achieves even more refined performance (lowest KLD score of 1.41). Furthermore, subjective studies show that VATT Audio has been chosen as preferred generated audio than audio generated by existing methods. VATT enables controllable video-to-audio generation through text as well as suggesting text prompts for videos through audio captions, unlocking novel applications such as text-guided video-to-audio generation and video-to-audio captioning.
Musical Form Generation
While recent generative models can produce engaging music, their utility is limited. The variation in the music is often left to chance, resulting in compositions that lack structure. Pieces extending beyond a minute can become incoherent or repetitive. This paper introduces an approach for generating structured, arbitrarily long musical pieces. Central to this approach is the creation of musical segments using a conditional generative model, with transitions between these segments. The generation of prompts that determine the high-level composition is distinct from the creation of finer, lower-level details. A large language model is then used to suggest the musical form.
On Robustness in Multimodal Learning
Multimodal learning is defined as learning over multiple heterogeneous input modalities such as video, audio, and text. In this work, we are concerned with understanding how models behave as the type of modalities differ between training and deployment, a situation that naturally arises in many applications of multimodal learning to hardware platforms. We present a multimodal robustness framework to provide a systematic analysis of common multimodal representation learning methods. Further, we identify robustness short-comings of these approaches and propose two intervention techniques leading to 1.5times-4times robustness improvements on three datasets, AudioSet, Kinetics-400 and ImageNet-Captions. Finally, we demonstrate that these interventions better utilize additional modalities, if present, to achieve competitive results of 44.2 mAP on AudioSet 20K.
Cocktail: Mixing Multi-Modality Controls for Text-Conditional Image Generation
Text-conditional diffusion models are able to generate high-fidelity images with diverse contents. However, linguistic representations frequently exhibit ambiguous descriptions of the envisioned objective imagery, requiring the incorporation of additional control signals to bolster the efficacy of text-guided diffusion models. In this work, we propose Cocktail, a pipeline to mix various modalities into one embedding, amalgamated with a generalized ControlNet (gControlNet), a controllable normalisation (ControlNorm), and a spatial guidance sampling method, to actualize multi-modal and spatially-refined control for text-conditional diffusion models. Specifically, we introduce a hyper-network gControlNet, dedicated to the alignment and infusion of the control signals from disparate modalities into the pre-trained diffusion model. gControlNet is capable of accepting flexible modality signals, encompassing the simultaneous reception of any combination of modality signals, or the supplementary fusion of multiple modality signals. The control signals are then fused and injected into the backbone model according to our proposed ControlNorm. Furthermore, our advanced spatial guidance sampling methodology proficiently incorporates the control signal into the designated region, thereby circumventing the manifestation of undesired objects within the generated image. We demonstrate the results of our method in controlling various modalities, proving high-quality synthesis and fidelity to multiple external signals.
Minstrel: Structural Prompt Generation with Multi-Agents Coordination for Non-AI Experts
LLMs have demonstrated commendable performance across diverse domains. Nevertheless, formulating high-quality prompts to assist them in their work poses a challenge for non-AI experts. Existing research in prompt engineering suggests somewhat scattered optimization principles and designs empirically dependent prompt optimizers. Unfortunately, these endeavors lack a structural design, incurring high learning costs and it is not conducive to the iterative updating of prompts, especially for non-AI experts. Inspired by structured reusable programming languages, we propose LangGPT, a structural prompt design framework. Furthermore, we introduce Minstrel, a multi-generative agent system with reflection to automate the generation of structural prompts. Experiments and the case study illustrate that structural prompts generated by Minstrel or written manually significantly enhance the performance of LLMs. Furthermore, we analyze the ease of use of structural prompts through a user survey in our online community.
Visio-Linguistic Brain Encoding
Enabling effective brain-computer interfaces requires understanding how the human brain encodes stimuli across modalities such as visual, language (or text), etc. Brain encoding aims at constructing fMRI brain activity given a stimulus. There exists a plethora of neural encoding models which study brain encoding for single mode stimuli: visual (pretrained CNNs) or text (pretrained language models). Few recent papers have also obtained separate visual and text representation models and performed late-fusion using simple heuristics. However, previous work has failed to explore: (a) the effectiveness of image Transformer models for encoding visual stimuli, and (b) co-attentive multi-modal modeling for visual and text reasoning. In this paper, we systematically explore the efficacy of image Transformers (ViT, DEiT, and BEiT) and multi-modal Transformers (VisualBERT, LXMERT, and CLIP) for brain encoding. Extensive experiments on two popular datasets, BOLD5000 and Pereira, provide the following insights. (1) To the best of our knowledge, we are the first to investigate the effectiveness of image and multi-modal Transformers for brain encoding. (2) We find that VisualBERT, a multi-modal Transformer, significantly outperforms previously proposed single-mode CNNs, image Transformers as well as other previously proposed multi-modal models, thereby establishing new state-of-the-art. The supremacy of visio-linguistic models raises the question of whether the responses elicited in the visual regions are affected implicitly by linguistic processing even when passively viewing images. Future fMRI tasks can verify this computational insight in an appropriate experimental setting.
V2A-Mapper: A Lightweight Solution for Vision-to-Audio Generation by Connecting Foundation Models
Building artificial intelligence (AI) systems on top of a set of foundation models (FMs) is becoming a new paradigm in AI research. Their representative and generative abilities learnt from vast amounts of data can be easily adapted and transferred to a wide range of downstream tasks without extra training from scratch. However, leveraging FMs in cross-modal generation remains under-researched when audio modality is involved. On the other hand, automatically generating semantically-relevant sound from visual input is an important problem in cross-modal generation studies. To solve this vision-to-audio (V2A) generation problem, existing methods tend to design and build complex systems from scratch using modestly sized datasets. In this paper, we propose a lightweight solution to this problem by leveraging foundation models, specifically CLIP, CLAP, and AudioLDM. We first investigate the domain gap between the latent space of the visual CLIP and the auditory CLAP models. Then we propose a simple yet effective mapper mechanism (V2A-Mapper) to bridge the domain gap by translating the visual input between CLIP and CLAP spaces. Conditioned on the translated CLAP embedding, pretrained audio generative FM AudioLDM is adopted to produce high-fidelity and visually-aligned sound. Compared to previous approaches, our method only requires a quick training of the V2A-Mapper. We further analyze and conduct extensive experiments on the choice of the V2A-Mapper and show that a generative mapper is better at fidelity and variability (FD) while a regression mapper is slightly better at relevance (CS). Both objective and subjective evaluation on two V2A datasets demonstrate the superiority of our proposed method compared to current state-of-the-art approaches - trained with 86% fewer parameters but achieving 53% and 19% improvement in FD and CS, respectively.
Attention Strategies for Multi-Source Sequence-to-Sequence Learning
Modeling attention in neural multi-source sequence-to-sequence learning remains a relatively unexplored area, despite its usefulness in tasks that incorporate multiple source languages or modalities. We propose two novel approaches to combine the outputs of attention mechanisms over each source sequence, flat and hierarchical. We compare the proposed methods with existing techniques and present results of systematic evaluation of those methods on the WMT16 Multimodal Translation and Automatic Post-editing tasks. We show that the proposed methods achieve competitive results on both tasks.
Is Your Goal-Oriented Dialog Model Performing Really Well? Empirical Analysis of System-wise Evaluation
There is a growing interest in developing goal-oriented dialog systems which serve users in accomplishing complex tasks through multi-turn conversations. Although many methods are devised to evaluate and improve the performance of individual dialog components, there is a lack of comprehensive empirical study on how different components contribute to the overall performance of a dialog system. In this paper, we perform a system-wise evaluation and present an empirical analysis on different types of dialog systems which are composed of different modules in different settings. Our results show that (1) a pipeline dialog system trained using fine-grained supervision signals at different component levels often obtains better performance than the systems that use joint or end-to-end models trained on coarse-grained labels, (2) component-wise, single-turn evaluation results are not always consistent with the overall performance of a dialog system, and (3) despite the discrepancy between simulators and human users, simulated evaluation is still a valid alternative to the costly human evaluation especially in the early stage of development.
SEE-2-SOUND: Zero-Shot Spatial Environment-to-Spatial Sound
Generating combined visual and auditory sensory experiences is critical for the consumption of immersive content. Recent advances in neural generative models have enabled the creation of high-resolution content across multiple modalities such as images, text, speech, and videos. Despite these successes, there remains a significant gap in the generation of high-quality spatial audio that complements generated visual content. Furthermore, current audio generation models excel in either generating natural audio or speech or music but fall short in integrating spatial audio cues necessary for immersive experiences. In this work, we introduce SEE-2-SOUND, a zero-shot approach that decomposes the task into (1) identifying visual regions of interest; (2) locating these elements in 3D space; (3) generating mono-audio for each; and (4) integrating them into spatial audio. Using our framework, we demonstrate compelling results for generating spatial audio for high-quality videos, images, and dynamic images from the internet, as well as media generated by learned approaches.
Bootstrapping Vision-Language Learning with Decoupled Language Pre-training
We present a novel methodology aimed at optimizing the application of frozen large language models (LLMs) for resource-intensive vision-language (VL) pre-training. The current paradigm uses visual features as prompts to guide language models, with a focus on determining the most relevant visual features for corresponding text. Our approach diverges by concentrating on the language component, specifically identifying the optimal prompts to align with visual features. We introduce the Prompt-Transformer (P-Former), a model that predicts these ideal prompts, which is trained exclusively on linguistic data, bypassing the need for image-text pairings. This strategy subtly bifurcates the end-to-end VL training process into an additional, separate stage. Our experiments reveal that our framework significantly enhances the performance of a robust image-to-text baseline (BLIP-2), and effectively narrows the performance gap between models trained with either 4M or 129M image-text pairs. Importantly, our framework is modality-agnostic and flexible in terms of architectural design, as validated by its successful application in a video learning task using varied base modules. The code is available at https://github.com/yiren-jian/BLIText
Foundational Models Defining a New Era in Vision: A Survey and Outlook
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world. The complex relations between objects and their locations, ambiguities, and variations in the real-world environment can be better described in human language, naturally governed by grammatical rules and other modalities such as audio and depth. The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time. These models are referred to as foundational models. The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions. In this survey, we provide a comprehensive review of such emerging foundational models, including typical architecture designs to combine different modalities (vision, text, audio, etc), training objectives (contrastive, generative), pre-training datasets, fine-tuning mechanisms, and the common prompting patterns; textual, visual, and heterogeneous. We discuss the open challenges and research directions for foundational models in computer vision, including difficulties in their evaluations and benchmarking, gaps in their real-world understanding, limitations of their contextual understanding, biases, vulnerability to adversarial attacks, and interpretability issues. We review recent developments in this field, covering a wide range of applications of foundation models systematically and comprehensively. A comprehensive list of foundational models studied in this work is available at https://github.com/awaisrauf/Awesome-CV-Foundational-Models.
A Multimodal In-Context Tuning Approach for E-Commerce Product Description Generation
In this paper, we propose a new setting for generating product descriptions from images, augmented by marketing keywords. It leverages the combined power of visual and textual information to create descriptions that are more tailored to the unique features of products. For this setting, previous methods utilize visual and textual encoders to encode the image and keywords and employ a language model-based decoder to generate the product description. However, the generated description is often inaccurate and generic since same-category products have similar copy-writings, and optimizing the overall framework on large-scale samples makes models concentrate on common words yet ignore the product features. To alleviate the issue, we present a simple and effective Multimodal In-Context Tuning approach, named ModICT, which introduces a similar product sample as the reference and utilizes the in-context learning capability of language models to produce the description. During training, we keep the visual encoder and language model frozen, focusing on optimizing the modules responsible for creating multimodal in-context references and dynamic prompts. This approach preserves the language generation prowess of large language models (LLMs), facilitating a substantial increase in description diversity. To assess the effectiveness of ModICT across various language model scales and types, we collect data from three distinct product categories within the E-commerce domain. Extensive experiments demonstrate that ModICT significantly improves the accuracy (by up to 3.3% on Rouge-L) and diversity (by up to 9.4% on D-5) of generated results compared to conventional methods. Our findings underscore the potential of ModICT as a valuable tool for enhancing automatic generation of product descriptions in a wide range of applications.
Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications
In many machine learning systems that jointly learn from multiple modalities, a core research question is to understand the nature of multimodal interactions: the emergence of new task-relevant information during learning from both modalities that was not present in either alone. We study this challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data and naturally co-occurring multimodal data (e.g., unlabeled images and captions, video and corresponding audio) but when labeling them is time-consuming. Using a precise information-theoretic definition of interactions, our key contributions are the derivations of lower and upper bounds to quantify the amount of multimodal interactions in this semi-supervised setting. We propose two lower bounds based on the amount of shared information between modalities and the disagreement between separately trained unimodal classifiers, and derive an upper bound through connections to approximate algorithms for min-entropy couplings. We validate these estimated bounds and show how they accurately track true interactions. Finally, two semi-supervised multimodal applications are explored based on these theoretical results: (1) analyzing the relationship between multimodal performance and estimated interactions, and (2) self-supervised learning that embraces disagreement between modalities beyond agreement as is typically done.
TikTalk: A Video-Based Dialogue Dataset for Multi-Modal Chitchat in Real World
To facilitate the research on intelligent and human-like chatbots with multi-modal context, we introduce a new video-based multi-modal dialogue dataset, called TikTalk. We collect 38K videos from a popular video-sharing platform, along with 367K conversations posted by users beneath them. Users engage in spontaneous conversations based on their multi-modal experiences from watching videos, which helps recreate real-world chitchat context. Compared to previous multi-modal dialogue datasets, the richer context types in TikTalk lead to more diverse conversations, but also increase the difficulty in capturing human interests from intricate multi-modal information to generate personalized responses. Moreover, external knowledge is more frequently evoked in our dataset. These facts reveal new challenges for multi-modal dialogue models. We quantitatively demonstrate the characteristics of TikTalk, propose a video-based multi-modal chitchat task, and evaluate several dialogue baselines. Experimental results indicate that the models incorporating large language models (LLM) can generate more diverse responses, while the model utilizing knowledge graphs to introduce external knowledge performs the best overall. Furthermore, no existing model can solve all the above challenges well. There is still a large room for future improvements, even for LLM with visual extensions. Our dataset is available at https://ruc-aimind.github.io/projects/TikTalk/.
Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond
Developing a universal model that can effectively harness heterogeneous resources and respond to a wide range of personalized needs has been a longstanding community aspiration. Our daily choices, especially in domains like fashion and retail, are substantially shaped by multi-modal data, such as pictures and textual descriptions. These modalities not only offer intuitive guidance but also cater to personalized user preferences. However, the predominant personalization approaches mainly focus on the ID or text-based recommendation problem, failing to comprehend the information spanning various tasks or modalities. In this paper, our goal is to establish a Unified paradigm for Multi-modal Personalization systems (UniMP), which effectively leverages multi-modal data while eliminating the complexities associated with task- and modality-specific customization. We argue that the advancements in foundational generative modeling have provided the flexibility and effectiveness necessary to achieve the objective. In light of this, we develop a generic and extensible personalization generative framework, that can handle a wide range of personalized needs including item recommendation, product search, preference prediction, explanation generation, and further user-guided image generation. Our methodology enhances the capabilities of foundational language models for personalized tasks by seamlessly ingesting interleaved cross-modal user history information, ensuring a more precise and customized experience for users. To train and evaluate the proposed multi-modal personalized tasks, we also introduce a novel and comprehensive benchmark covering a variety of user requirements. Our experiments on the real-world benchmark showcase the model's potential, outperforming competitive methods specialized for each task.
Words or Vision: Do Vision-Language Models Have Blind Faith in Text?
Vision-Language Models (VLMs) excel in integrating visual and textual information for vision-centric tasks, but their handling of inconsistencies between modalities is underexplored. We investigate VLMs' modality preferences when faced with visual data and varied textual inputs in vision-centered settings. By introducing textual variations to four vision-centric tasks and evaluating ten Vision-Language Models (VLMs), we discover a ``blind faith in text'' phenomenon: VLMs disproportionately trust textual data over visual data when inconsistencies arise, leading to significant performance drops under corrupted text and raising safety concerns. We analyze factors influencing this text bias, including instruction prompts, language model size, text relevance, token order, and the interplay between visual and textual certainty. While certain factors, such as scaling up the language model size, slightly mitigate text bias, others like token order can exacerbate it due to positional biases inherited from language models. To address this issue, we explore supervised fine-tuning with text augmentation and demonstrate its effectiveness in reducing text bias. Additionally, we provide a theoretical analysis suggesting that the blind faith in text phenomenon may stem from an imbalance of pure text and multi-modal data during training. Our findings highlight the need for balanced training and careful consideration of modality interactions in VLMs to enhance their robustness and reliability in handling multi-modal data inconsistencies.
IMAD: IMage-Augmented multi-modal Dialogue
Currently, dialogue systems have achieved high performance in processing text-based communication. However, they have not yet effectively incorporated visual information, which poses a significant challenge. Furthermore, existing models that incorporate images in dialogue generation focus on discussing the image itself. Our proposed approach presents a novel perspective on multi-modal dialogue systems, which interprets the image in the context of the dialogue. By doing so, we aim to expand the capabilities of current dialogue systems and transition them from single modality (text) to multi-modality. However, there is a lack of validated English datasets that contain both images and dialogue contexts for this task. Thus, we propose a two-stage approach to automatically construct a multi-modal dialogue dataset. In the first stage, we utilize text-to-image similarity and sentence similarity to identify which utterances could be replaced with an image. In the second stage, we replace those utterances by selecting a subset of relevant images and filtering them with a visual question answering model. We used this approach, along with additional labeling, to create the IMage Augmented multi-modal Dialogue dataset (IMAD), which can serve as a validated dataset for this task. Furthermore, we propose a baseline model trained on this dataset, which outperforms model trained on the same data without images and BlenderBot.
Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications, ranging from content generation to interactive entertainment, and artistic creation. However, the diversity of downstream tasks in multitask scenarios presents substantial adaptation challenges for LLMs. While traditional methods often succumb to knowledge confusion on their monolithic dense models, Mixture-of-Experts (MoE) has been emerged as a promising solution with its sparse architecture for effective task decoupling. Inspired by the principles of human cognitive neuroscience, we design a novel framework Intuition-MoR1E that leverages the inherent semantic clustering of instances to mimic the human brain to deal with multitask, offering implicit guidance to router for optimized feature allocation. Moreover, we introduce cutting-edge Rank-1 Experts formulation designed to manage a spectrum of intuitions, demonstrating enhanced parameter efficiency and effectiveness in multitask LLM finetuning. Extensive experiments demonstrate that Intuition-MoR1E achieves superior efficiency and 2.15\% overall accuracy improvement across 14 public datasets against other state-of-the-art baselines.
SpeechGPT: Empowering Large Language Models with Intrinsic Cross-Modal Conversational Abilities
Multi-modal large language models are regarded as a crucial step towards Artificial General Intelligence (AGI) and have garnered significant interest with the emergence of ChatGPT. However, current speech-language models typically adopt the cascade paradigm, preventing inter-modal knowledge transfer. In this paper, we propose SpeechGPT, a large language model with intrinsic cross-modal conversational abilities, capable of perceiving and generating multi-model content. With discrete speech representations, we first construct SpeechInstruct, a large-scale cross-modal speech instruction dataset. Additionally, we employ a three-stage training strategy that includes modality-adaptation pre-training, cross-modal instruction fine-tuning, and chain-of-modality instruction fine-tuning. The experimental results demonstrate that SpeechGPT has an impressive capacity to follow multi-modal human instructions and highlight the potential of handling multiple modalities with one model. Demos are shown in https://0nutation.github.io/SpeechGPT.github.io/.
MMICT: Boosting Multi-Modal Fine-Tuning with In-Context Examples
Although In-Context Learning (ICL) brings remarkable performance gains to Large Language Models (LLMs), the improvements remain lower than fine-tuning on downstream tasks. This paper introduces Multi-Modal In-Context Tuning (MMICT), a novel multi-modal fine-tuning paradigm that boosts multi-modal fine-tuning by fully leveraging the promising ICL capability of multi-modal LLMs (MM-LLMs). We propose the Multi-Modal Hub (M-Hub), a unified module that captures various multi-modal features according to different inputs and objectives. Based on M-Hub, MMICT enables MM-LLMs to learn from in-context visual-guided textual features and subsequently generate outputs conditioned on the textual-guided visual features. Moreover, leveraging the flexibility of M-Hub, we design a variety of in-context demonstrations. Extensive experiments on a diverse range of downstream multi-modal tasks demonstrate that MMICT significantly outperforms traditional fine-tuning strategy and the vanilla ICT method that directly takes the concatenation of all information from different modalities as input.
InstrumentGen: Generating Sample-Based Musical Instruments From Text
We introduce the text-to-instrument task, which aims at generating sample-based musical instruments based on textual prompts. Accordingly, we propose InstrumentGen, a model that extends a text-prompted generative audio framework to condition on instrument family, source type, pitch (across an 88-key spectrum), velocity, and a joint text/audio embedding. Furthermore, we present a differentiable loss function to evaluate the intra-instrument timbral consistency of sample-based instruments. Our results establish a foundational text-to-instrument baseline, extending research in the domain of automatic sample-based instrument generation.
Prompt Tuning for Generative Multimodal Pretrained Models
Prompt tuning has become a new paradigm for model tuning and it has demonstrated success in natural language pretraining and even vision pretraining. In this work, we explore the transfer of prompt tuning to multimodal pretraining, with a focus on generative multimodal pretrained models, instead of contrastive ones. Specifically, we implement prompt tuning on the unified sequence-to-sequence pretrained model adaptive to both understanding and generation tasks. Experimental results demonstrate that the light-weight prompt tuning can achieve comparable performance with finetuning and surpass other light-weight tuning methods. Besides, in comparison with finetuned models, the prompt-tuned models demonstrate improved robustness against adversarial attacks. We further figure out that experimental factors, including the prompt length, prompt depth, and reparameteratization, have great impacts on the model performance, and thus we empirically provide a recommendation for the setups of prompt tuning. Despite the observed advantages, we still find some limitations in prompt tuning, and we correspondingly point out the directions for future studies. Codes are available at https://github.com/OFA-Sys/OFA
mPLUG-Owl2: Revolutionizing Multi-modal Large Language Model with Modality Collaboration
Multi-modal Large Language Models (MLLMs) have demonstrated impressive instruction abilities across various open-ended tasks. However, previous methods primarily focus on enhancing multi-modal capabilities. In this work, we introduce a versatile multi-modal large language model, mPLUG-Owl2, which effectively leverages modality collaboration to improve performance in both text and multi-modal tasks. mPLUG-Owl2 utilizes a modularized network design, with the language decoder acting as a universal interface for managing different modalities. Specifically, mPLUG-Owl2 incorporates shared functional modules to facilitate modality collaboration and introduces a modality-adaptive module that preserves modality-specific features. Extensive experiments reveal that mPLUG-Owl2 is capable of generalizing both text tasks and multi-modal tasks and achieving state-of-the-art performances with a single generic model. Notably, mPLUG-Owl2 is the first MLLM model that demonstrates the modality collaboration phenomenon in both pure-text and multi-modal scenarios, setting a pioneering path in the development of future multi-modal foundation models.
Efficient Task-Oriented Dialogue Systems with Response Selection as an Auxiliary Task
The adoption of pre-trained language models in task-oriented dialogue systems has resulted in significant enhancements of their text generation abilities. However, these architectures are slow to use because of the large number of trainable parameters and can sometimes fail to generate diverse responses. To address these limitations, we propose two models with auxiliary tasks for response selection - (1) distinguishing distractors from ground truth responses and (2) distinguishing synthetic responses from ground truth labels. They achieve state-of-the-art results on the MultiWOZ 2.1 dataset with combined scores of 107.5 and 108.3 and outperform a baseline with three times more parameters. We publish reproducible code and checkpoints and discuss the effects of applying auxiliary tasks to T5-based architectures.
EVLM: An Efficient Vision-Language Model for Visual Understanding
In the field of multi-modal language models, the majority of methods are built on an architecture similar to LLaVA. These models use a single-layer ViT feature as a visual prompt, directly feeding it into the language models alongside textual tokens. However, when dealing with long sequences of visual signals or inputs such as videos, the self-attention mechanism of language models can lead to significant computational overhead. Additionally, using single-layer ViT features makes it challenging for large language models to perceive visual signals fully. This paper proposes an efficient multi-modal language model to minimize computational costs while enabling the model to perceive visual signals as comprehensively as possible. Our method primarily includes: (1) employing cross-attention to image-text interaction similar to Flamingo. (2) utilize hierarchical ViT features. (3) introduce the Mixture of Experts (MoE) mechanism to enhance model effectiveness. Our model achieves competitive scores on public multi-modal benchmarks and performs well in tasks such as image captioning and video captioning.
Mix and Localize: Localizing Sound Sources in Mixtures
We present a method for simultaneously localizing multiple sound sources within a visual scene. This task requires a model to both group a sound mixture into individual sources, and to associate them with a visual signal. Our method jointly solves both tasks at once, using a formulation inspired by the contrastive random walk of Jabri et al. We create a graph in which images and separated sounds correspond to nodes, and train a random walker to transition between nodes from different modalities with high return probability. The transition probabilities for this walk are determined by an audio-visual similarity metric that is learned by our model. We show through experiments with musical instruments and human speech that our model can successfully localize multiple sounds, outperforming other self-supervised methods. Project site: https://hxixixh.github.io/mix-and-localize
Re-ranking the Context for Multimodal Retrieval Augmented Generation
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge to generate a response within a context with improved accuracy and reduced hallucinations. However, multi-modal RAG systems face unique challenges: (i) the retrieval process may select irrelevant entries to user query (e.g., images, documents), and (ii) vision-language models or multi-modal language models like GPT-4o may hallucinate when processing these entries to generate RAG output. In this paper, we aim to address the first challenge, i.e, improving the selection of relevant context from the knowledge-base in retrieval phase of the multi-modal RAG. Specifically, we leverage the relevancy score (RS) measure designed in our previous work for evaluating the RAG performance to select more relevant entries in retrieval process. The retrieval based on embeddings, say CLIP-based embedding, and cosine similarity usually perform poorly particularly for multi-modal data. We show that by using a more advanced relevancy measure, one can enhance the retrieval process by selecting more relevant pieces from the knowledge-base and eliminate the irrelevant pieces from the context by adaptively selecting up-to-k entries instead of fixed number of entries. Our evaluation using COCO dataset demonstrates significant enhancement in selecting relevant context and accuracy of the generated response.
Connect, Collapse, Corrupt: Learning Cross-Modal Tasks with Uni-Modal Data
Building cross-modal applications is challenging due to limited paired multi-modal data. Recent works have shown that leveraging a pre-trained multi-modal contrastive representation space enables cross-modal tasks to be learned from uni-modal data. This is based on the assumption that contrastive optimization makes embeddings from different modalities interchangeable. However, this assumption is under-explored due to the poorly understood geometry of the multi-modal contrastive space, where a modality gap exists. In our study, we provide a theoretical explanation of this space's geometry and introduce a three-step method, C^3 (Connect, Collapse, Corrupt), to bridge the modality gap, enhancing the interchangeability of embeddings. Our C^3 method significantly improves cross-modal learning from uni-modal data, achieving state-of-the-art results on zero-shot image / audio / video captioning and text-to-image generation.
MetaModulation: Learning Variational Feature Hierarchies for Few-Shot Learning with Fewer Tasks
Meta-learning algorithms are able to learn a new task using previously learned knowledge, but they often require a large number of meta-training tasks which may not be readily available. To address this issue, we propose a method for few-shot learning with fewer tasks, which we call MetaModulation. The key idea is to use a neural network to increase the density of the meta-training tasks by modulating batch normalization parameters during meta-training. Additionally, we modify parameters at various network levels, rather than just a single layer, to increase task diversity. To account for the uncertainty caused by the limited training tasks, we propose a variational MetaModulation where the modulation parameters are treated as latent variables. We also introduce learning variational feature hierarchies by the variational MetaModulation, which modulates features at all layers and can consider task uncertainty and generate more diverse tasks. The ablation studies illustrate the advantages of utilizing a learnable task modulation at different levels and demonstrate the benefit of incorporating probabilistic variants in few-task meta-learning. Our MetaModulation and its variational variants consistently outperform state-of-the-art alternatives on four few-task meta-learning benchmarks.
Uni-Perceiver-MoE: Learning Sparse Generalist Models with Conditional MoEs
To build an artificial neural network like the biological intelligence system, recent works have unified numerous tasks into a generalist model, which can process various tasks with shared parameters and do not have any task-specific modules. While generalist models achieve promising results on various benchmarks, they have performance degradation on some tasks compared with task-specialized models. In this work, we find that interference among different tasks and modalities is the main factor to this phenomenon. To mitigate such interference, we introduce the Conditional Mixture-of-Experts (Conditional MoEs) to generalist models. Routing strategies under different levels of conditions are proposed to take both the training/inference cost and generalization ability into account. By incorporating the proposed Conditional MoEs, the recently proposed generalist model Uni-Perceiver can effectively mitigate the interference across tasks and modalities, and achieves state-of-the-art results on a series of downstream tasks via prompt tuning on 1% of downstream data. Moreover, the introduction of Conditional MoEs still holds the generalization ability of generalist models to conduct zero-shot inference on new tasks, e.g., video-text retrieval and video caption. Code and pre-trained generalist models shall be released.
Cross-modal Information Flow in Multimodal Large Language Models
The recent advancements in auto-regressive multimodal large language models (MLLMs) have demonstrated promising progress for vision-language tasks. While there exists a variety of studies investigating the processing of linguistic information within large language models, little is currently known about the inner working mechanism of MLLMs and how linguistic and visual information interact within these models. In this study, we aim to fill this gap by examining the information flow between different modalities -- language and vision -- in MLLMs, focusing on visual question answering. Specifically, given an image-question pair as input, we investigate where in the model and how the visual and linguistic information are combined to generate the final prediction. Conducting experiments with a series of models from the LLaVA series, we find that there are two distinct stages in the process of integration of the two modalities. In the lower layers, the model first transfers the more general visual features of the whole image into the representations of (linguistic) question tokens. In the middle layers, it once again transfers visual information about specific objects relevant to the question to the respective token positions of the question. Finally, in the higher layers, the resulting multimodal representation is propagated to the last position of the input sequence for the final prediction. Overall, our findings provide a new and comprehensive perspective on the spatial and functional aspects of image and language processing in the MLLMs, thereby facilitating future research into multimodal information localization and editing.
InstructAny2Pix: Flexible Visual Editing via Multimodal Instruction Following
The ability to provide fine-grained control for generating and editing visual imagery has profound implications for computer vision and its applications. Previous works have explored extending controllability in two directions: instruction tuning with text-based prompts and multi-modal conditioning. However, these works make one or more unnatural assumptions on the number and/or type of modality inputs used to express controllability. We propose InstructAny2Pix, a flexible multi-modal instruction-following system that enables users to edit an input image using instructions involving audio, images, and text. InstructAny2Pix consists of three building blocks that facilitate this capability: a multi-modal encoder that encodes different modalities such as images and audio into a unified latent space, a diffusion model that learns to decode representations in this latent space into images, and a multi-modal LLM that can understand instructions involving multiple images and audio pieces and generate a conditional embedding of the desired output, which can be used by the diffusion decoder. Additionally, to facilitate training efficiency and improve generation quality, we include an additional refinement prior module that enhances the visual quality of LLM outputs. These designs are critical to the performance of our system. We demonstrate that our system can perform a series of novel instruction-guided editing tasks. The code is available at https://github.com/jacklishufan/InstructAny2Pix.git
MiniGPT-5: Interleaved Vision-and-Language Generation via Generative Vokens
Large Language Models (LLMs) have garnered significant attention for their advancements in natural language processing, demonstrating unparalleled prowess in text comprehension and generation. Yet, the simultaneous generation of images with coherent textual narratives remains an evolving frontier. In response, we introduce an innovative interleaved vision-and-language generation technique anchored by the concept of "generative vokens," acting as the bridge for harmonized image-text outputs. Our approach is characterized by a distinctive two-staged training strategy focusing on description-free multimodal generation, where the training requires no comprehensive descriptions of images. To bolster model integrity, classifier-free guidance is incorporated, enhancing the effectiveness of vokens on image generation. Our model, MiniGPT-5, exhibits substantial improvement over the baseline Divter model on the MMDialog dataset and consistently delivers superior or comparable multimodal outputs in human evaluations on the VIST dataset, highlighting its efficacy across diverse benchmarks.
Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization
Generative multimodal content is increasingly prevalent in much of the content creation arena, as it has the potential to allow artists and media personnel to create pre-production mockups by quickly bringing their ideas to life. The generation of audio from text prompts is an important aspect of such processes in the music and film industry. Many of the recent diffusion-based text-to-audio models focus on training increasingly sophisticated diffusion models on a large set of datasets of prompt-audio pairs. These models do not explicitly focus on the presence of concepts or events and their temporal ordering in the output audio with respect to the input prompt. Our hypothesis is focusing on how these aspects of audio generation could improve audio generation performance in the presence of limited data. As such, in this work, using an existing text-to-audio model Tango, we synthetically create a preference dataset where each prompt has a winner audio output and some loser audio outputs for the diffusion model to learn from. The loser outputs, in theory, have some concepts from the prompt missing or in an incorrect order. We fine-tune the publicly available Tango text-to-audio model using diffusion-DPO (direct preference optimization) loss on our preference dataset and show that it leads to improved audio output over Tango and AudioLDM2, in terms of both automatic- and manual-evaluation metrics.
Unified Multimodal Understanding and Generation Models: Advances, Challenges, and Opportunities
Recent years have seen remarkable progress in both multimodal understanding models and image generation models. Despite their respective successes, these two domains have evolved independently, leading to distinct architectural paradigms: While autoregressive-based architectures have dominated multimodal understanding, diffusion-based models have become the cornerstone of image generation. Recently, there has been growing interest in developing unified frameworks that integrate these tasks. The emergence of GPT-4o's new capabilities exemplifies this trend, highlighting the potential for unification. However, the architectural differences between the two domains pose significant challenges. To provide a clear overview of current efforts toward unification, we present a comprehensive survey aimed at guiding future research. First, we introduce the foundational concepts and recent advancements in multimodal understanding and text-to-image generation models. Next, we review existing unified models, categorizing them into three main architectural paradigms: diffusion-based, autoregressive-based, and hybrid approaches that fuse autoregressive and diffusion mechanisms. For each category, we analyze the structural designs and innovations introduced by related works. Additionally, we compile datasets and benchmarks tailored for unified models, offering resources for future exploration. Finally, we discuss the key challenges facing this nascent field, including tokenization strategy, cross-modal attention, and data. As this area is still in its early stages, we anticipate rapid advancements and will regularly update this survey. Our goal is to inspire further research and provide a valuable reference for the community. The references associated with this survey are available on GitHub (https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models).
DiffBlender: Scalable and Composable Multimodal Text-to-Image Diffusion Models
The recent progress in diffusion-based text-to-image generation models has significantly expanded generative capabilities via conditioning the text descriptions. However, since relying solely on text prompts is still restrictive for fine-grained customization, we aim to extend the boundaries of conditional generation to incorporate diverse types of modalities, e.g., sketch, box, and style embedding, simultaneously. We thus design a multimodal text-to-image diffusion model, coined as DiffBlender, that achieves the aforementioned goal in a single model by training only a few small hypernetworks. DiffBlender facilitates a convenient scaling of input modalities, without altering the parameters of an existing large-scale generative model to retain its well-established knowledge. Furthermore, our study sets new standards for multimodal generation by conducting quantitative and qualitative comparisons with existing approaches. By diversifying the channels of conditioning modalities, DiffBlender faithfully reflects the provided information or, in its absence, creates imaginative generation.
DuetSim: Building User Simulator with Dual Large Language Models for Task-Oriented Dialogues
User Simulators play a pivotal role in training and evaluating task-oriented dialogue systems. Traditional user simulators typically rely on human-engineered agendas, resulting in generated responses that often lack diversity and spontaneity. Although large language models (LLMs) exhibit a remarkable capacity for generating coherent and contextually appropriate utterances, they may fall short when tasked with generating responses that effectively guide users towards their goals, particularly in dialogues with intricate constraints and requirements. This paper introduces DuetSim, a novel framework designed to address the intricate demands of task-oriented dialogues by leveraging LLMs. DuetSim stands apart from conventional approaches by employing two LLMs in tandem: one dedicated to response generation and the other focused on verification. This dual LLM approach empowers DuetSim to produce responses that not only exhibit diversity but also demonstrate accuracy and are preferred by human users. We validate the efficacy of our method through extensive experiments conducted on the MultiWOZ dataset, highlighting improvements in response quality and correctness, largely attributed to the incorporation of the second LLM. Our code is accessible at: https://github.com/suntea233/DuetSim.
MIMIC-IT: Multi-Modal In-Context Instruction Tuning
High-quality instructions and responses are essential for the zero-shot performance of large language models on interactive natural language tasks. For interactive vision-language tasks involving intricate visual scenes, a large quantity of diverse and creative instruction-response pairs should be imperative to tune vision-language models (VLMs). Nevertheless, the current availability of vision-language instruction-response pairs in terms of quantity, diversity, and creativity remains limited, posing challenges to the generalization of interactive VLMs. Here we present MultI-Modal In-Context Instruction Tuning (MIMIC-IT), a dataset comprising 2.8 million multimodal instruction-response pairs, with 2.2 million unique instructions derived from images and videos. Each pair is accompanied by multi-modal in-context information, forming conversational contexts aimed at empowering VLMs in perception, reasoning, and planning. The instruction-response collection process, dubbed as Syphus, is scaled using an automatic annotation pipeline that combines human expertise with GPT's capabilities. Using the MIMIC-IT dataset, we train a large VLM named Otter. Based on extensive evaluations conducted on vision-language benchmarks, it has been observed that Otter demonstrates remarkable proficiency in multi-modal perception, reasoning, and in-context learning. Human evaluation reveals it effectively aligns with the user's intentions. We release the MIMIC-IT dataset, instruction-response collection pipeline, benchmarks, and the Otter model.
VUT: Versatile UI Transformer for Multi-Modal Multi-Task User Interface Modeling
User interface modeling is inherently multimodal, which involves several distinct types of data: images, structures and language. The tasks are also diverse, including object detection, language generation and grounding. In this paper, we present VUT, a Versatile UI Transformer that takes multimodal input and simultaneously accomplishes 5 distinct tasks with the same model. Our model consists of a multimodal Transformer encoder that jointly encodes UI images and structures, and performs UI object detection when the UI structures are absent in the input. Our model also consists of an auto-regressive Transformer model that encodes the language input and decodes output, for both question-answering and command grounding with respect to the UI. Our experiments show that for most of the tasks, when trained jointly for multi-tasks, VUT substantially reduces the number of models and footprints needed for performing multiple tasks, while achieving accuracy exceeding or on par with baseline models trained for each individual task.
Learning Multimodal VAEs through Mutual Supervision
Multimodal VAEs seek to model the joint distribution over heterogeneous data (e.g.\ vision, language), whilst also capturing a shared representation across such modalities. Prior work has typically combined information from the modalities by reconciling idiosyncratic representations directly in the recognition model through explicit products, mixtures, or other such factorisations. Here we introduce a novel alternative, the MEME, that avoids such explicit combinations by repurposing semi-supervised VAEs to combine information between modalities implicitly through mutual supervision. This formulation naturally allows learning from partially-observed data where some modalities can be entirely missing -- something that most existing approaches either cannot handle, or do so to a limited extent. We demonstrate that MEME outperforms baselines on standard metrics across both partial and complete observation schemes on the MNIST-SVHN (image-image) and CUB (image-text) datasets. We also contrast the quality of the representations learnt by mutual supervision against standard approaches and observe interesting trends in its ability to capture relatedness between data.
A Concept-Centric Approach to Multi-Modality Learning
In an effort to create a more efficient AI system, we introduce a new multi-modality learning framework that leverages a modality-agnostic concept space possessing abstract knowledge and a set of modality-specific projection models tailored to process distinct modality inputs and map them onto the concept space. Decoupled from specific modalities and their associated projection models, the concept space focuses on learning abstract knowledge that is universally applicable across modalities. Subsequently, the knowledge embedded into the concept space streamlines the learning processes of modality-specific projection models. We evaluate our framework on two popular tasks: Image-Text Matching and Visual Question Answering. Our framework achieves performance on par with benchmark models while demonstrating more efficient learning curves.
Toward Joint Language Modeling for Speech Units and Text
Speech and text are two major forms of human language. The research community has been focusing on mapping speech to text or vice versa for many years. However, in the field of language modeling, very little effort has been made to model them jointly. In light of this, we explore joint language modeling for speech units and text. Specifically, we compare different speech tokenizers to transform continuous speech signals into discrete units and use different methods to construct mixed speech-text data. We introduce automatic metrics to evaluate how well the joint LM mixes speech and text. We also fine-tune the LM on downstream spoken language understanding (SLU) tasks with different modalities (speech or text) and test its performance to assess the model's learning of shared representations. Our results show that by mixing speech units and text with our proposed mixing techniques, the joint LM improves over a speech-only baseline on SLU tasks and shows zero-shot cross-modal transferability.
Unlock the Power: Competitive Distillation for Multi-Modal Large Language Models
Recently, multi-modal content generation has attracted lots of attention from researchers by investigating the utilization of visual instruction tuning based on large language models (LLMs). To enhance the performance and generalization ability of such LLMs, the practice of distilling knowledge from pretrained multi-modal models (a.k.a. teachers) to more compact multi-modal LLMs (students) has gained considerable interest. However, the prevailing paradigm of instructiontuning in multi-modal LLMs knowledge distillation is resource-intensive and unidirectional, neglecting the potential for mutual feedback between the student and teacher models. Thus, we propose an innovative Competitive Multi-modal Distillation framework (CoMD), which captures bidirectional feedback between teacher and student models and continually updates the multi-modal capabilities that the student model has learned. It comprises two stages: multi-modal pre-training and multi-modal competitive distillation. The first stage pre-trains the student model on a large number of filtered multi-modal datasets. The second stage facilitates a bidirectional knowledge transfer between the student and teacher models. Our experimental analysis of diverse datasets shows that our knowledge transfer method consistently improves the capabilities of the student model. Finally, the 7B-sized student model after four distillations surpassed the current state-of-the-art model LLaVA-13B on the ScienceQA and LLaVA Test dataset, also outperforms other strong baselines in the zero-shot setting.
A Multi-Task, Multi-Modal Approach for Predicting Categorical and Dimensional Emotions
Speech emotion recognition (SER) has received a great deal of attention in recent years in the context of spontaneous conversations. While there have been notable results on datasets like the well known corpus of naturalistic dyadic conversations, IEMOCAP, for both the case of categorical and dimensional emotions, there are few papers which try to predict both paradigms at the same time. Therefore, in this work, we aim to highlight the performance contribution of multi-task learning by proposing a multi-task, multi-modal system that predicts categorical and dimensional emotions. The results emphasise the importance of cross-regularisation between the two types of emotions. Our approach consists of a multi-task, multi-modal architecture that uses parallel feature refinement through self-attention for the feature of each modality. In order to fuse the features, our model introduces a set of learnable bridge tokens that merge the acoustic and linguistic features with the help of cross-attention. Our experiments for categorical emotions on 10-fold validation yield results comparable to the current state-of-the-art. In our configuration, our multi-task approach provides better results compared to learning each paradigm separately. On top of that, our best performing model achieves a high result for valence compared to the previous multi-task experiments.
Unveiling Visual Perception in Language Models: An Attention Head Analysis Approach
Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated remarkable progress in visual understanding. This impressive leap raises a compelling question: how can language models, initially trained solely on linguistic data, effectively interpret and process visual content? This paper aims to address this question with systematic investigation across 4 model families and 4 model scales, uncovering a unique class of attention heads that focus specifically on visual content. Our analysis reveals a strong correlation between the behavior of these attention heads, the distribution of attention weights, and their concentration on visual tokens within the input. These findings enhance our understanding of how LLMs adapt to multimodal tasks, demonstrating their potential to bridge the gap between textual and visual understanding. This work paves the way for the development of AI systems capable of engaging with diverse modalities.
AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head
Large language models (LLMs) have exhibited remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition. Despite the recent success, current LLMs are not capable of processing complex audio information or conducting spoken conversations (like Siri or Alexa). In this work, we propose a multi-modal AI system named AudioGPT, which complements LLMs (i.e., ChatGPT) with 1) foundation models to process complex audio information and solve numerous understanding and generation tasks; and 2) the input/output interface (ASR, TTS) to support spoken dialogue. With an increasing demand to evaluate multi-modal LLMs of human intention understanding and cooperation with foundation models, we outline the principles and processes and test AudioGPT in terms of consistency, capability, and robustness. Experimental results demonstrate the capabilities of AudioGPT in solving AI tasks with speech, music, sound, and talking head understanding and generation in multi-round dialogues, which empower humans to create rich and diverse audio content with unprecedented ease. Our system is publicly available at https://github.com/AIGC-Audio/AudioGPT.
MAP: Multimodal Uncertainty-Aware Vision-Language Pre-training Model
Multimodal semantic understanding often has to deal with uncertainty, which means the obtained messages tend to refer to multiple targets. Such uncertainty is problematic for our interpretation, including inter- and intra-modal uncertainty. Little effort has studied the modeling of this uncertainty, particularly in pre-training on unlabeled datasets and fine-tuning in task-specific downstream datasets. In this paper, we project the representations of all modalities as probabilistic distributions via a Probability Distribution Encoder (PDE) by utilizing sequence-level interactions. Compared to the existing deterministic methods, such uncertainty modeling can convey richer multimodal semantic information and more complex relationships. Furthermore, we integrate uncertainty modeling with popular pre-training frameworks and propose suitable pre-training tasks: Distribution-based Vision-Language Contrastive learning (D-VLC), Distribution-based Masked Language Modeling (D-MLM), and Distribution-based Image-Text Matching (D-ITM). The fine-tuned models are applied to challenging downstream tasks, including image-text retrieval, visual question answering, visual reasoning, and visual entailment, and achieve state-of-the-art results.
EMMA: Efficient Visual Alignment in Multi-Modal LLMs
Multi-modal Large Language Models (MLLMs) have recently exhibited impressive general-purpose capabilities by leveraging vision foundation models to encode the core concepts of images into representations. These are then combined with instructions and processed by the language model to generate high-quality responses. Despite significant progress in enhancing the language component, challenges persist in optimally fusing visual encodings within the language model for task-specific adaptability. Recent research has focused on improving this fusion through modality adaptation modules but at the cost of significantly increased model complexity and training data needs. In this paper, we propose EMMA (Efficient Multi-Modal Adaptation), a lightweight cross-modality module designed to efficiently fuse visual and textual encodings, generating instruction-aware visual representations for the language model. Our key contributions include: (1) an efficient early fusion mechanism that integrates vision and language representations with minimal added parameters (less than 0.2% increase in model size), (2) an in-depth interpretability analysis that sheds light on the internal mechanisms of the proposed method; (3) comprehensive experiments that demonstrate notable improvements on both specialized and general benchmarks for MLLMs. Empirical results show that EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations. Our code is available at https://github.com/SaraGhazanfari/EMMA
MMoT: Mixture-of-Modality-Tokens Transformer for Composed Multimodal Conditional Image Synthesis
Existing multimodal conditional image synthesis (MCIS) methods generate images conditioned on any combinations of various modalities that require all of them must be exactly conformed, hindering the synthesis controllability and leaving the potential of cross-modality under-exploited. To this end, we propose to generate images conditioned on the compositions of multimodal control signals, where modalities are imperfectly complementary, i.e., composed multimodal conditional image synthesis (CMCIS). Specifically, we observe two challenging issues of the proposed CMCIS task, i.e., the modality coordination problem and the modality imbalance problem. To tackle these issues, we introduce a Mixture-of-Modality-Tokens Transformer (MMoT) that adaptively fuses fine-grained multimodal control signals, a multimodal balanced training loss to stabilize the optimization of each modality, and a multimodal sampling guidance to balance the strength of each modality control signal. Comprehensive experimental results demonstrate that MMoT achieves superior performance on both unimodal conditional image synthesis (UCIS) and MCIS tasks with high-quality and faithful image synthesis on complex multimodal conditions. The project website is available at https://jabir-zheng.github.io/MMoT.
Retrieval-augmented Multi-modal Chain-of-Thoughts Reasoning for Large Language Models
The advancement of Large Language Models(LLMs) has brought substantial attention to the Chain of Thought(CoT) approach, primarily due to its ability to enhance the capability of LLMs on tasks requiring complex reasoning. Moreover, the significance of CoT approaches extends to the application of LLMs for multi-modal tasks, such as multi-modal question answering. However, the selection of optimal CoT demonstration examples in multi-modal reasoning for LLMs remains less explored for LLMs due to the inherent complexity of multi-modal examples. In this paper, we introduce a novel approach that addresses this challenge by using retrieval mechanisms to dynamically and automatically select demonstration examples based on cross-modal similarities. This method aims to refine the CoT reasoning process in multi-modal scenarios via informing LLMs with more relevant and informative examples. Furthermore, we employ a stratified sampling method categorising demonstration examples into groups based on their types and retrieving examples from different groups respectively to promote the diversity of demonstration examples. Through a series of experiments, we demonstrate that our approach significantly improves the performance of LLMs, achieving state-of-the-art results in multi-modal reasoning tasks. Specifically, our methods demonstrate significant advancements on the ScienceQA dataset. While our method based on ChatGPT outperforms the Chameleon(ChatGPT) by 2.74% with an accuracy of 82.67%, the GPT4-based approach surpasses the Chameleon(GPT-4) by 0.89%, achieving 87.43% on accuracy under the same setting. Moreover, our best performing show a 6.05% increase over Chameleon for ChatGPT-based models and a 4.57% increase for GPT-4-based models.
How2: A Large-scale Dataset for Multimodal Language Understanding
In this paper, we introduce How2, a multimodal collection of instructional videos with English subtitles and crowdsourced Portuguese translations. We also present integrated sequence-to-sequence baselines for machine translation, automatic speech recognition, spoken language translation, and multimodal summarization. By making available data and code for several multimodal natural language tasks, we hope to stimulate more research on these and similar challenges, to obtain a deeper understanding of multimodality in language processing.
Language as the Medium: Multimodal Video Classification through text only
Despite an exciting new wave of multimodal machine learning models, current approaches still struggle to interpret the complex contextual relationships between the different modalities present in videos. Going beyond existing methods that emphasize simple activities or objects, we propose a new model-agnostic approach for generating detailed textual descriptions that captures multimodal video information. Our method leverages the extensive knowledge learnt by large language models, such as GPT-3.5 or Llama2, to reason about textual descriptions of the visual and aural modalities, obtained from BLIP-2, Whisper and ImageBind. Without needing additional finetuning of video-text models or datasets, we demonstrate that available LLMs have the ability to use these multimodal textual descriptions as proxies for ``sight'' or ``hearing'' and perform zero-shot multimodal classification of videos in-context. Our evaluations on popular action recognition benchmarks, such as UCF-101 or Kinetics, show these context-rich descriptions can be successfully used in video understanding tasks. This method points towards a promising new research direction in multimodal classification, demonstrating how an interplay between textual, visual and auditory machine learning models can enable more holistic video understanding.
Style Vectors for Steering Generative Large Language Model
This research explores strategies for steering the output of large language models (LLMs) towards specific styles, such as sentiment, emotion, or writing style, by adding style vectors to the activations of hidden layers during text generation. We show that style vectors can be simply computed from recorded layer activations for input texts in a specific style in contrast to more complex training-based approaches. Through a series of experiments, we demonstrate the effectiveness of activation engineering using such style vectors to influence the style of generated text in a nuanced and parameterisable way, distinguishing it from prompt engineering. The presented research constitutes a significant step towards developing more adaptive and effective AI-empowered interactive systems.
Multi-Modality Guidance Network For Missing Modality Inference
Multimodal models have gained significant success in recent years. Standard multimodal approaches often assume unchanged modalities from training stage to inference stage. In practice, however, many scenarios fail to satisfy such assumptions with missing modalities during inference, leading to limitations on where multimodal models can be applied. While existing methods mitigate the problem through reconstructing the missing modalities, it increases unnecessary computational cost, which could be just as critical, especially for large, deployed systems. To solve the problem from both sides, we propose a novel guidance network that promotes knowledge sharing during training, taking advantage of the multimodal representations to train better single-modality models for inference. Real-life experiment in violence detection shows that our proposed framework trains single-modality models that significantly outperform its traditionally trained counterparts while maintaining the same inference cost.
The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision)
Large multimodal models (LMMs) extend large language models (LLMs) with multi-sensory skills, such as visual understanding, to achieve stronger generic intelligence. In this paper, we analyze the latest model, GPT-4V(ision), to deepen the understanding of LMMs. The analysis focuses on the intriguing tasks that GPT-4V can perform, containing test samples to probe the quality and genericity of GPT-4V's capabilities, its supported inputs and working modes, and the effective ways to prompt the model. In our approach to exploring GPT-4V, we curate and organize a collection of carefully designed qualitative samples spanning a variety of domains and tasks. Observations from these samples demonstrate that GPT-4V's unprecedented ability in processing arbitrarily interleaved multimodal inputs and the genericity of its capabilities together make GPT-4V a powerful multimodal generalist system. Furthermore, GPT-4V's unique capability of understanding visual markers drawn on input images can give rise to new human-computer interaction methods such as visual referring prompting. We conclude the report with in-depth discussions on the emerging application scenarios and the future research directions for GPT-4V-based systems. We hope that this preliminary exploration will inspire future research on the next-generation multimodal task formulation, new ways to exploit and enhance LMMs to solve real-world problems, and gaining better understanding of multimodal foundation models.
Multimodal Structured Generation: CVPR's 2nd MMFM Challenge Technical Report
Multimodal Foundation Models (MMFMs) have shown remarkable performance on various computer vision and natural language processing tasks. However, their performance on particular tasks such as document understanding is still limited. They also require more compute, time, and engineering resources to finetune and deploy compared to traditional, unimodal models. In this report, we present Multimodal Structured Generation, a general framework which constrains the output logits of frozen MMFMs to force them to reason before responding with structured outputs that downstream APIs can parse and use. We provide a detailed account of our approach, including the technical details, theoretical discussions, and final evaluation results in the 2nd Multimodal Foundation Models Challenge hosted by the Computer Vision and Pattern Recognition (CVPR) conference. Our approach achieved the second highest score in the hidden test set for Phase 2 and third highest overall. This shows the method's ability to generalize to unseen tasks. And that simple engineering can beat expensive & complicated modelling steps as we first discussed in our paper, Retrieval Augmented Structured Generation: Business Document Information Extraction as Tool Use. All of our scripts, deployment steps, and evaluation results can be accessed in https://github.com/leloykun/MMFM-Challenge
Noise2Music: Text-conditioned Music Generation with Diffusion Models
We introduce Noise2Music, where a series of diffusion models is trained to generate high-quality 30-second music clips from text prompts. Two types of diffusion models, a generator model, which generates an intermediate representation conditioned on text, and a cascader model, which generates high-fidelity audio conditioned on the intermediate representation and possibly the text, are trained and utilized in succession to generate high-fidelity music. We explore two options for the intermediate representation, one using a spectrogram and the other using audio with lower fidelity. We find that the generated audio is not only able to faithfully reflect key elements of the text prompt such as genre, tempo, instruments, mood, and era, but goes beyond to ground fine-grained semantics of the prompt. Pretrained large language models play a key role in this story -- they are used to generate paired text for the audio of the training set and to extract embeddings of the text prompts ingested by the diffusion models. Generated examples: https://google-research.github.io/noise2music
Generating Illustrated Instructions
We introduce the new task of generating Illustrated Instructions, i.e., visual instructions customized to a user's needs. We identify desiderata unique to this task, and formalize it through a suite of automatic and human evaluation metrics, designed to measure the validity, consistency, and efficacy of the generations. We combine the power of large language models (LLMs) together with strong text-to-image generation diffusion models to propose a simple approach called StackedDiffusion, which generates such illustrated instructions given text as input. The resulting model strongly outperforms baseline approaches and state-of-the-art multimodal LLMs; and in 30% of cases, users even prefer it to human-generated articles. Most notably, it enables various new and exciting applications far beyond what static articles on the web can provide, such as personalized instructions complete with intermediate steps and pictures in response to a user's individual situation.
Mixture of Tunable Experts -- Behavior Modification of DeepSeek-R1 at Inference Time
We present the Mixture-of-Tunable-Experts (MoTE), a method that extends the Mixture-of-Experts architecture of Large Language Models (LLMs). Without additional training, MoTE enables meaningful and focused behavior changes in LLMs on-the-fly during inference time. By analyzing the digital LLM brain of DeepSeek-R1 using a technique we dub 'functional Token Resonance Imaging' (fTRI) -- inspired by fMRI and using prompts designed to elicit specific behavior (e.g., 'What happened {time}{place}?') -- we empirically identify distinctive experts associated with behaviors like refusal responses. Using MoTE we are able to intervene and control such specific behavior. We switched off the top 10 most refusal-relevant experts (0.07% of R1's 14,848 routed experts), achieving a 52% refusal reduction on sensitive reference prompts without performance degradation on MT-Bench. Random expert deactivation resulted in smaller behavioral shifts with increased noise, whereas forced expert activation led to significantly higher refusal rates. Our approach shares similarities with sparse autoencoders (SAEs) in terms of explainability and steerability. Unlike SAEs, MoTE does not require large training efforts, as within MoEs with a vast number of experts, specialization already emerged naturally during pretraining. Our findings suggest that significant functional mechanisms in Mixture-of-Experts architectures can at least partially be localized in a small number of specific experts, rather than being distributed throughout the model's weights. Expert subgroups can be tuned to trigger significant behavior variations, providing insights into the inner workings of LLMs.
SoMeLVLM: A Large Vision Language Model for Social Media Processing
The growth of social media, characterized by its multimodal nature, has led to the emergence of diverse phenomena and challenges, which calls for an effective approach to uniformly solve automated tasks. The powerful Large Vision Language Models make it possible to handle a variety of tasks simultaneously, but even with carefully designed prompting methods, the general domain models often fall short in aligning with the unique speaking style and context of social media tasks. In this paper, we introduce a Large Vision Language Model for Social Media Processing (SoMeLVLM), which is a cognitive framework equipped with five key capabilities including knowledge & comprehension, application, analysis, evaluation, and creation. SoMeLVLM is designed to understand and generate realistic social media behavior. We have developed a 654k multimodal social media instruction-tuning dataset to support our cognitive framework and fine-tune our model. Our experiments demonstrate that SoMeLVLM achieves state-of-the-art performance in multiple social media tasks. Further analysis shows its significant advantages over baselines in terms of cognitive abilities.
Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models
Recent text-to-image generative models have demonstrated an unparalleled ability to generate diverse and creative imagery guided by a target text prompt. While revolutionary, current state-of-the-art diffusion models may still fail in generating images that fully convey the semantics in the given text prompt. We analyze the publicly available Stable Diffusion model and assess the existence of catastrophic neglect, where the model fails to generate one or more of the subjects from the input prompt. Moreover, we find that in some cases the model also fails to correctly bind attributes (e.g., colors) to their corresponding subjects. To help mitigate these failure cases, we introduce the concept of Generative Semantic Nursing (GSN), where we seek to intervene in the generative process on the fly during inference time to improve the faithfulness of the generated images. Using an attention-based formulation of GSN, dubbed Attend-and-Excite, we guide the model to refine the cross-attention units to attend to all subject tokens in the text prompt and strengthen - or excite - their activations, encouraging the model to generate all subjects described in the text prompt. We compare our approach to alternative approaches and demonstrate that it conveys the desired concepts more faithfully across a range of text prompts.
A survey of Generative AI Applications
Generative AI has experienced remarkable growth in recent years, leading to a wide array of applications across diverse domains. In this paper, we present a comprehensive survey of more than 350 generative AI applications, providing a structured taxonomy and concise descriptions of various unimodal and even multimodal generative AIs. The survey is organized into sections, covering a wide range of unimodal generative AI applications such as text, images, video, gaming and brain information. Our survey aims to serve as a valuable resource for researchers and practitioners to navigate the rapidly expanding landscape of generative AI, facilitating a better understanding of the current state-of-the-art and fostering further innovation in the field.
12-in-1: Multi-Task Vision and Language Representation Learning
Much of vision-and-language research focuses on a small but diverse set of independent tasks and supporting datasets often studied in isolation; however, the visually-grounded language understanding skills required for success at these tasks overlap significantly. In this work, we investigate these relationships between vision-and-language tasks by developing a large-scale, multi-task training regime. Our approach culminates in a single model on 12 datasets from four broad categories of task including visual question answering, caption-based image retrieval, grounding referring expressions, and multi-modal verification. Compared to independently trained single-task models, this represents a reduction from approximately 3 billion parameters to 270 million while simultaneously improving performance by 2.05 points on average across tasks. We use our multi-task framework to perform in-depth analysis of the effect of joint training diverse tasks. Further, we show that finetuning task-specific models from our single multi-task model can lead to further improvements, achieving performance at or above the state-of-the-art.
Boosting Multi-modal Model Performance with Adaptive Gradient Modulation
While the field of multi-modal learning keeps growing fast, the deficiency of the standard joint training paradigm has become clear through recent studies. They attribute the sub-optimal performance of the jointly trained model to the modality competition phenomenon. Existing works attempt to improve the jointly trained model by modulating the training process. Despite their effectiveness, those methods can only apply to late fusion models. More importantly, the mechanism of the modality competition remains unexplored. In this paper, we first propose an adaptive gradient modulation method that can boost the performance of multi-modal models with various fusion strategies. Extensive experiments show that our method surpasses all existing modulation methods. Furthermore, to have a quantitative understanding of the modality competition and the mechanism behind the effectiveness of our modulation method, we introduce a novel metric to measure the competition strength. This metric is built on the mono-modal concept, a function that is designed to represent the competition-less state of a modality. Through systematic investigation, our results confirm the intuition that the modulation encourages the model to rely on the more informative modality. In addition, we find that the jointly trained model typically has a preferred modality on which the competition is weaker than other modalities. However, this preferred modality need not dominate others. Our code will be available at https://github.com/lihong2303/AGM_ICCV2023.
Scaling Laws for Native Multimodal Models Scaling Laws for Native Multimodal Models
Building general-purpose models that can effectively perceive the world through multimodal signals has been a long-standing goal. Current approaches involve integrating separately pre-trained components, such as connecting vision encoders to LLMs and continuing multimodal training. While such approaches exhibit remarkable sample efficiency, it remains an open question whether such late-fusion architectures are inherently superior. In this work, we revisit the architectural design of native multimodal models (NMMs)--those trained from the ground up on all modalities--and conduct an extensive scaling laws study, spanning 457 trained models with different architectures and training mixtures. Our investigation reveals no inherent advantage to late-fusion architectures over early-fusion ones, which do not rely on image encoders. On the contrary, early-fusion exhibits stronger performance at lower parameter counts, is more efficient to train, and is easier to deploy. Motivated by the strong performance of the early-fusion architectures, we show that incorporating Mixture of Experts (MoEs) allows for models that learn modality-specific weights, significantly enhancing performance.
Seeing Soundscapes: Audio-Visual Generation and Separation from Soundscapes Using Audio-Visual Separator
Recent audio-visual generative models have made substantial progress in generating images from audio. However, existing approaches focus on generating images from single-class audio and fail to generate images from mixed audio. To address this, we propose an Audio-Visual Generation and Separation model (AV-GAS) for generating images from soundscapes (mixed audio containing multiple classes). Our contribution is threefold: First, we propose a new challenge in the audio-visual generation task, which is to generate an image given a multi-class audio input, and we propose a method that solves this task using an audio-visual separator. Second, we introduce a new audio-visual separation task, which involves generating separate images for each class present in a mixed audio input. Lastly, we propose new evaluation metrics for the audio-visual generation task: Class Representation Score (CRS) and a modified R@K. Our model is trained and evaluated on the VGGSound dataset. We show that our method outperforms the state-of-the-art, achieving 7% higher CRS and 4% higher R@2* in generating plausible images with mixed audio.
The Curse of Multi-Modalities: Evaluating Hallucinations of Large Multimodal Models across Language, Visual, and Audio
Recent advancements in large multimodal models (LMMs) have significantly enhanced performance across diverse tasks, with ongoing efforts to further integrate additional modalities such as video and audio. However, most existing LMMs remain vulnerable to hallucinations, the discrepancy between the factual multimodal input and the generated textual output, which has limited their applicability in various real-world scenarios. This paper presents the first systematic investigation of hallucinations in LMMs involving the three most common modalities: language, visual, and audio. Our study reveals two key contributors to hallucinations: overreliance on unimodal priors and spurious inter-modality correlations. To address these challenges, we introduce the benchmark The Curse of Multi-Modalities (CMM), which comprehensively evaluates hallucinations in LMMs, providing a detailed analysis of their underlying issues. Our findings highlight key vulnerabilities, including imbalances in modality integration and biases from training data, underscoring the need for balanced cross-modal learning and enhanced hallucination mitigation strategies. Based on our observations and findings, we suggest potential research directions that could enhance the reliability of LMMs.
RAG-Check: Evaluating Multimodal Retrieval Augmented Generation Performance
Retrieval-augmented generation (RAG) improves large language models (LLMs) by using external knowledge to guide response generation, reducing hallucinations. However, RAG, particularly multi-modal RAG, can introduce new hallucination sources: (i) the retrieval process may select irrelevant pieces (e.g., documents, images) as raw context from the database, and (ii) retrieved images are processed into text-based context via vision-language models (VLMs) or directly used by multi-modal language models (MLLMs) like GPT-4o, which may hallucinate. To address this, we propose a novel framework to evaluate the reliability of multi-modal RAG using two performance measures: (i) the relevancy score (RS), assessing the relevance of retrieved entries to the query, and (ii) the correctness score (CS), evaluating the accuracy of the generated response. We train RS and CS models using a ChatGPT-derived database and human evaluator samples. Results show that both models achieve ~88% accuracy on test data. Additionally, we construct a 5000-sample human-annotated database evaluating the relevancy of retrieved pieces and the correctness of response statements. Our RS model aligns with human preferences 20% more often than CLIP in retrieval, and our CS model matches human preferences ~91% of the time. Finally, we assess various RAG systems' selection and generation performances using RS and CS.
VX2TEXT: End-to-End Learning of Video-Based Text Generation From Multimodal Inputs
We present Vx2Text, a framework for text generation from multimodal inputs consisting of video plus text, speech, or audio. In order to leverage transformer networks, which have been shown to be effective at modeling language, each modality is first converted into a set of language embeddings by a learnable tokenizer. This allows our approach to perform multimodal fusion in the language space, thus eliminating the need for ad-hoc cross-modal fusion modules. To address the non-differentiability of tokenization on continuous inputs (e.g., video or audio), we utilize a relaxation scheme that enables end-to-end training. Furthermore, unlike prior encoder-only models, our network includes an autoregressive decoder to generate open-ended text from the multimodal embeddings fused by the language encoder. This renders our approach fully generative and makes it directly applicable to different "video+x to text" problems without the need to design specialized network heads for each task. The proposed framework is not only conceptually simple but also remarkably effective: experiments demonstrate that our approach based on a single architecture outperforms the state-of-the-art on three video-based text-generation tasks -- captioning, question answering and audio-visual scene-aware dialog.
Enhance Generation Quality of Flow Matching V2A Model via Multi-Step CoT-Like Guidance and Combined Preference Optimization
Creating high-quality sound effects from videos and text prompts requires precise alignment between visual and audio domains, both semantically and temporally, along with step-by-step guidance for professional audio generation. However, current state-of-the-art video-guided audio generation models often fall short of producing high-quality audio for both general and specialized use cases. To address this challenge, we introduce a multi-stage, multi-modal, end-to-end generative framework with Chain-of-Thought-like (CoT-like) guidance learning, termed Chain-of-Perform (CoP). First, we employ a transformer-based network architecture designed to achieve CoP guidance, enabling the generation of both general and professional audio. Second, we implement a multi-stage training framework that follows step-by-step guidance to ensure the generation of high-quality sound effects. Third, we develop a CoP multi-modal dataset, guided by video, to support step-by-step sound effects generation. Evaluation results highlight the advantages of the proposed multi-stage CoP generative framework compared to the state-of-the-art models on a variety of datasets, with FAD 0.79 to 0.74 (+6.33%), CLIP 16.12 to 17.70 (+9.80%) on VGGSound, SI-SDR 1.98dB to 3.35dB (+69.19%), MOS 2.94 to 3.49(+18.71%) on PianoYT-2h, and SI-SDR 2.22dB to 3.21dB (+44.59%), MOS 3.07 to 3.42 (+11.40%) on Piano-10h.
Multimodal Image Synthesis and Editing: The Generative AI Era
As information exists in various modalities in real world, effective interaction and fusion among multimodal information plays a key role for the creation and perception of multimodal data in computer vision and deep learning research. With superb power in modeling the interaction among multimodal information, multimodal image synthesis and editing has become a hot research topic in recent years. Instead of providing explicit guidance for network training, multimodal guidance offers intuitive and flexible means for image synthesis and editing. On the other hand, this field is also facing several challenges in alignment of multimodal features, synthesis of high-resolution images, faithful evaluation metrics, etc. In this survey, we comprehensively contextualize the advance of the recent multimodal image synthesis and editing and formulate taxonomies according to data modalities and model types. We start with an introduction to different guidance modalities in image synthesis and editing, and then describe multimodal image synthesis and editing approaches extensively according to their model types. After that, we describe benchmark datasets and evaluation metrics as well as corresponding experimental results. Finally, we provide insights about the current research challenges and possible directions for future research. A project associated with this survey is available at https://github.com/fnzhan/Generative-AI.
SpiRit-LM: Interleaved Spoken and Written Language Model
We introduce SPIRIT-LM, a foundation multimodal language model that freely mixes text and speech. Our model is based on a pretrained text language model that we extend to the speech modality by continuously training it on text and speech units. Speech and text sequences are concatenated as a single set of tokens, and trained with a word-level interleaving method using a small automatically-curated speech-text parallel corpus. SPIRIT-LM comes in two versions: a BASE version that uses speech semantic units and an EXPRESSIVE version that models expressivity using pitch and style units in addition to the semantic units. For both versions, the text is encoded with subword BPE tokens. The resulting model displays both the semantic abilities of text models and the expressive abilities of speech models. Additionally, we demonstrate that SPIRIT-LM is able to learn new tasks in a few-shot fashion across modalities (i.e. ASR, TTS, Speech Classification).
Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts
Recent advancements in Multimodal Large Language Models (MLLMs) underscore the significance of scalable models and data to boost performance, yet this often incurs substantial computational costs. Although the Mixture of Experts (MoE) architecture has been employed to efficiently scale large language and image-text models, these efforts typically involve fewer experts and limited modalities. To address this, our work presents the pioneering attempt to develop a unified MLLM with the MoE architecture, named Uni-MoE that can handle a wide array of modalities. Specifically, it features modality-specific encoders with connectors for a unified multimodal representation. We also implement a sparse MoE architecture within the LLMs to enable efficient training and inference through modality-level data parallelism and expert-level model parallelism. To enhance the multi-expert collaboration and generalization, we present a progressive training strategy: 1) Cross-modality alignment using various connectors with different cross-modality data, 2) Training modality-specific experts with cross-modality instruction data to activate experts' preferences, and 3) Tuning the Uni-MoE framework utilizing Low-Rank Adaptation (LoRA) on mixed multimodal instruction data. We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets. The extensive experimental results demonstrate Uni-MoE's principal advantage of significantly reducing performance bias in handling mixed multimodal datasets, alongside improved multi-expert collaboration and generalization. Our findings highlight the substantial potential of MoE frameworks in advancing MLLMs and the code is available at https://github.com/HITsz-TMG/UMOE-Scaling-Unified-Multimodal-LLMs.
Audio-Visual LLM for Video Understanding
This paper presents Audio-Visual LLM, a Multimodal Large Language Model that takes both visual and auditory inputs for holistic video understanding. A key design is the modality-augmented training, which involves the integration of modality-specific tokens engineered to activate the appropriate visual and/or auditory encoder selectively. This mechanism is pivotal in enabling end-to-end joint training with video data at different modalities, including visual-only, audio-only, and audio-visual formats. Moreover, we introduce a high-quality video instruction dataset, derived from GPT-4. This dataset allows Audio-Visual LLM to adeptly process a variety of task-oriented video instructions, ranging from multi-turn conversations and audio-visual narratives to complex reasoning tasks. Extensive experiments demonstrate that Audio-Visual LLM impressively achieves strong zero-shot results across a range of video understanding tasks. For example, Audio-Visual LLM achieves an accuracy of 53.7% on MSRVTT-QA, outperforming non-LLM-based InterVideo by 6.6% and LLM-based Valley by 4.4%, respectively. Additionally, our Audio-Visual LLM also achieves competitive performance on audio tasks (e.g., AudioCaps).
TextMatch: Enhancing Image-Text Consistency Through Multimodal Optimization
Text-to-image generative models excel in creating images from text but struggle with ensuring alignment and consistency between outputs and prompts. This paper introduces TextMatch, a novel framework that leverages multimodal optimization to address image-text discrepancies in text-to-image (T2I) generation and editing. TextMatch employs a scoring strategy powered by large language models (LLMs) and visual question-answering (VQA) models to evaluate semantic consistency between prompts and generated images. By integrating multimodal in-context learning and chain of thought reasoning, our method dynamically refines prompts through iterative optimization. This process ensures that the generated images better capture user intent of, resulting in higher fidelity and relevance. Extensive experiments demonstrate that TextMatch significantly improves text-image consistency across multiple benchmarks, establishing a reliable framework for advancing the capabilities of text-to-image generative models. Our code is available at https://anonymous.4open.science/r/TextMatch-F55C/.
MINT: Multi-modal Chain of Thought in Unified Generative Models for Enhanced Image Generation
Unified generative models have demonstrated extraordinary performance in both text and image generation. However, they tend to underperform when generating intricate images with various interwoven conditions, which is hard to solely rely on straightforward text-to-image generation. In response to this challenge, we introduce MINT, an innovative unified generative model, empowered with native multimodal chain of thought (MCoT) for enhanced image generation for the first time. Firstly, we design Mixture of Transformer Experts (MTXpert), an expert-parallel structure that effectively supports both natural language generation (NLG) and visual capabilities, while avoiding potential modality conflicts that could hinder the full potential of each modality. Building on this, we propose an innovative MCoT training paradigm, a step-by-step approach to multimodal thinking, reasoning, and reflection specifically designed to enhance image generation. This paradigm equips MINT with nuanced, element-wise decoupled alignment and a comprehensive understanding of textual and visual components. Furthermore, it fosters advanced multimodal reasoning and self-reflection, enabling the construction of images that are firmly grounded in the logical relationships between these elements. Notably, MINT has been validated to exhibit superior performance across multiple benchmarks for text-to-image (T2I) and image-to-text (I2T) tasks.
Audio-Language Models for Audio-Centric Tasks: A survey
Audio-Language Models (ALMs), which are trained on audio-text data, focus on the processing, understanding, and reasoning of sounds. Unlike traditional supervised learning approaches learning from predefined labels, ALMs utilize natural language as a supervision signal, which is more suitable for describing complex real-world audio recordings. ALMs demonstrate strong zero-shot capabilities and can be flexibly adapted to diverse downstream tasks. These strengths not only enhance the accuracy and generalization of audio processing tasks but also promote the development of models that more closely resemble human auditory perception and comprehension. Recent advances in ALMs have positioned them at the forefront of computer audition research, inspiring a surge of efforts to advance ALM technologies. Despite rapid progress in the field of ALMs, there is still a notable lack of systematic surveys that comprehensively organize and analyze developments. In this paper, we present a comprehensive review of ALMs with a focus on general audio tasks, aiming to fill this gap by providing a structured and holistic overview of ALMs. Specifically, we cover: (1) the background of computer audition and audio-language models; (2) the foundational aspects of ALMs, including prevalent network architectures, training objectives, and evaluation methods; (3) foundational pre-training and audio-language pre-training approaches; (4) task-specific fine-tuning, multi-task tuning and agent systems for downstream applications; (5) datasets and benchmarks; and (6) current challenges and future directions. Our review provides a clear technical roadmap for researchers to understand the development and future trends of existing technologies, offering valuable references for implementation in real-world scenarios.
Multi-property Steering of Large Language Models with Dynamic Activation Composition
Activation steering methods were shown to be effective in conditioning language model generation by additively intervening over models' intermediate representations. However, the evaluation of these techniques has so far been limited to single conditioning properties and synthetic settings. In this work, we conduct a comprehensive evaluation of various activation steering strategies, highlighting the property-dependent nature of optimal parameters to ensure a robust effect throughout generation. To address this issue, we propose Dynamic Activation Composition, an information-theoretic approach to modulate the steering intensity of one or more properties throughout generation. Our experiments on multi-property steering show that our method successfully maintains high conditioning while minimizing the impact of conditioning on generation fluency.
A Systematic Survey of Prompt Engineering on Vision-Language Foundation Models
Prompt engineering is a technique that involves augmenting a large pre-trained model with task-specific hints, known as prompts, to adapt the model to new tasks. Prompts can be created manually as natural language instructions or generated automatically as either natural language instructions or vector representations. Prompt engineering enables the ability to perform predictions based solely on prompts without updating model parameters, and the easier application of large pre-trained models in real-world tasks. In past years, Prompt engineering has been well-studied in natural language processing. Recently, it has also been intensively studied in vision-language modeling. However, there is currently a lack of a systematic overview of prompt engineering on pre-trained vision-language models. This paper aims to provide a comprehensive survey of cutting-edge research in prompt engineering on three types of vision-language models: multimodal-to-text generation models (e.g. Flamingo), image-text matching models (e.g. CLIP), and text-to-image generation models (e.g. Stable Diffusion). For each type of model, a brief model summary, prompting methods, prompting-based applications, and the corresponding responsibility and integrity issues are summarized and discussed. Furthermore, the commonalities and differences between prompting on vision-language models, language models, and vision models are also discussed. The challenges, future directions, and research opportunities are summarized to foster future research on this topic.
HEMM: Holistic Evaluation of Multimodal Foundation Models
Multimodal foundation models that can holistically process text alongside images, video, audio, and other sensory modalities are increasingly used in a variety of real-world applications. However, it is challenging to characterize and study progress in multimodal foundation models, given the range of possible modeling decisions, tasks, and domains. In this paper, we introduce Holistic Evaluation of Multimodal Models (HEMM) to systematically evaluate the capabilities of multimodal foundation models across a set of 3 dimensions: basic skills, information flow, and real-world use cases. Basic multimodal skills are internal abilities required to solve problems, such as learning interactions across modalities, fine-grained alignment, multi-step reasoning, and the ability to handle external knowledge. Information flow studies how multimodal content changes during a task through querying, translation, editing, and fusion. Use cases span domain-specific challenges introduced in real-world multimedia, affective computing, natural sciences, healthcare, and human-computer interaction applications. Through comprehensive experiments across the 30 tasks in HEMM, we (1) identify key dataset dimensions (e.g., basic skills, information flows, and use cases) that pose challenges to today's models, and (2) distill performance trends regarding how different modeling dimensions (e.g., scale, pre-training data, multimodal alignment, pre-training, and instruction tuning objectives) influence performance. Our conclusions regarding challenging multimodal interactions, use cases, and tasks requiring reasoning and external knowledge, the benefits of data and model scale, and the impacts of instruction tuning yield actionable insights for future work in multimodal foundation models.
Any-to-Any Generation via Composable Diffusion
We present Composable Diffusion (CoDi), a novel generative model capable of generating any combination of output modalities, such as language, image, video, or audio, from any combination of input modalities. Unlike existing generative AI systems, CoDi can generate multiple modalities in parallel and its input is not limited to a subset of modalities like text or image. Despite the absence of training datasets for many combinations of modalities, we propose to align modalities in both the input and output space. This allows CoDi to freely condition on any input combination and generate any group of modalities, even if they are not present in the training data. CoDi employs a novel composable generation strategy which involves building a shared multimodal space by bridging alignment in the diffusion process, enabling the synchronized generation of intertwined modalities, such as temporally aligned video and audio. Highly customizable and flexible, CoDi achieves strong joint-modality generation quality, and outperforms or is on par with the unimodal state-of-the-art for single-modality synthesis. The project page with demonstrations and code is at https://codi-gen.github.io
Sound2Vision: Generating Diverse Visuals from Audio through Cross-Modal Latent Alignment
How does audio describe the world around us? In this work, we propose a method for generating images of visual scenes from diverse in-the-wild sounds. This cross-modal generation task is challenging due to the significant information gap between auditory and visual signals. We address this challenge by designing a model that aligns audio-visual modalities by enriching audio features with visual information and translating them into the visual latent space. These features are then fed into the pre-trained image generator to produce images. To enhance image quality, we use sound source localization to select audio-visual pairs with strong cross-modal correlations. Our method achieves substantially better results on the VEGAS and VGGSound datasets compared to previous work and demonstrates control over the generation process through simple manipulations to the input waveform or latent space. Furthermore, we analyze the geometric properties of the learned embedding space and demonstrate that our learning approach effectively aligns audio-visual signals for cross-modal generation. Based on this analysis, we show that our method is agnostic to specific design choices, showing its generalizability by integrating various model architectures and different types of audio-visual data.
Multimodal Contrastive Learning with LIMoE: the Language-Image Mixture of Experts
Large sparsely-activated models have obtained excellent performance in multiple domains. However, such models are typically trained on a single modality at a time. We present the Language-Image MoE, LIMoE, a sparse mixture of experts model capable of multimodal learning. LIMoE accepts both images and text simultaneously, while being trained using a contrastive loss. MoEs are a natural fit for a multimodal backbone, since expert layers can learn an appropriate partitioning of modalities. However, new challenges arise; in particular, training stability and balanced expert utilization, for which we propose an entropy-based regularization scheme. Across multiple scales, we demonstrate remarkable performance improvement over dense models of equivalent computational cost. LIMoE-L/16 trained comparably to CLIP-L/14 achieves 78.6% zero-shot ImageNet accuracy (vs. 76.2%), and when further scaled to H/14 (with additional data) it achieves 84.1%, comparable to state-of-the-art methods which use larger custom per-modality backbones and pre-training schemes. We analyse the quantitative and qualitative behavior of LIMoE, and demonstrate phenomena such as differing treatment of the modalities and the organic emergence of modality-specific experts.
Ichigo: Mixed-Modal Early-Fusion Realtime Voice Assistant
Large Language Models (LLMs) have revolutionized natural language processing, but their application to speech-based tasks remains challenging due to the complexities of integrating audio and text modalities. This paper introduces Ichigo, a mixed-modal model that seamlessly processes interleaved sequences of speech and text. Utilizing a tokenized early-fusion approach, Ichigo quantizes speech into discrete tokens and employs a uniform transformer-based architecture for both speech and text modalities. This method enables joint reasoning and generation across modalities without the need for separate adapters. We present a comprehensive training methodology, including pre-training on multilingual speech recognition datasets and fine-tuning on a curated instruction dataset. Ichigo demonstrates state-of-the-art performance on speech question-answering benchmarks, outperforming existing open-source speech language models and achieving comparable results to cascaded systems. Notably, Ichigo exhibits a latency of just 111 ms to first token generation, significantly lower than current models. Our approach not only advances the field of multimodal AI but also provides a framework for smaller research teams to contribute effectively to open-source speech-language models.
SLM: Bridge the thin gap between speech and text foundation models
We present a joint Speech and Language Model (SLM), a multitask, multilingual, and dual-modal model that takes advantage of pretrained foundational speech and language models. SLM freezes the pretrained foundation models to maximally preserves their capabilities, and only trains a simple adapter with just 1\% (156M) of the foundation models' parameters. This adaptation not only leads SLM to achieve strong performance on conventional tasks such as speech recognition (ASR) and speech translation (AST), but also introduces the novel capability of zero-shot instruction-following for more diverse tasks: given a speech input and a text instruction, SLM is able to perform unseen generation tasks including contextual biasing ASR using real-time context, dialog generation, speech continuation, and question answering, etc. Our approach demonstrates that the representational gap between pretrained speech and language models might be narrower than one would expect, and can be bridged by a simple adaptation mechanism. As a result, SLM is not only efficient to train, but also inherits strong capabilities already acquired in foundation models of different modalities.
Multi-Domain Dialogue Acts and Response Co-Generation
Generating fluent and informative responses is of critical importance for task-oriented dialogue systems. Existing pipeline approaches generally predict multiple dialogue acts first and use them to assist response generation. There are at least two shortcomings with such approaches. First, the inherent structures of multi-domain dialogue acts are neglected. Second, the semantic associations between acts and responses are not taken into account for response generation. To address these issues, we propose a neural co-generation model that generates dialogue acts and responses concurrently. Unlike those pipeline approaches, our act generation module preserves the semantic structures of multi-domain dialogue acts and our response generation module dynamically attends to different acts as needed. We train the two modules jointly using an uncertainty loss to adjust their task weights adaptively. Extensive experiments are conducted on the large-scale MultiWOZ dataset and the results show that our model achieves very favorable improvement over several state-of-the-art models in both automatic and human evaluations.
AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling
We introduce AnyGPT, an any-to-any multimodal language model that utilizes discrete representations for the unified processing of various modalities, including speech, text, images, and music. AnyGPT can be trained stably without any alterations to the current large language model (LLM) architecture or training paradigms. Instead, it relies exclusively on data-level preprocessing, facilitating the seamless integration of new modalities into LLMs, akin to the incorporation of new languages. We build a multimodal text-centric dataset for multimodal alignment pre-training. Utilizing generative models, we synthesize the first large-scale any-to-any multimodal instruction dataset. It consists of 108k samples of multi-turn conversations that intricately interweave various modalities, thus equipping the model to handle arbitrary combinations of multimodal inputs and outputs. Experimental results demonstrate that AnyGPT is capable of facilitating any-to-any multimodal conversation while achieving performance comparable to specialized models across all modalities, proving that discrete representations can effectively and conveniently unify multiple modalities within a language model. Demos are shown in https://junzhan2000.github.io/AnyGPT.github.io/
SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented Dialogue Agents
Task-oriented dialogue (TOD) models have made significant progress in recent years. However, previous studies primarily focus on datasets written by annotators, which has resulted in a gap between academic research and real-world spoken conversation scenarios. While several small-scale spoken TOD datasets are proposed to address robustness issues such as ASR errors, they ignore the unique challenges in spoken conversation. To tackle the limitations, we introduce SpokenWOZ, a large-scale speech-text dataset for spoken TOD, containing 8 domains, 203k turns, 5.7k dialogues and 249 hours of audios from human-to-human spoken conversations. SpokenWOZ further incorporates common spoken characteristics such as word-by-word processing and reasoning in spoken language. Based on these characteristics, we present cross-turn slot and reasoning slot detection as new challenges. We conduct experiments on various baselines, including text-modal models, newly proposed dual-modal models, and LLMs, e.g., ChatGPT. The results show that the current models still have substantial room for improvement in spoken conversation, where the most advanced dialogue state tracker only achieves 25.65% in joint goal accuracy and the SOTA end-to-end model only correctly completes the user request in 52.1% of dialogues. The dataset, code, and leaderboard are available: https://spokenwoz.github.io/SpokenWOZ-github.io/.
BOTH2Hands: Inferring 3D Hands from Both Text Prompts and Body Dynamics
The recently emerging text-to-motion advances have spired numerous attempts for convenient and interactive human motion generation. Yet, existing methods are largely limited to generating body motions only without considering the rich two-hand motions, let alone handling various conditions like body dynamics or texts. To break the data bottleneck, we propose BOTH57M, a novel multi-modal dataset for two-hand motion generation. Our dataset includes accurate motion tracking for the human body and hands and provides pair-wised finger-level hand annotations and body descriptions. We further provide a strong baseline method, BOTH2Hands, for the novel task: generating vivid two-hand motions from both implicit body dynamics and explicit text prompts. We first warm up two parallel body-to-hand and text-to-hand diffusion models and then utilize the cross-attention transformer for motion blending. Extensive experiments and cross-validations demonstrate the effectiveness of our approach and dataset for generating convincing two-hand motions from the hybrid body-and-textual conditions. Our dataset and code will be disseminated to the community for future research.
Visually Guided Self Supervised Learning of Speech Representations
Self supervised representation learning has recently attracted a lot of research interest for both the audio and visual modalities. However, most works typically focus on a particular modality or feature alone and there has been very limited work that studies the interaction between the two modalities for learning self supervised representations. We propose a framework for learning audio representations guided by the visual modality in the context of audiovisual speech. We employ a generative audio-to-video training scheme in which we animate a still image corresponding to a given audio clip and optimize the generated video to be as close as possible to the real video of the speech segment. Through this process, the audio encoder network learns useful speech representations that we evaluate on emotion recognition and speech recognition. We achieve state of the art results for emotion recognition and competitive results for speech recognition. This demonstrates the potential of visual supervision for learning audio representations as a novel way for self-supervised learning which has not been explored in the past. The proposed unsupervised audio features can leverage a virtually unlimited amount of training data of unlabelled audiovisual speech and have a large number of potentially promising applications.